metal-organic compounds
catena-Poly[[[(2,2′-bipyridine-κ2N,N′)manganese(II)]-μ-(2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-diolato)-κ4O1,O6:O3,O4] ethanol disolvate]
aDepartment of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan, bDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, and cDepartment of Chemistry, Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
*Correspondence e-mail: kawata@fukuoka-u.ac.jp
The 6Cl2O4)(C10H8N2)]·2C2H5OH}n, consists of one MnII ion, one 2,2′-bipyridine (bpy) ligand, one chloranilate (CA2−) ligand and two ethanol solvent molecules. The MnII ion is octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two chloranilate ions. The chloranilate ion serves as a bridging ligand between the MnII ions, leading to an infinite zigzag chain along [101]. π–π stacking interactions [centroid–centroid distance = 4.098 (2) Å] is observed between the pyridine rings of adjacent chains. The ethanol molecules act as accepters as well as donors for O—H⋯O hydrogen bonds, and form a hydrogen-bonded chain along the a axis. The H atoms of the hydroxy groups of the two independent ethanol molecules are each disordered over two sites with equal occupancies.
of the title coordination polymer, {[Mn(CRelated literature
For related structures, see: Nagayoshi et al. (2003); Decurtins et al. (1996); Deguenon et al. (1990); Kabir et al. (2001); Zheng et al. (1996).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrystalClear (Rigaku, 2008); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).
Supporting information
10.1107/S1600536813001438/is5235sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813001438/is5235Isup2.hkl
A mixture of MnCl2.4H2O (1 ml, 5 mmolL-1) in aqueous solution and 2,2'-bipyridine (1 ml, 5 mmolL-1) in ethanol solution was transferred to a glass tube, and then an ethanol solution (10 ml) of H2CA (2 ml, 5 mmolL-1) was poured into the tube without mixing the two solutions. Dark violet crystals began to form at ambient temperature in a one week. One of these crystals was used for X-ray crystallography.
The C-bound H atoms in the bpy and the methyl group of the ethanol molecule were placed at calculated positions with C—H = 0.95 and 0.98 Å, respectively, and were treated as riding on their parent atoms with Uiso(H) set to 1.2Ueq(C). Both of the hydrogen atoms on the hydroxy groups of the ethanol solvent molecules are disordered over two sites, each with an occupancy of 0.5 and were treated as riding on their parent oxygen atoms, with O—H = 0.84 Å and with Uiso(H) set to 1.5Ueq(O).
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).[Mn(C6Cl2O4)(C10H8N2)]·2C2H6O | F(000) = 1044 |
Mr = 510.22 | Dx = 1.575 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2yn | Cell parameters from 6299 reflections |
a = 8.3130 (15) Å | θ = 3.2–27.5° |
b = 20.866 (4) Å | µ = 0.90 mm−1 |
c = 12.513 (2) Å | T = 100 K |
β = 97.665 (2)° | Platelet, violet |
V = 2151.2 (7) Å3 | 0.40 × 0.10 × 0.05 mm |
Z = 4 |
Rigaku Saturn724 diffractometer | 4903 independent reflections |
Radiation source: fine-focus sealed tube | 4526 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 7.111 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | k = −27→26 |
Tmin = 0.897, Tmax = 0.956 | l = −16→16 |
24503 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0369P)2 + 2.5077P] where P = (Fo2 + 2Fc2)/3 |
4903 reflections | (Δ/σ)max = 0.002 |
284 parameters | Δρmax = 0.99 e Å−3 |
0 restraints | Δρmin = −0.57 e Å−3 |
[Mn(C6Cl2O4)(C10H8N2)]·2C2H6O | V = 2151.2 (7) Å3 |
Mr = 510.22 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.3130 (15) Å | µ = 0.90 mm−1 |
b = 20.866 (4) Å | T = 100 K |
c = 12.513 (2) Å | 0.40 × 0.10 × 0.05 mm |
β = 97.665 (2)° |
Rigaku Saturn724 diffractometer | 4903 independent reflections |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | 4526 reflections with I > 2σ(I) |
Tmin = 0.897, Tmax = 0.956 | Rint = 0.028 |
24503 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.99 e Å−3 |
4903 reflections | Δρmin = −0.57 e Å−3 |
284 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn1 | 0.26466 (3) | 0.152282 (13) | 0.52153 (2) | 0.01343 (8) | |
Cl1 | 0.34709 (5) | 0.29498 (2) | 0.19487 (4) | 0.01890 (11) | |
Cl2 | −0.31626 (5) | 0.22151 (2) | 0.36711 (4) | 0.02093 (11) | |
O1 | 0.29779 (16) | 0.21863 (6) | 0.39171 (11) | 0.0173 (3) | |
O2 | 0.02350 (16) | 0.18152 (6) | 0.45478 (10) | 0.0160 (3) | |
O3 | 0.00620 (16) | 0.32640 (6) | 0.09766 (10) | 0.0157 (3) | |
O4 | −0.26694 (16) | 0.29681 (7) | 0.16927 (11) | 0.0180 (3) | |
O5 | 0.4059 (3) | 0.44845 (11) | 0.46828 (18) | 0.0517 (5) | |
H1 | 0.3160 | 0.4420 | 0.4900 | 0.078* | 0.50 |
H4 | 0.4601 | 0.4714 | 0.5151 | 0.078* | 0.50 |
O6 | 0.0886 (3) | 0.44697 (10) | 0.49882 (18) | 0.0513 (5) | |
H2 | 0.0270 | 0.4791 | 0.4920 | 0.077* | 0.50 |
H3 | 0.1820 | 0.4395 | 0.4833 | 0.077* | 0.50 |
N1 | 0.32635 (19) | 0.07145 (8) | 0.41547 (13) | 0.0169 (3) | |
N2 | 0.19315 (19) | 0.06124 (8) | 0.59751 (13) | 0.0169 (3) | |
C1 | 0.1713 (2) | 0.23827 (9) | 0.33539 (14) | 0.0141 (3) | |
C2 | 0.1669 (2) | 0.27578 (9) | 0.24228 (15) | 0.0147 (3) | |
C3 | 0.0202 (2) | 0.29465 (8) | 0.18379 (14) | 0.0132 (3) | |
C4 | −0.1402 (2) | 0.27663 (8) | 0.22528 (15) | 0.0139 (3) | |
C5 | −0.1360 (2) | 0.23993 (9) | 0.31882 (15) | 0.0153 (3) | |
C6 | 0.0100 (2) | 0.21788 (8) | 0.37393 (14) | 0.0142 (3) | |
C7 | 0.3914 (3) | 0.07952 (10) | 0.32347 (16) | 0.0221 (4) | |
H7 | 0.4180 | 0.1217 | 0.3031 | 0.026* | |
C8 | 0.4214 (3) | 0.02880 (11) | 0.25711 (17) | 0.0264 (4) | |
H8 | 0.4677 | 0.0361 | 0.1927 | 0.032* | |
C9 | 0.3826 (3) | −0.03242 (11) | 0.28672 (18) | 0.0275 (5) | |
H9 | 0.4012 | −0.0680 | 0.2425 | 0.033* | |
C10 | 0.3160 (3) | −0.04169 (10) | 0.38176 (17) | 0.0233 (4) | |
H10 | 0.2891 | −0.0835 | 0.4036 | 0.028* | |
C11 | 0.2895 (2) | 0.01144 (9) | 0.44437 (15) | 0.0166 (4) | |
C12 | 0.2186 (2) | 0.00567 (9) | 0.54702 (15) | 0.0167 (4) | |
C13 | 0.1817 (3) | −0.05325 (10) | 0.58966 (17) | 0.0228 (4) | |
H13 | 0.1999 | −0.0919 | 0.5530 | 0.027* | |
C14 | 0.1180 (3) | −0.05466 (11) | 0.68661 (18) | 0.0279 (5) | |
H14 | 0.0931 | −0.0944 | 0.7175 | 0.033* | |
C15 | 0.0909 (3) | 0.00214 (11) | 0.73776 (18) | 0.0271 (5) | |
H15 | 0.0468 | 0.0022 | 0.8040 | 0.033* | |
C16 | 0.1296 (3) | 0.05905 (10) | 0.69034 (16) | 0.0222 (4) | |
H16 | 0.1102 | 0.0982 | 0.7251 | 0.027* | |
C17 | 0.4877 (4) | 0.38834 (13) | 0.4599 (2) | 0.0414 (6) | |
H17A | 0.5837 | 0.3952 | 0.4222 | 0.050* | |
H17B | 0.4138 | 0.3584 | 0.4158 | 0.050* | |
C18 | 0.5409 (5) | 0.35873 (16) | 0.5669 (3) | 0.0669 (11) | |
H18A | 0.5981 | 0.3185 | 0.5571 | 0.080* | |
H18B | 0.4458 | 0.3499 | 0.6032 | 0.080* | |
H18C | 0.6138 | 0.3882 | 0.6110 | 0.080* | |
C19 | −0.0048 (5) | 0.39086 (16) | 0.4859 (3) | 0.0585 (8) | |
H19A | −0.0062 | 0.3750 | 0.4113 | 0.070* | |
H19B | −0.1180 | 0.4012 | 0.4963 | 0.070* | |
C20 | 0.0558 (6) | 0.33965 (17) | 0.5616 (3) | 0.0766 (12) | |
H20A | −0.0281 | 0.3067 | 0.5625 | 0.092* | |
H20B | 0.0828 | 0.3577 | 0.6341 | 0.092* | |
H20C | 0.1531 | 0.3204 | 0.5385 | 0.092* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.01400 (15) | 0.01304 (14) | 0.01278 (14) | 0.00029 (10) | 0.00001 (10) | −0.00026 (10) |
Cl1 | 0.0120 (2) | 0.0238 (2) | 0.0214 (2) | −0.00032 (16) | 0.00420 (16) | 0.00607 (17) |
Cl2 | 0.0124 (2) | 0.0278 (2) | 0.0233 (2) | 0.00060 (17) | 0.00476 (17) | 0.00960 (18) |
O1 | 0.0127 (6) | 0.0198 (7) | 0.0188 (6) | 0.0002 (5) | 0.0003 (5) | 0.0053 (5) |
O2 | 0.0151 (6) | 0.0169 (6) | 0.0157 (6) | 0.0001 (5) | 0.0015 (5) | 0.0043 (5) |
O3 | 0.0147 (6) | 0.0172 (6) | 0.0150 (6) | −0.0001 (5) | 0.0012 (5) | 0.0029 (5) |
O4 | 0.0134 (6) | 0.0224 (7) | 0.0181 (6) | 0.0009 (5) | 0.0011 (5) | 0.0060 (5) |
O5 | 0.0511 (12) | 0.0525 (12) | 0.0534 (12) | 0.0145 (10) | 0.0140 (10) | 0.0084 (10) |
O6 | 0.0492 (12) | 0.0384 (10) | 0.0683 (14) | −0.0091 (9) | 0.0155 (11) | 0.0082 (10) |
N1 | 0.0168 (8) | 0.0171 (8) | 0.0164 (7) | 0.0001 (6) | 0.0008 (6) | −0.0016 (6) |
N2 | 0.0171 (8) | 0.0160 (7) | 0.0174 (7) | 0.0005 (6) | 0.0013 (6) | 0.0004 (6) |
C1 | 0.0127 (8) | 0.0139 (8) | 0.0153 (8) | 0.0002 (6) | 0.0009 (6) | −0.0009 (7) |
C2 | 0.0113 (8) | 0.0171 (8) | 0.0164 (8) | −0.0012 (7) | 0.0040 (7) | 0.0016 (7) |
C3 | 0.0143 (8) | 0.0117 (8) | 0.0136 (8) | −0.0005 (6) | 0.0021 (6) | −0.0008 (6) |
C4 | 0.0125 (8) | 0.0132 (8) | 0.0159 (8) | −0.0010 (6) | 0.0018 (7) | −0.0012 (7) |
C5 | 0.0113 (8) | 0.0179 (9) | 0.0169 (8) | −0.0005 (7) | 0.0027 (7) | 0.0021 (7) |
C6 | 0.0153 (9) | 0.0137 (8) | 0.0138 (8) | −0.0017 (7) | 0.0023 (7) | −0.0015 (6) |
C7 | 0.0256 (10) | 0.0226 (10) | 0.0184 (9) | 0.0004 (8) | 0.0041 (8) | 0.0001 (8) |
C8 | 0.0305 (11) | 0.0302 (11) | 0.0192 (10) | 0.0039 (9) | 0.0062 (8) | −0.0048 (8) |
C9 | 0.0334 (12) | 0.0244 (10) | 0.0243 (10) | 0.0072 (9) | 0.0025 (9) | −0.0086 (8) |
C10 | 0.0270 (11) | 0.0169 (9) | 0.0247 (10) | 0.0042 (8) | −0.0007 (8) | −0.0036 (8) |
C11 | 0.0151 (9) | 0.0160 (9) | 0.0176 (9) | 0.0016 (7) | −0.0020 (7) | −0.0016 (7) |
C12 | 0.0153 (9) | 0.0152 (9) | 0.0185 (9) | −0.0004 (7) | −0.0016 (7) | 0.0006 (7) |
C13 | 0.0263 (11) | 0.0157 (9) | 0.0257 (10) | −0.0017 (8) | 0.0010 (8) | 0.0003 (8) |
C14 | 0.0334 (12) | 0.0221 (10) | 0.0278 (11) | −0.0061 (9) | 0.0030 (9) | 0.0045 (8) |
C15 | 0.0319 (12) | 0.0280 (11) | 0.0226 (10) | −0.0043 (9) | 0.0076 (9) | 0.0033 (8) |
C16 | 0.0259 (10) | 0.0218 (10) | 0.0194 (9) | −0.0003 (8) | 0.0042 (8) | −0.0004 (8) |
C17 | 0.0538 (17) | 0.0398 (14) | 0.0322 (13) | −0.0009 (12) | 0.0117 (12) | −0.0033 (11) |
C18 | 0.116 (3) | 0.0443 (17) | 0.0475 (18) | 0.0256 (19) | 0.038 (2) | 0.0151 (14) |
C19 | 0.067 (2) | 0.0472 (17) | 0.059 (2) | −0.0157 (16) | 0.0020 (16) | 0.0035 (15) |
C20 | 0.133 (4) | 0.0471 (19) | 0.051 (2) | −0.001 (2) | 0.020 (2) | −0.0120 (16) |
Mn1—O1 | 2.1796 (14) | C11—C12 | 1.488 (3) |
Mn1—O2 | 2.1546 (14) | C12—C13 | 1.391 (3) |
Mn1—O3i | 2.1511 (14) | C13—C14 | 1.387 (3) |
Mn1—O4i | 2.1782 (14) | C14—C15 | 1.380 (3) |
Mn1—N1 | 2.2473 (16) | C15—C16 | 1.384 (3) |
Mn1—N2 | 2.2398 (16) | C17—C18 | 1.488 (4) |
Cl1—C2 | 1.7304 (18) | C19—C20 | 1.471 (5) |
Cl2—C5 | 1.7322 (18) | O5—H1 | 0.840 |
O1—C1 | 1.254 (2) | O5—H4 | 0.840 |
O2—C6 | 1.258 (2) | O6—H2 | 0.840 |
O3—C3 | 1.257 (2) | O6—H3 | 0.840 |
O3—Mn1ii | 2.1510 (13) | C7—H7 | 0.950 |
O4—C4 | 1.257 (2) | C8—H8 | 0.950 |
O4—Mn1ii | 2.1782 (14) | C9—H9 | 0.950 |
O5—C17 | 1.437 (3) | C10—H10 | 0.950 |
O6—C19 | 1.402 (4) | C13—H13 | 0.950 |
N1—C7 | 1.346 (3) | C14—H14 | 0.950 |
N1—C11 | 1.350 (2) | C15—H15 | 0.950 |
N2—C16 | 1.340 (3) | C16—H16 | 0.950 |
N2—C12 | 1.351 (2) | C17—H17A | 0.990 |
C1—C2 | 1.400 (3) | C17—H17B | 0.990 |
C1—C6 | 1.544 (2) | C18—H18A | 0.980 |
C2—C3 | 1.392 (3) | C18—H18B | 0.980 |
C3—C4 | 1.541 (2) | C18—H18C | 0.980 |
C4—C5 | 1.395 (3) | C19—H19A | 0.990 |
C5—C6 | 1.392 (3) | C19—H19B | 0.990 |
C7—C8 | 1.388 (3) | C20—H20A | 0.980 |
C8—C9 | 1.380 (3) | C20—H20B | 0.980 |
C9—C10 | 1.391 (3) | C20—H20C | 0.980 |
C10—C11 | 1.392 (3) | H2—H2iii | 1.0155 (1) |
O3i—Mn1—O2 | 151.46 (5) | N2—C12—C11 | 116.06 (16) |
O3i—Mn1—O4i | 74.60 (5) | C13—C12—C11 | 122.40 (17) |
O2—Mn1—O4i | 88.83 (5) | C14—C13—C12 | 118.93 (19) |
O3i—Mn1—O1 | 89.74 (5) | C15—C14—C13 | 119.5 (2) |
O2—Mn1—O1 | 74.62 (5) | C14—C15—C16 | 118.5 (2) |
O4i—Mn1—O1 | 111.37 (6) | N2—C16—C15 | 122.82 (19) |
O3i—Mn1—N2 | 105.80 (6) | O5—C17—C18 | 112.5 (2) |
O2—Mn1—N2 | 96.82 (5) | O6—C19—C20 | 113.3 (3) |
O4i—Mn1—N2 | 89.11 (6) | C17—O5—H1 | 109.5 |
O1—Mn1—N2 | 157.24 (6) | C17—O5—H4 | 109.5 |
O3i—Mn1—N1 | 98.26 (5) | C19—O6—H2 | 109.5 |
O2—Mn1—N1 | 104.92 (6) | C19—O6—H3 | 109.5 |
O4i—Mn1—N1 | 158.45 (6) | N1—C7—H7 | 118.629 |
O1—Mn1—N1 | 88.57 (6) | C8—C7—H7 | 118.631 |
N2—Mn1—N1 | 73.05 (6) | C7—C8—H8 | 120.730 |
C1—O1—Mn1 | 116.52 (12) | C9—C8—H8 | 120.716 |
C6—O2—Mn1 | 117.46 (12) | C8—C9—H9 | 120.253 |
C3—O3—Mn1ii | 117.58 (12) | C10—C9—H9 | 120.256 |
C4—O4—Mn1ii | 116.71 (12) | C9—C10—H10 | 120.608 |
C7—N1—C11 | 118.46 (17) | C11—C10—H10 | 120.605 |
C7—N1—Mn1 | 124.09 (13) | C12—C13—H13 | 120.536 |
C11—N1—Mn1 | 117.40 (12) | C14—C13—H13 | 120.531 |
C16—N2—C12 | 118.74 (17) | C13—C14—H14 | 120.253 |
C16—N2—Mn1 | 123.70 (13) | C15—C14—H14 | 120.257 |
C12—N2—Mn1 | 117.55 (12) | C14—C15—H15 | 120.770 |
O1—C1—C2 | 125.27 (17) | C16—C15—H15 | 120.765 |
O1—C1—C6 | 115.62 (16) | N2—C16—H16 | 118.596 |
C2—C1—C6 | 119.11 (16) | C15—C16—H16 | 118.588 |
C3—C2—C1 | 121.31 (16) | O5—C17—H17A | 109.084 |
C3—C2—Cl1 | 119.45 (14) | O5—C17—H17B | 109.087 |
C1—C2—Cl1 | 119.14 (14) | C18—C17—H17A | 109.089 |
O3—C3—C2 | 125.04 (17) | C18—C17—H17B | 109.086 |
O3—C3—C4 | 115.60 (16) | H17A—C17—H17B | 107.842 |
C2—C3—C4 | 119.36 (16) | C17—C18—H18A | 109.466 |
O4—C4—C5 | 125.24 (17) | C17—C18—H18B | 109.469 |
O4—C4—C3 | 115.39 (16) | C17—C18—H18C | 109.469 |
C5—C4—C3 | 119.37 (16) | H18A—C18—H18B | 109.486 |
C6—C5—C4 | 121.33 (17) | H18A—C18—H18C | 109.468 |
C6—C5—Cl2 | 119.44 (14) | H18B—C18—H18C | 109.470 |
C4—C5—Cl2 | 119.23 (14) | O6—C19—H19A | 108.909 |
O2—C6—C5 | 125.20 (17) | O6—C19—H19B | 108.914 |
O2—C6—C1 | 115.45 (16) | C20—C19—H19A | 108.916 |
C5—C6—C1 | 119.36 (16) | C20—C19—H19B | 108.918 |
N1—C7—C8 | 122.74 (19) | H19A—C19—H19B | 107.740 |
C9—C8—C7 | 118.6 (2) | C19—C20—H20A | 109.468 |
C8—C9—C10 | 119.49 (19) | C19—C20—H20B | 109.476 |
C9—C10—C11 | 118.79 (19) | C19—C20—H20C | 109.478 |
N1—C11—C10 | 121.97 (18) | H20A—C20—H20B | 109.465 |
N1—C11—C12 | 115.88 (16) | H20A—C20—H20C | 109.470 |
C10—C11—C12 | 122.15 (18) | H20B—C20—H20C | 109.470 |
N2—C12—C13 | 121.54 (18) | O6iii—H2—H2 | 161.01 (15) |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H1···O6 | 0.84 | 1.91 | 2.716 (4) | 160 |
O5—H4···O5iv | 0.84 | 2.00 | 2.715 (4) | 142 |
O6—H2···O6iii | 0.84 | 1.83 | 2.661 (3) | 170 |
O6—H3···O5 | 0.84 | 1.90 | 2.716 (4) | 162 |
Symmetry codes: (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C6Cl2O4)(C10H8N2)]·2C2H6O |
Mr | 510.22 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 8.3130 (15), 20.866 (4), 12.513 (2) |
β (°) | 97.665 (2) |
V (Å3) | 2151.2 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.90 |
Crystal size (mm) | 0.40 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Rigaku Saturn724 diffractometer |
Absorption correction | Multi-scan (REQAB; Rigaku, 1998) |
Tmin, Tmax | 0.897, 0.956 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24503, 4903, 4526 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.089, 1.10 |
No. of reflections | 4903 |
No. of parameters | 284 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.99, −0.57 |
Computer programs: CrystalClear (Rigaku, 2008), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).
Mn1—O1 | 2.1796 (14) | Mn1—O4i | 2.1782 (14) |
Mn1—O2 | 2.1546 (14) | Mn1—N1 | 2.2473 (16) |
Mn1—O3i | 2.1511 (14) | Mn1—N2 | 2.2398 (16) |
Symmetry code: (i) x+1/2, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H1···O6 | 0.84 | 1.91 | 2.716 (4) | 160 |
O5—H4···O5ii | 0.84 | 2.00 | 2.715 (4) | 142 |
O6—H2···O6iii | 0.84 | 1.83 | 2.661 (3) | 170 |
O6—H3···O5 | 0.84 | 1.90 | 2.716 (4) | 162 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+1. |
Acknowledgements
This work was supported by funds (No. 101501) from the Central Research Institute of Fukuoka University and Grant-in-Aids for Science Research (No. 22550067) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Decurtins, S., Schmalle, H. W., Zheng, L.-M. & Ensling, J. (1996). Inorg. Chim. Acta, 244, 165–170. CSD CrossRef CAS Web of Science Google Scholar
Deguenon, D., Bernardinelli, G., Tuchagues, J.-P. & Castan, J.-P. (1990). Inorg. Chem. 29, 3031–3037. CSD CrossRef CAS Web of Science Google Scholar
Kabir, M. K., Kawahara, M., Kumagai, H., Adachi, K., Kawata, S., Ishii, T. & Kitagawa, S. (2001). Polyhedron, 20, 1417–1422. Web of Science CSD CrossRef CAS Google Scholar
Nagayoshi, K., Kabir, M. K., Tobita, H., Honda, K., Kawahara, M., Katada, M., Adachi, K., Nishikawa, H., Ikemoto, I., Kumagai, H., Hosokoshi, Y., Inoue, K., Kitagawa, S. & Kawata, S. (2003). J. Am. Chem. Soc. 125, 221–232. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). Crystal Structure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zheng, L.-M., Schmalle, H. W., Huber, R. & Decurtins, S. (1996). Polyhedron, 15, 4399–4405. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In this paper manganese assembled structures of chloranilic acid (H2CA = 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) are rationally designed by using bpy. Chloranilic acid can coordinate to metal ions in both the bidentate and the bisbidentate fashions (Nagayoshi et al., 2003). The dianion of chloranilic acid consists of two allyl systems connected by C—C single bonds, with four oxygen atoms partially negatively charged. This potentiality allows for the coordination of transition-metal ions through CA2- bridges and permits the probable propagation of magnetic super-exchange interactions between the paramagnetic centers. These kind of complexes using manganese two ions and H2CA were reported previously (Kabir et al., 2001). We report here, {[Mn(C10H8N2)(C6Cl2O4)].(C2H6O)2}n (1), which consists of the Mn(II) one-dimensional chain complex and two ethanol solvent molecules. The manganese(II) ion has a distorted octahedral environment, caused by fairly small bite angles of N—Mn—N [73.06 (7)°] and O—Mn—O [74.62 (5), 74.60 (5)°]. The latter compares with that in [Mn(bpy)CA]n (2) (Zheng, et al., 1996) [73.67 (7)°] but is smaller than that of O—Cu—O [77.31 (4)°] in [Cu(DCMB)(CA)]n (DCMB = 3,3'-dicarbomethoxy-2,2'-bipyridine) (Decurtins et al., 1996). The Mn—N distances [2.2472 (18) and 2.2397 (18) Å] agree well with those in [Mn(bpy)(C2O4)]n (Deguenon et al., 1990), (2.241, 2.258 Å) and the average Mn—O length (2.166 Å) is compatible with that in 2 (2.180 Å). Overall, the determined Mn—N and Mn—O bond lengths are in agreement with dipositive charged manganese ions as coordination centres. The CA2- bridges Mn(II) ions, which leads to infinite chains exhibiting a zig-zag pattern with bipyridine ligands stacking between the chains. The nearest C–C distance of the stacked bipyridine ligands is 3.607 (3) Å. This stacking interaction makes two-dimensional packing structure. This Mn···Mn [8.131 (1) Å] separation is a little smaller than the Mn···Mn [8.170 Å] separation in the chain of 2. The chain complex was assembled in the bc plane to form a one-dimensional channel along the a axis. The crystal structures of 1, 2 and [Mn(CA)(terpy)]n (terpy = 2,2:6,2-terpyridine) are similar. However, only compound 1 contains two ethanol solvents as solvent molecules. Interstitial solvents are introduced to the channel constructed by the assembling of one-dimensional chains to make a clathrate. Two ethanol solvent molecules are connected through hydrogen bonding, and form a one-dimensional chain along the a axis. As a result, voids of compound 1 is expanded by introduction of solvents into the clathrate.