organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o288-o289

rac-5-Bromo-N-benzyl­isatincreatinine ethanol monosolvate

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
*Correspondence e-mail: pacrooks@uams.edu

(Received 11 December 2012; accepted 4 January 2013; online 26 January 2013)

In the title compound [systematic name: rac-1-benzyl-5-bromo-3-hy­droxy-3-(2-imino-3-methyl-5-oxoimidazolidin-4-yl)-2,3-dihydro-1H-indol-2-one ethanol monosolvate], C19H17BrN4O3·C2H5OH, which crystallized as a racemate (RR and SS), the isatin ring is almost planar, with an r.m.s. deviations from the mean plane of 0.0276 (14) Å. The phenyl ring of the benzyl group makes a dihedral angle with the mean plane of the isatin ring of 87.40 (5)° and the dihedral angle between the imidazole and isatin rings is 58.56 (7)°. In the crystal, mol­ecules are linked into two-dimensional pleated-sheet networks in the ac plane formed by O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds; within these sheets there are R44(10) rings that involve three mol­ecules of the title compound and a single ethanol solvent mol­ecule. In addition, there are ππ inter­actions between inversion-related benzyl groups, with an inter­planar spacing of 3.444 (3) Å.

Related literature

Background information on the biological importance of isatins has been given by Pandeya et al. (2005[Pandeya, S. N., Smitha, S., Jyoti, M. & Sridhar, S. K. (2005). Acta Pharm. 55, 27-46.]), and by Vine et al. (2007[Vine, K. L., Locke, J. M., Ranson, M., Benkendorff, K., Pyne, S. G. & Bremner, J. B. (2007). Bioorg. Med. Chem. 15, 931-938.]). For similar structures, see: Tang et al. (2009[Tang, Y., Chen, G., Zhang, J. & Chen, S. (2009). Acta Cryst. E65, o2597.]); Penthala et al. (2009a[Penthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009a). Acta Cryst. E65, o552.],b[Penthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009b). Acta Cryst. E65, o2909-o2910.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17BrN4O3·C2H6O

  • Mr = 475.34

  • Monoclinic, P 21 /n

  • a = 7.8384 (16) Å

  • b = 24.553 (5) Å

  • c = 10.936 (2) Å

  • β = 99.54 (3)°

  • V = 2075.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 90 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan [SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and XABS2 (Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.])] Tmin = 0.689, Tmax = 0.824

  • 41507 measured reflections

  • 4752 independent reflections

  • 4147 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.05

  • 4752 reflections

  • 282 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯O1Si 0.84 1.87 2.694 (2) 169
N13—H13A⋯O11ii 0.81 (2) 2.00 (2) 2.811 (2) 171 (2)
N13—H13B⋯O9iii 0.82 (2) 2.36 (2) 2.933 (2) 128 (2)
N13—H13B⋯O1iii 0.82 (2) 2.46 (2) 3.158 (2) 144 (2)
O1S—H1S⋯N12 0.84 1.91 2.745 (2) 174
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

In view of the biological importance of isatins (Pandeya et al., 2005; Vine et al., 2007) we have synthesized a series of novel compounds containing isatin and creatinine moieties to screen for their anticancer activity. The title compound was prepared by the aldol condensation of 5-bromo-N-benzylindol-2,3-dione (5-bromo-N-benzylisatin) with 2-amino-1-methyl-1H-imidazol-4(5H)-one (creatinine) in the presence of sodium acetate in acetic acid. Earlier, we reported on the crystal structure of isatin creatinine analogs containing N-methyl and N-phenyl substitituents (Penthala et al., 2009a,b). To obtain detailed information on the structural conformations of the molecules for analysis of structure-activity relationships (SAR), we determined the X-ray crystal structure of the title compound. The compound crystallized as a racemate (RR and SS). The molecular structure of title compound is shown in Fig. 1. The isatin ring is almost planar with r.m.s deviation from the mean plane of 0.0276 (14) Å, with bond distances and angles comparable to those reported for other isatin derivatives (Tang et al., 2009). The benzene ring of the benzyl group makes a dihedral angle with the mean plane of the isatin ring of 87.40 (5)°. In the title compound the molecules are linked into 2-D pleated-sheet networks in the ac plane by O—H···O, N—H···O and O—H···N hydrogen bonds. Within these sheets there are R44(10) rings that involve three molecules of the title compound and a single ethanol solvent molecule.

Related literature top

Background information on the biological importance of isatins has been given by Pandeya et al. (2005), and by Vine et al. (2007). For similar structures, see: Tang et al. (2009); Penthala et al. (2009a,b).

Experimental top

The title compound was prepared according to a previously reported procedure (Penthala et al., 2009a,b). Recrystallization from ethanol afforded the title compound as a pale-yellow crystalline product that was suitable for X-ray analysis. Spectroscopic data for rac-5-bromo-N-benzylisatin creatinine: 1H NMR(DMSO-d6): δ 3.2 0 (s, 3H, CH3), 4.22 (s, 1H, CH), 4.74–4.92 (ABq, 2H, CH2), 6.62–6.64 (d, J=8.1 Hz, 1H, C7H), 6.74 (s, 1H, OH), 7.19–7.20 (d, J=1.5 Hz, 1H,-C4H), 7.25–7.46 (m, 6H, C5H, C6H, Ar—H), 7.82 (bs, 2H, NH2); 13C NMR (DMSO-d6): δ 32.71, 42.76, 69.61, 75.87, 110.43, 123.55, 125.67, 126.89, 127.05 (2 C), 128.21 (2 C), 129.01, 129.17, 135.39, 141.91, 172.10 (C=N), 173.98 (isatin C=O), 181.93 (creatinine C=O).

Refinement top

All H atoms were found in difference Fourier maps. All except those attached to nitrogen were subsequently placed at idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH), 0.95 Å (CArH) and 0.84 Å (O—H). N-bound H atoms were refined with 1,2 and 1,3 distance restraints (DFIX in SHELXL97). Uiso(H) values were set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

The largest difference map peak (~1.2 e Å3) is about 1.87 Å away from C7, and so could conceivably represent a very minor impurity in which the Br atom is attached to C7 rather than C5. Such a disorder model was made, and it refined in a stable manner with a refined occupancy of <2%. Although the difference map was flatter and it had very good 'quality' statistics, there seemed little point in keeping this disorder model because the occupancy was so low.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. A view of displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding in the crystal structure of the title compound. Dashed lines represent hydrogen bonds, while the open bonds indicate continuation of the structure, approximately in the (0 1 - 1) direction.
1-Benzyl-5-bromo-3-hydroxy-3-(2-imino-3-methyl-5-oxoimidazolidin-4-yl)- 2,3-dihydro-1H-indol-2-one ethanol monosolvate top
Crystal data top
C19H17BrN4O3·C2H6OF(000) = 976
Mr = 475.34Dx = 1.521 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 51652 reflections
a = 7.8384 (16) Åθ = 1.0–27.5°
b = 24.553 (5) ŵ = 2.02 mm1
c = 10.936 (2) ÅT = 90 K
β = 99.54 (3)°Block, colourless
V = 2075.6 (7) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4752 independent reflections
Radiation source: fine-focus sealed tube4147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9.1 pixels mm-1θmax = 27.5°, θmin = 1.7°
ω scans at fixed χ = 55°h = 1010
Absorption correction: multi-scan
[SCALEPACK (Otwinowski & Minor, 1997) and XABS2 (Parkin et al., 1995)]
k = 3131
Tmin = 0.689, Tmax = 0.824l = 1414
41507 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0318P)2 + 2.2794P]
where P = (Fo2 + 2Fc2)/3
4752 reflections(Δ/σ)max = 0.002
282 parametersΔρmax = 1.19 e Å3
3 restraintsΔρmin = 0.45 e Å3
Crystal data top
C19H17BrN4O3·C2H6OV = 2075.6 (7) Å3
Mr = 475.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8384 (16) ŵ = 2.02 mm1
b = 24.553 (5) ÅT = 90 K
c = 10.936 (2) Å0.20 × 0.15 × 0.10 mm
β = 99.54 (3)°
Data collection top
Nonius KappaCCD
diffractometer
4752 independent reflections
Absorption correction: multi-scan
[SCALEPACK (Otwinowski & Minor, 1997) and XABS2 (Parkin et al., 1995)]
4147 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.824Rint = 0.038
41507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0293 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.19 e Å3
4752 reflectionsΔρmin = 0.45 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-value wR and goodness of fit S are based on F2. Conventional R-values R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-values based on F2 are statistically about twice as large as those based on F, and R-values based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.49690 (3)0.374439 (8)0.816959 (17)0.02004 (7)
O10.41024 (17)0.35297 (6)0.10785 (12)0.0171 (3)
C10.4044 (2)0.36264 (7)0.21623 (17)0.0130 (3)
N20.35261 (19)0.41049 (6)0.26345 (14)0.0131 (3)
C30.3743 (2)0.40838 (7)0.39354 (17)0.0127 (3)
C40.3378 (2)0.44865 (8)0.47375 (18)0.0152 (4)
H40.28960.48250.44350.018*
C50.3745 (2)0.43786 (8)0.60104 (17)0.0160 (4)
H50.35030.46460.65870.019*
C60.4460 (2)0.38823 (8)0.64338 (16)0.0140 (4)
C70.4822 (2)0.34757 (7)0.56274 (16)0.0129 (3)
H70.53110.31380.59310.015*
C80.4445 (2)0.35808 (7)0.43654 (17)0.0121 (3)
O90.64140 (16)0.31074 (6)0.31688 (12)0.0163 (3)
H90.70240.31180.38770.024*
C90.4680 (2)0.32370 (7)0.32616 (16)0.0124 (3)
C100.3592 (2)0.27084 (7)0.31485 (16)0.0123 (3)
H100.36960.25110.23640.015*
O110.07782 (17)0.31156 (5)0.24552 (12)0.0169 (3)
C110.1692 (2)0.28271 (7)0.32180 (16)0.0127 (3)
N120.12428 (19)0.25919 (6)0.42372 (14)0.0137 (3)
N130.2659 (2)0.20205 (7)0.57992 (15)0.0166 (3)
H13A0.356 (3)0.1946 (9)0.625 (2)0.020*
H13B0.175 (3)0.2005 (10)0.608 (2)0.020*
C130.2659 (2)0.23119 (7)0.47904 (16)0.0128 (3)
N140.40463 (19)0.23525 (6)0.42122 (14)0.0121 (3)
C140.5592 (2)0.20123 (8)0.44579 (18)0.0177 (4)
H14A0.64530.21870.50880.026*
H14B0.60730.19670.36920.026*
H14C0.52880.16550.47580.026*
C150.3028 (2)0.45903 (8)0.18962 (17)0.0156 (4)
H15A0.33280.45360.10600.019*
H15B0.37180.49020.22820.019*
C160.1127 (2)0.47366 (8)0.17564 (16)0.0146 (4)
C170.0132 (3)0.43353 (8)0.17080 (19)0.0197 (4)
H170.02030.39650.18340.024*
C180.1880 (3)0.44717 (8)0.14763 (19)0.0204 (4)
H180.27330.41950.14380.024*
C190.2373 (3)0.50119 (8)0.13010 (18)0.0187 (4)
H190.35640.51060.11330.022*
C200.1119 (3)0.54152 (8)0.13722 (19)0.0198 (4)
H200.14540.57860.12660.024*
C210.0624 (3)0.52780 (8)0.15986 (18)0.0181 (4)
H210.14760.55560.16460.022*
O1S0.13483 (17)0.30418 (6)0.53172 (13)0.0191 (3)
H1S0.06000.28850.49750.029*
C1S0.0616 (3)0.35257 (9)0.5930 (2)0.0249 (4)
H1S10.06410.34700.61990.030*
H1S20.11430.35880.66800.030*
C2S0.0892 (3)0.40229 (9)0.5114 (2)0.0300 (5)
H2S10.03660.39650.43720.045*
H2S20.03550.43390.55700.045*
H2S30.21350.40880.48690.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02698 (11)0.02127 (11)0.01143 (10)0.00486 (8)0.00183 (7)0.00050 (7)
O10.0183 (7)0.0219 (7)0.0113 (6)0.0017 (6)0.0030 (5)0.0000 (5)
C10.0084 (8)0.0169 (9)0.0139 (9)0.0023 (6)0.0026 (6)0.0011 (7)
N20.0139 (7)0.0146 (7)0.0108 (7)0.0001 (6)0.0016 (6)0.0019 (6)
C30.0094 (8)0.0160 (9)0.0125 (8)0.0025 (7)0.0010 (6)0.0011 (7)
C40.0140 (8)0.0131 (8)0.0180 (9)0.0005 (7)0.0014 (7)0.0005 (7)
C50.0157 (9)0.0167 (9)0.0157 (9)0.0001 (7)0.0029 (7)0.0033 (7)
C60.0130 (8)0.0191 (9)0.0094 (8)0.0015 (7)0.0005 (7)0.0006 (7)
C70.0105 (8)0.0151 (9)0.0129 (8)0.0000 (7)0.0016 (7)0.0012 (7)
C80.0081 (8)0.0144 (8)0.0140 (9)0.0019 (6)0.0028 (6)0.0006 (7)
O90.0104 (6)0.0260 (7)0.0129 (6)0.0032 (5)0.0033 (5)0.0005 (5)
C90.0103 (8)0.0157 (9)0.0113 (8)0.0014 (7)0.0019 (6)0.0010 (7)
C100.0129 (8)0.0137 (8)0.0102 (8)0.0018 (7)0.0016 (6)0.0004 (7)
O110.0148 (6)0.0168 (7)0.0174 (7)0.0004 (5)0.0025 (5)0.0033 (5)
C110.0111 (8)0.0121 (8)0.0138 (9)0.0012 (6)0.0006 (7)0.0023 (7)
N120.0112 (7)0.0151 (7)0.0144 (7)0.0011 (6)0.0013 (6)0.0023 (6)
N130.0123 (8)0.0232 (9)0.0146 (8)0.0022 (7)0.0033 (6)0.0049 (6)
C130.0123 (8)0.0130 (8)0.0128 (8)0.0010 (7)0.0014 (7)0.0015 (7)
N140.0117 (7)0.0134 (7)0.0116 (7)0.0031 (6)0.0031 (6)0.0025 (6)
C140.0159 (9)0.0185 (9)0.0197 (10)0.0076 (7)0.0063 (7)0.0034 (7)
C150.0160 (9)0.0150 (9)0.0155 (9)0.0009 (7)0.0019 (7)0.0044 (7)
C160.0168 (9)0.0173 (9)0.0095 (8)0.0000 (7)0.0017 (7)0.0019 (7)
C170.0192 (10)0.0152 (9)0.0243 (10)0.0004 (7)0.0026 (8)0.0040 (8)
C180.0175 (9)0.0189 (10)0.0254 (10)0.0036 (8)0.0051 (8)0.0021 (8)
C190.0179 (9)0.0234 (10)0.0152 (9)0.0041 (8)0.0044 (7)0.0023 (8)
C200.0232 (10)0.0153 (9)0.0214 (10)0.0034 (8)0.0055 (8)0.0009 (7)
C210.0201 (9)0.0164 (9)0.0182 (9)0.0028 (8)0.0044 (7)0.0006 (7)
O1S0.0127 (6)0.0229 (7)0.0217 (7)0.0024 (5)0.0033 (5)0.0021 (6)
C1S0.0218 (10)0.0275 (11)0.0240 (11)0.0005 (9)0.0002 (8)0.0052 (9)
C2S0.0239 (11)0.0286 (12)0.0376 (13)0.0076 (9)0.0049 (10)0.0006 (10)
Geometric parameters (Å, º) top
Br1—C61.9042 (18)C13—N141.349 (2)
O1—C11.217 (2)N14—C141.460 (2)
C1—N21.372 (2)C14—H14A0.9800
C1—C91.552 (2)C14—H14B0.9800
N2—C31.406 (2)C14—H14C0.9800
N2—C151.456 (2)C15—C161.516 (3)
C3—C41.383 (3)C15—H15A0.9900
C3—C81.401 (3)C15—H15B0.9900
C4—C51.399 (3)C16—C171.389 (3)
C4—H40.9500C16—C211.389 (3)
C5—C61.388 (3)C17—C181.392 (3)
C5—H50.9500C17—H170.9500
C6—C71.392 (3)C18—C191.386 (3)
C7—C81.387 (3)C18—H180.9500
C7—H70.9500C19—C201.388 (3)
C8—C91.509 (2)C19—H190.9500
O9—C91.416 (2)C20—C211.389 (3)
O9—H90.8400C20—H200.9500
C9—C101.546 (2)C21—H210.9500
C10—N141.451 (2)O1S—C1S1.436 (3)
C10—C111.532 (2)O1S—H1S0.8400
C10—H101.0000C1S—C2S1.506 (3)
O11—C111.230 (2)C1S—H1S10.9900
C11—N121.353 (2)C1S—H1S20.9900
N12—C131.359 (2)C2S—H2S10.9800
N13—C131.315 (2)C2S—H2S20.9800
N13—H13A0.81 (2)C2S—H2S30.9800
N13—H13B0.82 (2)
O1—C1—N2126.51 (17)C13—N14—C10108.09 (14)
O1—C1—C9125.11 (17)C13—N14—C14125.49 (15)
N2—C1—C9108.24 (15)C10—N14—C14125.31 (15)
C1—N2—C3110.84 (15)N14—C14—H14A109.5
C1—N2—C15124.14 (16)N14—C14—H14B109.5
C3—N2—C15124.60 (15)H14A—C14—H14B109.5
C4—C3—C8121.89 (17)N14—C14—H14C109.5
C4—C3—N2127.78 (17)H14A—C14—H14C109.5
C8—C3—N2110.31 (16)H14B—C14—H14C109.5
C3—C4—C5117.77 (17)N2—C15—C16114.75 (15)
C3—C4—H4121.1N2—C15—H15A108.6
C5—C4—H4121.1C16—C15—H15A108.6
C6—C5—C4120.19 (17)N2—C15—H15B108.6
C6—C5—H5119.9C16—C15—H15B108.6
C4—C5—H5119.9H15A—C15—H15B107.6
C5—C6—C7122.12 (17)C17—C16—C21119.26 (18)
C5—C6—Br1119.66 (14)C17—C16—C15121.06 (17)
C7—C6—Br1118.22 (14)C21—C16—C15119.56 (17)
C8—C7—C6117.69 (17)C16—C17—C18120.50 (18)
C8—C7—H7121.2C16—C17—H17119.7
C6—C7—H7121.2C18—C17—H17119.7
C7—C8—C3120.34 (17)C19—C18—C17119.93 (18)
C7—C8—C9131.13 (17)C19—C18—H18120.0
C3—C8—C9108.53 (15)C17—C18—H18120.0
C9—O9—H9109.5C18—C19—C20119.74 (18)
O9—C9—C8115.38 (15)C18—C19—H19120.1
O9—C9—C10109.18 (14)C20—C19—H19120.1
C8—C9—C10113.26 (14)C19—C20—C21120.23 (18)
O9—C9—C1105.76 (14)C19—C20—H20119.9
C8—C9—C1102.06 (14)C21—C20—H20119.9
C10—C9—C1110.69 (14)C20—C21—C16120.32 (18)
N14—C10—C11100.72 (14)C20—C21—H21119.8
N14—C10—C9112.50 (14)C16—C21—H21119.8
C11—C10—C9111.34 (14)C1S—O1S—H1S109.5
N14—C10—H10110.6O1S—C1S—C2S112.79 (18)
C11—C10—H10110.6O1S—C1S—H1S1109.0
C9—C10—H10110.6C2S—C1S—H1S1109.0
O11—C11—N12127.07 (17)O1S—C1S—H1S2109.0
O11—C11—C10122.53 (16)C2S—C1S—H1S2109.0
N12—C11—C10110.35 (15)H1S1—C1S—H1S2107.8
C11—N12—C13106.12 (15)C1S—C2S—H2S1109.5
C13—N13—H13A121.0 (16)C1S—C2S—H2S2109.5
C13—N13—H13B117.3 (16)H2S1—C2S—H2S2109.5
H13A—N13—H13B118 (2)C1S—C2S—H2S3109.5
N13—C13—N14123.05 (17)H2S1—C2S—H2S3109.5
N13—C13—N12122.36 (16)H2S2—C2S—H2S3109.5
N14—C13—N12114.59 (16)
O1—C1—N2—C3175.80 (17)C8—C9—C10—N1461.17 (19)
C9—C1—N2—C30.11 (19)C1—C9—C10—N14175.10 (14)
O1—C1—N2—C152.9 (3)O9—C9—C10—C11178.91 (14)
C9—C1—N2—C15172.95 (15)C8—C9—C10—C1151.04 (19)
C1—N2—C3—C4179.53 (18)C1—C9—C10—C1162.89 (18)
C15—N2—C3—C46.7 (3)N14—C10—C11—O11178.92 (16)
C1—N2—C3—C80.7 (2)C9—C10—C11—O1161.6 (2)
C15—N2—C3—C8172.11 (16)N14—C10—C11—N123.60 (19)
C8—C3—C4—C50.4 (3)C9—C10—C11—N12115.88 (16)
N2—C3—C4—C5178.32 (17)O11—C11—N12—C13179.74 (18)
C3—C4—C5—C60.4 (3)C10—C11—N12—C132.93 (19)
C4—C5—C6—C70.6 (3)C11—N12—C13—N13178.18 (17)
C4—C5—C6—Br1179.46 (14)C11—N12—C13—N141.0 (2)
C5—C6—C7—C80.0 (3)N13—C13—N14—C10179.41 (17)
Br1—C6—C7—C8179.97 (13)N12—C13—N14—C101.4 (2)
C6—C7—C8—C30.7 (3)N13—C13—N14—C1412.2 (3)
C6—C7—C8—C9179.66 (17)N12—C13—N14—C14167.02 (17)
C4—C3—C8—C71.0 (3)C11—C10—N14—C132.85 (18)
N2—C3—C8—C7177.94 (15)C9—C10—N14—C13115.79 (16)
C4—C3—C8—C9179.88 (16)C11—C10—N14—C14165.59 (16)
N2—C3—C8—C91.21 (19)C9—C10—N14—C1475.8 (2)
C7—C8—C9—O963.7 (3)C1—N2—C15—C16111.7 (2)
C3—C8—C9—O9115.31 (17)C3—N2—C15—C1676.5 (2)
C7—C8—C9—C1063.1 (2)N2—C15—C16—C1733.1 (3)
C3—C8—C9—C10117.84 (16)N2—C15—C16—C21150.87 (17)
C7—C8—C9—C1177.84 (18)C21—C16—C17—C181.4 (3)
C3—C8—C9—C11.18 (18)C15—C16—C17—C18174.63 (18)
O1—C1—C9—O954.1 (2)C16—C17—C18—C190.5 (3)
N2—C1—C9—O9121.83 (15)C17—C18—C19—C200.8 (3)
O1—C1—C9—C8175.19 (17)C18—C19—C20—C211.0 (3)
N2—C1—C9—C80.78 (18)C19—C20—C21—C160.0 (3)
O1—C1—C9—C1064.0 (2)C17—C16—C21—C201.2 (3)
N2—C1—C9—C10120.05 (16)C15—C16—C21—C20174.94 (17)
O9—C9—C10—N1468.89 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O1Si0.841.872.694 (2)169
N13—H13A···O11ii0.81 (2)2.00 (2)2.811 (2)171 (2)
N13—H13B···O9iii0.82 (2)2.36 (2)2.933 (2)128 (2)
N13—H13B···O1iii0.82 (2)2.46 (2)3.158 (2)144 (2)
O1S—H1S···N120.841.912.745 (2)174
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H17BrN4O3·C2H6O
Mr475.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)7.8384 (16), 24.553 (5), 10.936 (2)
β (°) 99.54 (3)
V3)2075.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
[SCALEPACK (Otwinowski & Minor, 1997) and XABS2 (Parkin et al., 1995)]
Tmin, Tmax0.689, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
41507, 4752, 4147
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.05
No. of reflections4752
No. of parameters282
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.19, 0.45

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O1Si0.841.872.694 (2)168.6
N13—H13A···O11ii0.81 (2)2.00 (2)2.811 (2)171 (2)
N13—H13B···O9iii0.82 (2)2.36 (2)2.933 (2)128 (2)
N13—H13B···O1iii0.82 (2)2.46 (2)3.158 (2)144 (2)
O1S—H1S···N120.841.912.745 (2)174.2
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

This investigation was supported by NIH/National Cancer Institute grant PO1 CA140409. We thank Dr S. Parkin, University of Kentucky, for X-ray crystallographic services.

References

First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPandeya, S. N., Smitha, S., Jyoti, M. & Sridhar, S. K. (2005). Acta Pharm. 55, 27–46.  PubMed CAS Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPenthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009a). Acta Cryst. E65, o552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPenthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009b). Acta Cryst. E65, o2909–o2910.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Y., Chen, G., Zhang, J. & Chen, S. (2009). Acta Cryst. E65, o2597.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVine, K. L., Locke, J. M., Ranson, M., Benkendorff, K., Pyne, S. G. & Bremner, J. B. (2007). Bioorg. Med. Chem. 15, 931–938.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o288-o289
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds