metal-organic compounds
catena-Poly[(acetatochloridozinc)-μ-1,1′-[1,4-phenylenebis(methylene)]di-1H-imidazole]
aDepartment of Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
*Correspondence e-mail: chg_2010@qq.com
The title compound, [Zn(CH3CO2)Cl(C14H14N4)]n, is a one-dimensional coordination polymer in which the ZnII ion is tetrahedrally coordinated by two N atoms of a bridging 1,1′-[1,4-phenylenebis(methylene)]di-1H-imidazole ligand, an acetate O atom and a Cl atom. The Cl atom, two acetate O atoms and two acetate C atoms are located on a mirror plane. The coordination of the diimidazole ligand to the ZnII ion gives an infinite one-dimensional zigzag structure along the b-axis direction with the charge balanced by the chloride and acetate ions.
Related literature
For background to the design and assembly of metal-organic coordination polymers, see: Wang et al. (2009); Leininger et al. (2000). For a related structure, see: Li et al. (2008). For the synthesis of the title complex, see: Wang et al. (2012).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536813000524/hp2053sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813000524/hp2053Isup2.hkl
The title compound was synthesized referring to the reported literature (Wang et al., 2012). A mixture of Zn(OAc)2.2H2O (0.0422 g, 0.1 mmol), ZnCl2 (0.014 g, 0.1 mmol), and 1,4-bis((1H-imidazol-1-yl)methyl)benzene ligand (L) (0.024 g, 0.1 mmol), and H2O (15 ml) was sealed in 25 ml Teflon-lined stainless steel reactor and heated to 120 oC. Colorless block-shaped crystals suitable for X-ray
were separated by filtration with the yield of 0.031 g, 78% (based on ligand).All the non-hydrogen atoms were refined anisotropically by full-matrix leastsquares calculations on F2. All H atoms (except H1a) were placed in geometrically idealized positions and treated as riding on their parent atoms with C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms, C—H = 0.96 Å, C—H = 0.96 Å, Uiso = 1.5Ueq (C) for methyl atoms.
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(C2H3O2)Cl(C14H14N4)] | F(000) = 408 |
Mr = 398.18 | Dx = 1.529 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yb | Cell parameters from 1643 reflections |
a = 7.4510 (5) Å | θ = 2.9–29.0° |
b = 14.1636 (8) Å | µ = 1.59 mm−1 |
c = 8.1977 (5) Å | T = 293 K |
β = 90.459 (6)° | Block, colorless |
V = 865.10 (9) Å3 | 0.20 × 0.15 × 0.10 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 1867 independent reflections |
Radiation source: fine-focus sealed tube | 1375 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.076 |
ϕ and ω scans | θmax = 26.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −8→9 |
Tmin = 0.742, Tmax = 0.857 | k = −17→17 |
5952 measured reflections | l = −10→6 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0537P)2] where P = (Fo2 + 2Fc2)/3 |
1867 reflections | (Δ/σ)max = 0.001 |
118 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
[Zn(C2H3O2)Cl(C14H14N4)] | V = 865.10 (9) Å3 |
Mr = 398.18 | Z = 2 |
Monoclinic, P21/m | Mo Kα radiation |
a = 7.4510 (5) Å | µ = 1.59 mm−1 |
b = 14.1636 (8) Å | T = 293 K |
c = 8.1977 (5) Å | 0.20 × 0.15 × 0.10 mm |
β = 90.459 (6)° |
Bruker APEXII CCD area-detector diffractometer | 1867 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1375 reflections with I > 2σ(I) |
Tmin = 0.742, Tmax = 0.857 | Rint = 0.076 |
5952 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.55 e Å−3 |
1867 reflections | Δρmin = −0.50 e Å−3 |
118 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 1.1006 (5) | 0.1143 (2) | 0.9055 (4) | 0.0387 (9) | |
H1 | 1.1791 | 0.1472 | 0.9735 | 0.046* | |
C2 | 0.8642 (5) | 0.0711 (2) | 0.7765 (5) | 0.0441 (9) | |
H2 | 0.7465 | 0.0693 | 0.7379 | 0.053* | |
C3 | 0.9946 (6) | 0.0095 (2) | 0.7356 (5) | 0.0443 (10) | |
H3 | 0.9840 | −0.0419 | 0.6657 | 0.053* | |
C4 | 1.3238 (5) | −0.0061 (3) | 0.8149 (5) | 0.0483 (10) | |
H4A | 1.3126 | −0.0715 | 0.8485 | 0.058* | |
H4B | 1.4013 | 0.0255 | 0.8934 | 0.058* | |
C5 | 1.4064 (6) | 0.0774 (2) | 0.5539 (5) | 0.0448 (10) | |
H5 | 1.3423 | 0.1299 | 0.5888 | 0.054* | |
C6 | 1.4113 (5) | −0.0027 (2) | 0.6486 (4) | 0.0372 (9) | |
C7 | 1.5034 (5) | −0.0802 (3) | 0.5934 (5) | 0.0438 (10) | |
H7 | 1.5053 | −0.1351 | 0.6554 | 0.053* | |
C8 | 0.9449 (11) | 0.2500 | 1.2806 (8) | 0.0513 (16) | |
C9 | 0.9467 (13) | 0.2500 | 1.4712 (9) | 0.094 (3) | |
H9A | 1.0686 | 0.2500 | 1.5101 | 0.140* | |
H9B | 0.8864 | 0.1947 | 1.5103 | 0.140* | 0.50 |
H9C | 0.8864 | 0.3053 | 1.5103 | 0.140* | 0.50 |
O1 | 0.8030 (8) | 0.2500 | 1.2164 (5) | 0.0686 (13) | |
O2 | 1.0927 (8) | 0.2500 | 1.2147 (6) | 0.0856 (16) | |
Zn1 | 0.80781 (9) | 0.2500 | 0.97775 (7) | 0.0402 (2) | |
N1 | 0.9317 (4) | 0.13638 (19) | 0.8831 (4) | 0.0374 (7) | |
N2 | 1.1458 (4) | 0.03823 (19) | 0.8181 (3) | 0.0373 (7) | |
Cl1 | 0.5193 (2) | 0.2500 | 0.8976 (3) | 0.0729 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.032 (2) | 0.045 (2) | 0.039 (2) | −0.0021 (17) | 0.0033 (17) | −0.0050 (16) |
C2 | 0.031 (2) | 0.049 (2) | 0.052 (2) | −0.0049 (18) | −0.0030 (18) | 0.0016 (19) |
C3 | 0.044 (3) | 0.041 (2) | 0.048 (2) | −0.0033 (19) | 0.0000 (19) | −0.0112 (18) |
C4 | 0.041 (2) | 0.061 (2) | 0.043 (2) | 0.015 (2) | 0.0049 (19) | 0.0020 (19) |
C5 | 0.041 (2) | 0.0401 (19) | 0.053 (2) | 0.0126 (18) | 0.0107 (19) | −0.0021 (18) |
C6 | 0.028 (2) | 0.0403 (19) | 0.044 (2) | 0.0007 (16) | 0.0017 (16) | 0.0010 (17) |
C7 | 0.046 (3) | 0.0381 (19) | 0.047 (2) | 0.0068 (18) | 0.0048 (19) | 0.0060 (17) |
C8 | 0.066 (5) | 0.031 (3) | 0.057 (4) | 0.000 | 0.016 (4) | 0.000 |
C9 | 0.136 (9) | 0.091 (5) | 0.054 (4) | 0.000 | 0.000 (5) | 0.000 |
O1 | 0.090 (4) | 0.067 (3) | 0.049 (3) | 0.000 | 0.014 (3) | 0.000 |
O2 | 0.094 (5) | 0.084 (3) | 0.079 (4) | 0.000 | 0.001 (3) | 0.000 |
Zn1 | 0.0355 (4) | 0.0390 (4) | 0.0464 (4) | 0.000 | 0.0116 (3) | 0.000 |
N1 | 0.0322 (18) | 0.0369 (15) | 0.0431 (18) | −0.0003 (14) | 0.0047 (14) | −0.0040 (14) |
N2 | 0.0350 (19) | 0.0415 (16) | 0.0355 (16) | 0.0040 (14) | 0.0056 (14) | 0.0007 (14) |
Cl1 | 0.0332 (9) | 0.0714 (10) | 0.1140 (16) | 0.000 | 0.0032 (9) | 0.000 |
C1—N1 | 1.308 (5) | C5—H5 | 0.9300 |
C1—N2 | 1.338 (4) | C6—C7 | 1.372 (5) |
C1—H1 | 0.9300 | C7—C5i | 1.387 (5) |
C2—C3 | 1.350 (5) | C7—H7 | 0.9300 |
C2—N1 | 1.366 (4) | C8—O1 | 1.177 (8) |
C2—H2 | 0.9300 | C8—O2 | 1.231 (8) |
C3—N2 | 1.371 (5) | C8—C9 | 1.562 (9) |
C3—H3 | 0.9300 | C9—H9A | 0.9600 |
C4—N2 | 1.468 (5) | C9—H9B | 0.9600 |
C4—C6 | 1.516 (5) | C9—H9C | 0.9600 |
C4—H4A | 0.9700 | Zn1—O1 | 1.957 (4) |
C4—H4B | 0.9700 | Zn1—N1 | 2.014 (3) |
C5—C6 | 1.375 (5) | Zn1—N1ii | 2.014 (3) |
C5—C7i | 1.387 (5) | Zn1—Cl1 | 2.2428 (17) |
N1—C1—N2 | 111.3 (3) | C5i—C7—H7 | 119.6 |
N1—C1—H1 | 124.3 | O1—C8—O2 | 127.4 (7) |
N2—C1—H1 | 124.3 | O1—C8—C9 | 116.6 (7) |
C3—C2—N1 | 109.5 (3) | O2—C8—C9 | 116.0 (7) |
C3—C2—H2 | 125.2 | C8—C9—H9A | 109.5 |
N1—C2—H2 | 125.2 | C8—C9—H9B | 109.5 |
C2—C3—N2 | 106.1 (3) | H9A—C9—H9B | 109.5 |
C2—C3—H3 | 127.0 | C8—C9—H9C | 109.5 |
N2—C3—H3 | 127.0 | H9A—C9—H9C | 109.5 |
N2—C4—C6 | 113.4 (3) | H9B—C9—H9C | 109.5 |
N2—C4—H4A | 108.9 | C8—O1—Zn1 | 115.1 (5) |
C6—C4—H4A | 108.9 | O1—Zn1—N1 | 113.41 (12) |
N2—C4—H4B | 108.9 | O1—Zn1—N1ii | 113.41 (12) |
C6—C4—H4B | 108.9 | N1—Zn1—N1ii | 106.09 (17) |
H4A—C4—H4B | 107.7 | O1—Zn1—Cl1 | 105.52 (18) |
C6—C5—C7i | 120.3 (3) | N1—Zn1—Cl1 | 109.17 (9) |
C6—C5—H5 | 119.9 | N1ii—Zn1—Cl1 | 109.17 (9) |
C7i—C5—H5 | 119.9 | C1—N1—C2 | 106.1 (3) |
C7—C6—C5 | 118.9 (3) | C1—N1—Zn1 | 125.5 (2) |
C7—C6—C4 | 119.4 (3) | C2—N1—Zn1 | 128.3 (2) |
C5—C6—C4 | 121.6 (3) | C1—N2—C3 | 107.0 (3) |
C6—C7—C5i | 120.8 (3) | C1—N2—C4 | 125.8 (3) |
C6—C7—H7 | 119.6 | C3—N2—C4 | 127.1 (3) |
Symmetry codes: (i) −x+3, −y, −z+1; (ii) x, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C2H3O2)Cl(C14H14N4)] |
Mr | 398.18 |
Crystal system, space group | Monoclinic, P21/m |
Temperature (K) | 293 |
a, b, c (Å) | 7.4510 (5), 14.1636 (8), 8.1977 (5) |
β (°) | 90.459 (6) |
V (Å3) | 865.10 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.59 |
Crystal size (mm) | 0.20 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.742, 0.857 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5952, 1867, 1375 |
Rint | 0.076 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.124, 1.00 |
No. of reflections | 1867 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.50 |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The author thanks the University of Science and Technology, Beijing, for support.
References
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853–908. Web of Science CrossRef PubMed CAS Google Scholar
Li, S.-L., Lan, Y.-Q., Ma, J. F., Yang, J., Wei, G.-H., Zhang, L.-P. & Su, Z.-M. (2008). Cryst. Growth Des. 8, 675–684. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, C., Wen, B., Sun, Z.-Y., Yan, P.-F. & Gao, J.-S. (2012). Acta Cryst. E68, m621. CSD CrossRef IUCr Journals Google Scholar
Wang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L.-F., Tian, L., Jiang, J. & Ni, Z.-H. (2009). Cryst. Growth Des. 9, 5273–5282. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the field of supramolecular chemistry and crystal engineering, the design and assembly of metal-organic coordination polymers with appealing structures and properties have stimulated interests of chemists in recent years (Wang et al., 2009 and Leininger et al. 2000)). Thus far, a large number of metal-organic coordination polymers have been prepared. Herein, a new metal coordination polymer has been prepared by using a bidentate ligand.
As shown in Fig. 1, the asymmetric unit of compound was composed of a 1,4-bis((1H-imidazol-1-yl)methyl)benzene ligand (L), a divalent zinc ion, a chloride ion, and an acetate ion. The bond lengths of Zn—N, Zn—O, and Zn—Cl are consistent with those reported result (Li et al., 2008). The orgainic ligand in a trans-coordination mode to coordinate with the zinc ions by using two terminal nitrogen atoms, leading to the one-dimensional zigzag coordination polymer. The dihedral angle of the imidazol and benzene planes is 87.293 (2)°, and two the imidazol planes is parallel with the dihedral angle of 0°. The adjacent single chains are parallel along the direction of b axis, Fig. 2.