organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3,4-Dimeth­­oxy­benz­yl)chroman-4-one

aChemistry Research Centre (affiliated to Kuvempu University), SSMRV Degree College, 4th T Block, Jayanagar, Bangalore 560 041, India, bDepartment of Chemistry, KMC International Center, Manipal University, Manipal 576 104, India, cDepartment of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576 104, India, dDepartment of Chemistry, Jnana Sahyadri, Kuvempu University, Shankargatta 577 451, India, and eDepartment of Physics, Bhavan's Sheth R. A. College of Science, Khanpur, Ahmedabad, Gujarat 380 001, India
*Correspondence e-mail: girija.shivakumar@rediffmail.com

(Received 25 November 2012; accepted 10 January 2013; online 16 January 2013)

In the title compound, C18H18O4, the six-membered chroman-4-one ring adopts an envelope conformation with the C atom bonded to the bridging CH2 atom as the flap. The dihedral angle between the mean plane of the fused pyranone ring and the dimeth­oxy-substituted benzene ring is 89.72 (2)°. In the crystal, adjacent molecules are linked via C—H⋯π inter­actions.

Related literature

For the biological activity and pharmaceutical properties of chromenes(benzopyrans) and a similar structure, see: Jasinski et al. (2010[Jasinski, J. P., Pek, A. E., Narayana, B., Yathirajan, H. S. & Nayak, P. S. (2010). Acta Cryst. E66, o2546-o2547.]). For bond-length data see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.])

[Scheme 1]

Experimental

Crystal data
  • C18H18O4

  • Mr = 298.33

  • Monoclinic, C 2/c

  • a = 30.414 (4) Å

  • b = 5.453 (3) Å

  • c = 20.661 (5) Å

  • β = 118.568 (3)°

  • V = 3009.4 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.991

  • 13379 measured reflections

  • 2802 independent reflections

  • 1955 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.142

  • S = 1.03

  • 2802 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18ACgi 0.96 2.87 3.755 (4) 154
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Homoisoflavonones have wide spectrum of biological activity. In the past decades they are widely used as antifungal, antiviral, antimutagenic,antiproliferative, antioxidant, and protein tyrosine kinase (PTK) inhibitor activities (Jasinski et al., 2010). Because of their wide range of pharmacological activity, the title compound (I) was synthesized and the crystal structure determined.

The bond distances and angles are found to have normal values (Allen et al., 1987). The pyranone ring has adopted the envelope conformation (Cremer & Pople, 1975) as shown in Fig.1. The ring puckering parameters q2 = 0.3696 (2) Å,q3=0.2785 (3) Å, QT = 0.4628 Å, and ϕ = 276.96 (2)°, are indicative of an envelope conformation. The carbonyl ketone, being an electron-withdrawing group, makes the internal aromatic angle 118.17 (3)° at the C9 atom. The electronegative oxygen of the fused pyranone ring shows no change in the internal aromatic angle at the C5 atom. The six membered fused pyranone ring makes a dihedral angle of 89.72 (2)° with the dimethoxy substituted phenyl ring.

No classical inter- or intra-molecular hydrogen bonds are observed. The packing of the title compound is stabilized into a three-dimensional network by C—H···π intermolecular interactions, which serve to link inversion-related sheets (Fig 2).

Related literature top

For the biological activity and pharmaceutical properties of chromenes(benzopyrans) and a similar structure, see: Jasinski et al. (2010). For bond-length data see: Allen et al. (1987); For ring conformations, see: Cremer & Pople (1975)

Experimental top

2'-Hydroxydihydrochalcone (0.1 g) was dissolved in ethanol (10 ml) and refluxed with paraformaldehyde (0.022 g) and 50% aqueous diethylamine (0.2 ml) for 7 hrs. Ethanol was distilled off and the residue was taken up in ethyl acetate. The ethyl acetate layer washed with water then with dilute HCl and finally with water. Ethyl acetate was distilled off and the oily residue was column chromatographed over silica using pet ether(7): ethyl acetate(3) as eluent to get the 3-(3,4-dimethoxybenzyl)-2,3-dihydro-4H-chroman-4-one. Single crystals of the title compound were grown using methanol as solvent by slow evaporation technique and white needle-like crystals were harvested at room temperature. M.P. 397 K. Yield: 65%. IR(KBr):3001,2947,1689 cm-1. 1H-NMR,(400 MHz, DMSO) 4.3(dd,J=11.2,4.4Hz,1H,2-H), 4.2(dd,J=11.6, 9.2Hz,1H,2-H), 2.6(m,1H,3-H), 3.1(m,2H,9 -H), 3.7[S,6H,3 ,4 (2x OCH3)], 7.7(dd,J=8.1, 0.6Hz,1H, Ar-H), 7.5(m, 1H,Ar-H), 6.7(dd,J=8.4 ,2Hz,1H,Ar-H).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98 Å (methyl) or 0.99 Å (methylene) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PARST (Nardelli, 1995) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I) Dashed lines indicate C – H···π interactions. H-atoms not involving in H-bonding are omitted for clarity.
3-(3,4-Dimethoxybenzyl)chroman-4-one top
Crystal data top
C18H18O4F(000) = 1264
Mr = 298.33Dx = 1.317 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 575 reflections
a = 30.414 (4) Åθ = 2.0–25.0°
b = 5.453 (3) ŵ = 0.09 mm1
c = 20.661 (5) ÅT = 295 K
β = 118.568 (3)°Block, colourless
V = 3009.4 (19) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2802 independent reflections
Radiation source: fine-focus sealed tube1955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scanθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3634
Tmin = 0.954, Tmax = 0.991k = 66
13379 measured reflectionsl = 1325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0617P)2 + 1.6626P]
where P = (Fo2 + 2Fc2)/3
2802 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C18H18O4V = 3009.4 (19) Å3
Mr = 298.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.414 (4) ŵ = 0.09 mm1
b = 5.453 (3) ÅT = 295 K
c = 20.661 (5) Å0.30 × 0.20 × 0.20 mm
β = 118.568 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2802 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1955 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.991Rint = 0.031
13379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
2802 reflectionsΔρmin = 0.14 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29295 (5)0.2335 (3)0.08927 (7)0.0703 (4)
O20.32093 (6)0.1349 (3)0.27652 (7)0.0795 (5)
O30.03885 (6)0.2688 (3)0.10089 (8)0.0857 (5)
O40.05593 (6)0.0630 (3)0.00297 (9)0.0828 (5)
C10.26773 (8)0.0139 (4)0.08851 (10)0.0695 (6)
H1A0.23530.01090.04450.083*
H1B0.28690.1250.08620.083*
C20.26030 (7)0.0125 (4)0.15473 (10)0.0591 (5)
H20.24230.13380.15690.071*
C30.31104 (7)0.0101 (4)0.22267 (10)0.0576 (5)
C40.34695 (7)0.1611 (4)0.21878 (10)0.0558 (5)
C50.39185 (8)0.2207 (4)0.28105 (12)0.0743 (6)
H50.40020.14460.32570.089*
C60.42394 (9)0.3901 (5)0.27737 (16)0.0874 (8)
H60.45370.42930.31930.105*
C70.41172 (10)0.5014 (5)0.21116 (17)0.0926 (8)
H70.43360.61510.20850.111*
C80.36811 (9)0.4479 (4)0.14941 (15)0.0809 (7)
H80.36020.52570.10510.097*
C90.33563 (8)0.2773 (4)0.15279 (11)0.0598 (5)
C100.22947 (8)0.2319 (4)0.15249 (12)0.0725 (6)
H10A0.24810.37960.15550.087*
H10B0.22450.22780.19550.087*
C110.17901 (7)0.2453 (4)0.08429 (11)0.0604 (5)
C120.16944 (8)0.4179 (4)0.03117 (12)0.0681 (6)
H120.19450.52790.03710.082*
C130.12308 (9)0.4315 (4)0.03128 (12)0.0692 (6)
H130.11720.55110.06660.083*
C140.08591 (8)0.2697 (4)0.04133 (11)0.0626 (5)
C150.09518 (7)0.0896 (4)0.01179 (11)0.0602 (5)
C160.14145 (7)0.0798 (4)0.07368 (11)0.0608 (5)
H160.14770.040.10910.073*
C170.02452 (12)0.4796 (6)0.14567 (14)0.1180 (11)
H17A0.03020.62250.11550.177*
H17B0.01030.46890.18110.177*
H17C0.0440.49120.17090.177*
C180.06175 (10)0.2336 (5)0.05250 (14)0.0907 (8)
H18A0.08810.34670.06060.136*
H18B0.0310.3220.0370.136*
H18C0.07010.14750.09740.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0715 (9)0.0778 (10)0.0596 (8)0.0033 (8)0.0297 (7)0.0169 (7)
O20.0778 (10)0.0985 (12)0.0547 (8)0.0048 (9)0.0257 (7)0.0235 (8)
O30.0705 (10)0.1063 (13)0.0663 (9)0.0163 (9)0.0214 (8)0.0078 (9)
O40.0645 (10)0.0931 (12)0.0908 (11)0.0091 (8)0.0372 (8)0.0017 (9)
C10.0716 (14)0.0771 (14)0.0552 (12)0.0045 (11)0.0266 (10)0.0073 (10)
C20.0586 (12)0.0636 (12)0.0540 (11)0.0042 (9)0.0259 (9)0.0108 (9)
C30.0601 (12)0.0652 (12)0.0491 (10)0.0107 (9)0.0275 (9)0.0071 (9)
C40.0520 (11)0.0580 (11)0.0575 (11)0.0085 (9)0.0262 (9)0.0008 (9)
C50.0647 (14)0.0821 (15)0.0700 (13)0.0081 (12)0.0272 (11)0.0052 (11)
C60.0614 (14)0.0860 (17)0.1025 (19)0.0083 (13)0.0293 (13)0.0242 (15)
C70.0870 (18)0.0789 (17)0.120 (2)0.0132 (14)0.0564 (17)0.0066 (16)
C80.0863 (17)0.0707 (15)0.0970 (17)0.0048 (13)0.0530 (15)0.0066 (13)
C90.0632 (12)0.0564 (11)0.0660 (12)0.0073 (9)0.0359 (10)0.0035 (9)
C100.0687 (14)0.0697 (14)0.0707 (13)0.0027 (11)0.0264 (11)0.0177 (11)
C110.0624 (12)0.0570 (12)0.0642 (12)0.0038 (10)0.0321 (10)0.0080 (10)
C120.0704 (14)0.0621 (13)0.0795 (14)0.0028 (10)0.0419 (12)0.0047 (11)
C130.0846 (16)0.0658 (13)0.0666 (13)0.0117 (12)0.0438 (12)0.0099 (10)
C140.0615 (12)0.0734 (14)0.0552 (11)0.0108 (11)0.0297 (10)0.0025 (10)
C150.0589 (12)0.0649 (12)0.0665 (12)0.0031 (10)0.0378 (10)0.0032 (10)
C160.0662 (13)0.0614 (12)0.0594 (11)0.0086 (10)0.0338 (10)0.0024 (9)
C170.128 (2)0.112 (2)0.0697 (16)0.0409 (19)0.0112 (15)0.0049 (16)
C180.1060 (19)0.0895 (18)0.1038 (18)0.0211 (15)0.0720 (16)0.0050 (15)
Geometric parameters (Å, º) top
O1—C91.355 (2)C7—H70.93
O1—C11.418 (3)C8—C91.383 (3)
O2—C31.213 (2)C8—H80.93
O3—C141.371 (2)C10—C111.509 (3)
O3—C171.408 (3)C10—H10A0.97
O4—C151.365 (2)C10—H10B0.97
O4—C181.420 (3)C11—C121.368 (3)
C1—C21.496 (3)C11—C161.388 (3)
C1—H1A0.97C12—C131.385 (3)
C1—H1B0.97C12—H120.93
C2—C101.507 (3)C13—C141.369 (3)
C2—C31.510 (3)C13—H130.93
C2—H20.98C14—C151.397 (3)
C3—C41.468 (3)C15—C161.377 (3)
C4—C91.389 (3)C16—H160.93
C4—C51.395 (3)C17—H17A0.96
C5—C61.372 (3)C17—H17B0.96
C5—H50.93C17—H17C0.96
C6—C71.375 (4)C18—H18A0.96
C6—H60.93C18—H18B0.96
C7—C81.362 (3)C18—H18C0.96
C9—O1—C1114.98 (15)C2—C10—C11114.02 (16)
C14—O3—C17116.7 (2)C2—C10—H10A108.7
C15—O4—C18117.46 (17)C11—C10—H10A108.7
O1—C1—C2112.85 (17)C2—C10—H10B108.7
O1—C1—H1A109C11—C10—H10B108.7
C2—C1—H1A109H10A—C10—H10B107.6
O1—C1—H1B109C12—C11—C16118.52 (19)
C2—C1—H1B109C12—C11—C10120.9 (2)
H1A—C1—H1B107.8C16—C11—C10120.57 (19)
C10—C2—C3112.31 (16)C11—C12—C13121.0 (2)
C10—C2—C1114.33 (18)C11—C12—H12119.5
C3—C2—C1108.37 (16)C13—C12—H12119.5
C10—C2—H2107.2C14—C13—C12120.4 (2)
C3—C2—H2107.2C14—C13—H13119.8
C1—C2—H2107.2C12—C13—H13119.8
O2—C3—C4122.84 (18)C13—C14—C15119.46 (19)
O2—C3—C2122.88 (19)C13—C14—O3124.8 (2)
C4—C3—C2114.26 (16)C15—C14—O3115.75 (19)
C9—C4—C5118.2 (2)O4—C15—C16125.46 (19)
C9—C4—C3120.14 (17)O4—C15—C14115.26 (18)
C5—C4—C3121.58 (18)C16—C15—C14119.28 (19)
C6—C5—C4121.0 (2)C15—C16—C11121.32 (19)
C6—C5—H5119.5C15—C16—H16119.3
C4—C5—H5119.5C11—C16—H16119.3
C5—C6—C7119.4 (2)O3—C17—H17A109.5
C5—C6—H6120.3O3—C17—H17B109.5
C7—C6—H6120.3H17A—C17—H17B109.5
C8—C7—C6121.1 (2)O3—C17—H17C109.5
C8—C7—H7119.5H17A—C17—H17C109.5
C6—C7—H7119.5H17B—C17—H17C109.5
C7—C8—C9119.7 (2)O4—C18—H18A109.5
C7—C8—H8120.1O4—C18—H18B109.5
C9—C8—H8120.1H18A—C18—H18B109.5
O1—C9—C8116.51 (19)O4—C18—H18C109.5
O1—C9—C4122.91 (18)H18A—C18—H18C109.5
C8—C9—C4120.6 (2)H18B—C18—H18C109.5
C9—O1—C1—C249.8 (2)C3—C4—C9—C8176.84 (19)
O1—C1—C2—C10174.62 (16)C3—C2—C10—C11178.29 (17)
O1—C1—C2—C359.3 (2)C1—C2—C10—C1154.3 (3)
C10—C2—C3—O216.4 (3)C2—C10—C11—C12108.8 (2)
C1—C2—C3—O2143.6 (2)C2—C10—C11—C1670.3 (3)
C10—C2—C3—C4165.23 (17)C16—C11—C12—C131.3 (3)
C1—C2—C3—C438.0 (2)C10—C11—C12—C13179.64 (19)
O2—C3—C4—C9172.37 (19)C11—C12—C13—C140.6 (3)
C2—C3—C4—C99.2 (3)C12—C13—C14—C150.4 (3)
O2—C3—C4—C510.7 (3)C12—C13—C14—O3179.69 (18)
C2—C3—C4—C5167.68 (18)C17—O3—C14—C1314.9 (3)
C9—C4—C5—C60.2 (3)C17—O3—C14—C15165.1 (2)
C3—C4—C5—C6176.79 (19)C18—O4—C15—C165.3 (3)
C4—C5—C6—C70.4 (4)C18—O4—C15—C14174.00 (18)
C5—C6—C7—C80.6 (4)C13—C14—C15—O4179.99 (18)
C6—C7—C8—C90.6 (4)O3—C14—C15—O40.0 (3)
C1—O1—C9—C8162.74 (19)C13—C14—C15—C160.7 (3)
C1—O1—C9—C417.7 (3)O3—C14—C15—C16179.39 (17)
C7—C8—C9—O1179.9 (2)O4—C15—C16—C11179.27 (18)
C7—C8—C9—C40.4 (3)C14—C15—C16—C110.0 (3)
C5—C4—C9—O1179.68 (18)C12—C11—C16—C150.9 (3)
C3—C4—C9—O12.7 (3)C10—C11—C16—C15179.95 (18)
C5—C4—C9—C80.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···Cgi0.962.873.755 (4)154
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H18O4
Mr298.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)30.414 (4), 5.453 (3), 20.661 (5)
β (°) 118.568 (3)
V3)3009.4 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.954, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
13379, 2802, 1955
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.142, 1.03
No. of reflections2802
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.14

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and CAMERON (Watkin et al., 1993), PARST (Nardelli, 1995) and WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···Cgi0.962.873.755 (4)154
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, Scientific Officer, Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology (IIT), Chennai, India, for the data collection. SS and CRG also thank the Rashtriya Sikshana Samithi Trust (RSST) and the Principal, Sri Shivananda Memorial Rashtriya Vidyalaya (SSMRV) Degree College, Bangalore, for their constant support and encouragement in carrying out this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Pek, A. E., Narayana, B., Yathirajan, H. S. & Nayak, P. S. (2010). Acta Cryst. E66, o2546–o2547.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds