metal-organic compounds
trans-Dibromidotetrakis(pyridine-κN)ruthenium(II)
aDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China, and bInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn
The title complex, [RuBr2(C5H5N)4], contains two independent complex molecules in each of which the RuII atom is located on a site of 222 symmetry and has a distorted octahedral coordination geometry with four pyridine N atoms and two Br atoms. The Br aroms are trans-disposed as a result of symmetry.
Related literature
For background to ruthenium complexes: see: Pagliaro et al. (2005); van Rijt & Sadler (2009); Wu et al. (2009); Zhang et al. (2005). For related structures, see: Mirza et al. (2003); Wong & Lau (1994); Zhang et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536813000871/hy2613sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813000871/hy2613Isup2.hkl
To a THF solution (10 ml) of RuCl2(DMSO)4 (97 mg, 0.2 mmol) was added pyridine (63 mg, 0.8 mmol) and Br2 (32 mg, 0.2 mmol) under a nitrogen atmosphere. The reaction mixture was refluxed for 2 h, developing red. The solvent was evaporated in vacuo and the residue was washed with hexane. Recrystallization from CH2Cl2/hexane afforded red crystals of the title complex within two days (yield: 75 mg, 65 % based on Ru). Analysis, calculated for C20H20Br2N4Ru: C 41.61, H 3.49, N 9.70%; found: C 41.53, H 3.44, N 9.63%.
H atoms were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[RuBr2(C5H5N)4] | F(000) = 4512 |
Mr = 577.29 | Dx = 1.781 Mg m−3 |
Orthorhombic, Fddd | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -F 2uv 2vw | Cell parameters from 2149 reflections |
a = 16.830 (4) Å | θ = 2.2–26.4° |
b = 22.032 (5) Å | µ = 4.45 mm−1 |
c = 23.221 (5) Å | T = 296 K |
V = 8610 (3) Å3 | Block, red |
Z = 16 | 0.22 × 0.18 × 0.13 mm |
Bruker APEXII CCD diffractometer | 2430 independent reflections |
Radiation source: fine-focus sealed tube | 1631 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ϕ and ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −21→21 |
Tmin = 0.441, Tmax = 0.595 | k = −28→28 |
13382 measured reflections | l = −29→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.069 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0292P)2 + 11.6805P] where P = (Fo2 + 2Fc2)/3 |
2430 reflections | (Δ/σ)max < 0.001 |
125 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[RuBr2(C5H5N)4] | V = 8610 (3) Å3 |
Mr = 577.29 | Z = 16 |
Orthorhombic, Fddd | Mo Kα radiation |
a = 16.830 (4) Å | µ = 4.45 mm−1 |
b = 22.032 (5) Å | T = 296 K |
c = 23.221 (5) Å | 0.22 × 0.18 × 0.13 mm |
Bruker APEXII CCD diffractometer | 2430 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1631 reflections with I > 2σ(I) |
Tmin = 0.441, Tmax = 0.595 | Rint = 0.034 |
13382 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.069 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0292P)2 + 11.6805P] where P = (Fo2 + 2Fc2)/3 |
2430 reflections | Δρmax = 0.58 e Å−3 |
125 parameters | Δρmin = −0.34 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.1250 | 0.1250 | 0.1250 | 0.03562 (11) | |
Ru2 | 0.6250 | 0.1250 | 0.1250 | 0.03634 (11) | |
Br1 | 0.1250 | 0.009537 (19) | 0.1250 | 0.05758 (14) | |
Br2 | 0.6250 | 0.1250 | 0.015713 (18) | 0.06143 (15) | |
N1 | 0.03782 (12) | 0.12460 (9) | 0.18885 (9) | 0.0409 (5) | |
N2 | 0.71241 (13) | 0.19195 (10) | 0.12552 (9) | 0.0428 (5) | |
C1 | −0.02375 (16) | 0.08600 (14) | 0.18763 (12) | 0.0513 (7) | |
H1 | −0.0280 | 0.0594 | 0.1567 | 0.062* | |
C2 | −0.08052 (18) | 0.08388 (16) | 0.22953 (14) | 0.0643 (9) | |
H2 | −0.1223 | 0.0564 | 0.2268 | 0.077* | |
C3 | −0.0757 (2) | 0.12230 (16) | 0.27562 (15) | 0.0664 (9) | |
H3 | −0.1137 | 0.1216 | 0.3047 | 0.080* | |
C4 | −0.01284 (18) | 0.16198 (15) | 0.27768 (13) | 0.0565 (8) | |
H4 | −0.0077 | 0.1887 | 0.3084 | 0.068* | |
C5 | 0.04201 (16) | 0.16198 (13) | 0.23442 (11) | 0.0463 (6) | |
H5 | 0.0842 | 0.1891 | 0.2366 | 0.056* | |
C6 | 0.77437 (16) | 0.19016 (13) | 0.16161 (13) | 0.0513 (7) | |
H6 | 0.7783 | 0.1577 | 0.1870 | 0.062* | |
C7 | 0.83202 (18) | 0.23371 (16) | 0.16297 (15) | 0.0655 (9) | |
H7 | 0.8740 | 0.2304 | 0.1888 | 0.079* | |
C8 | 0.8280 (2) | 0.28178 (15) | 0.12661 (16) | 0.0721 (10) | |
H8 | 0.8670 | 0.3117 | 0.1269 | 0.086* | |
C9 | 0.76494 (19) | 0.28493 (15) | 0.08948 (16) | 0.0656 (9) | |
H9 | 0.7601 | 0.3175 | 0.0642 | 0.079* | |
C10 | 0.70898 (16) | 0.23981 (13) | 0.08982 (13) | 0.0509 (7) | |
H10 | 0.6667 | 0.2424 | 0.0642 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.0287 (2) | 0.0399 (2) | 0.0383 (2) | 0.000 | 0.000 | 0.000 |
Ru2 | 0.0285 (2) | 0.0431 (2) | 0.0374 (2) | 0.000 | 0.000 | 0.000 |
Br1 | 0.0600 (3) | 0.0459 (2) | 0.0668 (3) | 0.000 | −0.0158 (2) | 0.000 |
Br2 | 0.0616 (3) | 0.0806 (3) | 0.0421 (2) | −0.0070 (2) | 0.000 | 0.000 |
N1 | 0.0331 (11) | 0.0465 (12) | 0.0430 (12) | −0.0042 (10) | −0.0006 (9) | 0.0007 (10) |
N2 | 0.0326 (11) | 0.0461 (12) | 0.0497 (13) | 0.0005 (9) | −0.0006 (10) | 0.0022 (11) |
C1 | 0.0398 (15) | 0.0614 (18) | 0.0526 (17) | −0.0119 (14) | −0.0014 (13) | 0.0002 (14) |
C2 | 0.0449 (18) | 0.081 (2) | 0.067 (2) | −0.0174 (16) | 0.0047 (15) | 0.0060 (18) |
C3 | 0.0495 (18) | 0.091 (2) | 0.0590 (19) | −0.0018 (18) | 0.0172 (15) | 0.0106 (18) |
C4 | 0.0482 (17) | 0.072 (2) | 0.0490 (17) | 0.0020 (15) | 0.0079 (13) | −0.0041 (15) |
C5 | 0.0392 (15) | 0.0486 (16) | 0.0512 (17) | −0.0019 (12) | 0.0030 (12) | −0.0028 (13) |
C6 | 0.0382 (15) | 0.0530 (17) | 0.0627 (19) | 0.0023 (13) | −0.0086 (14) | −0.0006 (14) |
C7 | 0.0407 (17) | 0.068 (2) | 0.088 (2) | −0.0039 (15) | −0.0146 (17) | −0.0092 (18) |
C8 | 0.0504 (19) | 0.053 (2) | 0.112 (3) | −0.0150 (15) | −0.001 (2) | −0.004 (2) |
C9 | 0.0528 (19) | 0.056 (2) | 0.088 (2) | −0.0023 (15) | 0.0069 (18) | 0.0133 (18) |
C10 | 0.0380 (15) | 0.0549 (18) | 0.0597 (18) | −0.0009 (13) | 0.0018 (13) | 0.0077 (14) |
Ru1—N1i | 2.086 (2) | C1—H1 | 0.9300 |
Ru1—N1ii | 2.086 (2) | C2—C3 | 1.367 (5) |
Ru1—N1 | 2.086 (2) | C2—H2 | 0.9300 |
Ru1—N1iii | 2.086 (2) | C3—C4 | 1.373 (4) |
Ru1—Br1 | 2.5439 (7) | C3—H3 | 0.9300 |
Ru1—Br1ii | 2.5439 (7) | C4—C5 | 1.364 (4) |
Ru2—N2iv | 2.083 (2) | C4—H4 | 0.9300 |
Ru2—N2 | 2.083 (2) | C5—H5 | 0.9300 |
Ru2—N2i | 2.083 (2) | C6—C7 | 1.365 (4) |
Ru2—N2v | 2.083 (2) | C6—H6 | 0.9300 |
Ru2—Br2 | 2.5378 (7) | C7—C8 | 1.356 (5) |
Ru2—Br2v | 2.5378 (7) | C7—H7 | 0.9300 |
N1—C1 | 1.341 (3) | C8—C9 | 1.370 (5) |
N1—C5 | 1.343 (3) | C8—H8 | 0.9300 |
N2—C6 | 1.339 (3) | C9—C10 | 1.369 (4) |
N2—C10 | 1.342 (3) | C9—H9 | 0.9300 |
C1—C2 | 1.365 (4) | C10—H10 | 0.9300 |
N1i—Ru1—N1ii | 179.52 (12) | C6—N2—C10 | 116.3 (2) |
N1i—Ru1—N1 | 90.60 (12) | C6—N2—Ru2 | 122.20 (18) |
N1ii—Ru1—N1 | 89.40 (12) | C10—N2—Ru2 | 121.48 (18) |
N1i—Ru1—N1iii | 89.40 (12) | N1—C1—C2 | 123.2 (3) |
N1ii—Ru1—N1iii | 90.60 (12) | N1—C1—H1 | 118.4 |
N1—Ru1—N1iii | 179.52 (12) | C2—C1—H1 | 118.4 |
N1i—Ru1—Br1 | 90.24 (6) | C1—C2—C3 | 119.7 (3) |
N1ii—Ru1—Br1 | 90.24 (6) | C1—C2—H2 | 120.2 |
N1—Ru1—Br1 | 89.76 (6) | C3—C2—H2 | 120.2 |
N1iii—Ru1—Br1 | 89.76 (6) | C2—C3—C4 | 117.9 (3) |
N1i—Ru1—Br1ii | 89.76 (6) | C2—C3—H3 | 121.1 |
N1ii—Ru1—Br1ii | 89.76 (6) | C4—C3—H3 | 121.1 |
N1—Ru1—Br1ii | 90.24 (6) | C5—C4—C3 | 119.7 (3) |
N1iii—Ru1—Br1ii | 90.24 (6) | C5—C4—H4 | 120.2 |
Br1—Ru1—Br1ii | 180.0 | C3—C4—H4 | 120.2 |
N2iv—Ru2—N2 | 179.34 (11) | N1—C5—C4 | 123.0 (3) |
N2iv—Ru2—N2i | 89.84 (12) | N1—C5—H5 | 118.5 |
N2—Ru2—N2i | 90.16 (12) | C4—C5—H5 | 118.5 |
N2iv—Ru2—N2v | 90.16 (12) | N2—C6—C7 | 123.2 (3) |
N2—Ru2—N2v | 89.84 (12) | N2—C6—H6 | 118.4 |
N2i—Ru2—N2v | 179.34 (11) | C7—C6—H6 | 118.4 |
N2iv—Ru2—Br2 | 90.33 (6) | C8—C7—C6 | 120.0 (3) |
N2—Ru2—Br2 | 90.33 (6) | C8—C7—H7 | 120.0 |
N2i—Ru2—Br2 | 89.67 (6) | C6—C7—H7 | 120.0 |
N2v—Ru2—Br2 | 89.67 (6) | C7—C8—C9 | 118.0 (3) |
N2iv—Ru2—Br2v | 89.67 (6) | C7—C8—H8 | 121.0 |
N2—Ru2—Br2v | 89.67 (6) | C9—C8—H8 | 121.0 |
N2i—Ru2—Br2v | 90.33 (6) | C10—C9—C8 | 119.5 (3) |
N2v—Ru2—Br2v | 90.33 (6) | C10—C9—H9 | 120.2 |
Br2—Ru2—Br2v | 180.0 | C8—C9—H9 | 120.2 |
C1—N1—C5 | 116.5 (2) | N2—C10—C9 | 123.0 (3) |
C1—N1—Ru1 | 122.09 (18) | N2—C10—H10 | 118.5 |
C5—N1—Ru1 | 121.38 (17) | C9—C10—H10 | 118.5 |
Symmetry codes: (i) x, −y+1/4, −z+1/4; (ii) −x+1/4, −y+1/4, z; (iii) −x+1/4, y, −z+1/4; (iv) −x+5/4, −y+1/4, z; (v) −x+5/4, y, −z+1/4. |
Experimental details
Crystal data | |
Chemical formula | [RuBr2(C5H5N)4] |
Mr | 577.29 |
Crystal system, space group | Orthorhombic, Fddd |
Temperature (K) | 296 |
a, b, c (Å) | 16.830 (4), 22.032 (5), 23.221 (5) |
V (Å3) | 8610 (3) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 4.45 |
Crystal size (mm) | 0.22 × 0.18 × 0.13 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.441, 0.595 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13382, 2430, 1631 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.069, 1.04 |
No. of reflections | 2430 |
No. of parameters | 125 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0292P)2 + 11.6805P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.58, −0.34 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This project was supported by the Natural Science Foundation of China (grant Nos. 20771003 and 21201003).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Mirza, H. A., Farah, A. A., Stynes, D. V. & Lever, A. B. P. (2003). Acta Cryst. E59, m679–m680. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pagliaro, M., Campestrini, S. & Ciriminna, R. (2005). Chem. Soc. Rev. 34, 837–845. Web of Science CrossRef PubMed CAS Google Scholar
Rijt, S. H. van & Sadler, P. J. (2009). Drug Discov. Today, 14, 1089–1097. Web of Science PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wong, W.-T. & Lau, T.-C. (1994). Acta Cryst. C50, 1406–1407. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Wu, F. H., Duan, T., Lu, L., Zhang, Q. F. & Leung, W. H. (2009). J. Organomet. Chem. 694, 3844–3851. Web of Science CSD CrossRef CAS Google Scholar
Zhang, Q. F., Cheung, K. M., Williams, I. D. & Leung, W. H. (2005). Eur. J. Inorg. Chem. pp. 4780–4787. Web of Science CSD CrossRef Google Scholar
Zhang, L.-Y., Zhu, Y.-M., Shi, L.-X. & Chen, Z.-N. (2006). Chin. J. Inorg. Chem. 22, 1453–1466. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coordination chemistry of ruthenium complexes has been studied in last few decades because of their versatile and diverse applications in molecular catalysis (Pagliaro et al., 2005) and bioinorganic chemistry (van Rijt & Sadler, 2009). As part of our long-standing interest in the ruthenium complexes with σ-donor ligands such as thiolate, pyridine and phosphine (Zhang et al., 2005), we have investigated the reactivity of the starting ruthenium compounds such as RuCl2(PPh3)3, RuHCl(CO)(PPh3)3 and RuCl2(dmso)4 (dmso = dimethyl sulfoxide) with mono-, bi- and poly-dentate ligands (Wu et al., 2009). Here we report the crystal structure of the mononuclear ruthenium(II) complex.
In the title complex, there are two independent complex molecules with a perpendicular arrangement. Each RuII atom is located on a 222 symmetry. No significant differences in bonding parameters between these two molecules are found. One of the molecular structures is depicted in Fig. 1. The coordination geometry of the RuII atom is octahedral with four pyridine N atoms and two Br atoms. The Ru—N bond lengths (Table 1) are in the range of those found in related structures of ruthenium(II) complexes retrieved from the Cambridge Structural Database (Allen, 2002). The Ru—Br bond lengths are comparable to those reported in other ruthenium(II)-bromide complexes such as [Ru2Br2(pz)(py)8][PF6]2.2DMF (pz = pyrazine, py = pyridine) [av. 2.5524 (4) Å] (Mirza et al., 2003) and trans-[RuBr(py)4C(CN)3] [2.5453 (12) Å] (Zhang et al., 2006). Two Br atoms are trans disposed as indicated by the Br—Ru—Br bond angle of 180°, as a result of symmetry requirements. Similar case was found in analogous complex trans-[RuCl2(py)4] (Wong & Lau, 1994).