organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-tert-Butyl 2-ethyl 5-bromo-3-(thio­phen-2-ylcarbon­yl)-1H-indole-1,2-di­carboxyl­ate

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
*Correspondence e-mail: hassam@sun.ac.za

(Received 7 December 2012; accepted 9 January 2013; online 16 January 2013)

In the title compound, C21H20BrNO5S, the thio­phene group is located above the mean plane of the indole ring and displays rotational disorder (i.e. rotation through 180°). The site occupancy of the major component is 0.902 (2), while that of the minor component is 0.098 (2). In the crystal, pairs of weak C—H⋯O inter­actions link the mol­ecules into centrosymmetric dimers.

Related literature

For background to the use of indoles as scaffolds in the synthesis of HIV-agents, see: Hassam et al. (2012[Hassam, M., Basson, A. E., Liotta, D. C., Morris, L., van Otterlo, W. A. L. & Pelly, S. C. (2012). ACS Med. Chem. Lett. 3, 470-475.]) and for a recent review on stages of non-nucleoside reverse trans­criptase inhibitors, see: Reynolds et al. (2012[Reynolds, C., Koning, C. B., Pelly, S. C., van Otterlo, W. A. L. & Bode, M. L. (2012). Chem. Soc. Rev. 41, 4657-4670.]). For the crystal structures of closely related compounds, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]), Hassam & Smith (2012[Hassam, M. & Smith, V. J. (2012). Acta Cryst. E68, o3357.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20BrNO5S

  • Mr = 478.35

  • Monoclinic, C 2/c

  • a = 16.220 (3) Å

  • b = 15.361 (3) Å

  • c = 18.224 (4) Å

  • β = 113.792 (2)°

  • V = 4154.7 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 100 K

  • 0.34 × 0.21 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan [symmetry-related measurements (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])] Tmin = 0.537, Tmax = 0.721

  • 23562 measured reflections

  • 4855 independent reflections

  • 4101 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.066

  • S = 1.05

  • 4855 reflections

  • 279 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12A—H12A⋯O3i 0.95 2.48 3.418 (5) 169
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

Ethyl-5-bromo-1H-indole-2-carboxylate has been employed as a building block in the synthesis of various anti-HIV active molecules, particularly in the search for novel non-nucleoside reverse transcriptase inhibitors (Hassam et al. 2012). Protection on the indole NH of ethyl 5-bromo-3-(2- thiophenoyl)-1H-indole-2-carboxylate was carried out with di-tert -butyl-dicarbonate using 4-dimethylaminopyridine as a catalytic base.

The title compound, C21H20BrNO5S, crystallizes with one molecule in the asymmetric unit (Fig. 1). The thiophene moiety is disordered over two positions with major (A) and minor (B) components in a 0.9021 (19):0.0979 (19)(2) ratio. The dihedral angles between the mean planes of the 5-bromo indole ring (Br1/N1/C1-C8) and the disordered thiophene rings (S1A/C10/C11A/C13A and S1B/C10/C11B/C13B) are 59.67 (9)° and 60.20 (76)°, respectively. The angles between the mean planes of the indole ring and the N-tert- butyloxy, ethyl ester and the ketone groups are 31.72 (7)°, 45.08 (6)° and 47.88 (7)°, respectively. The torsion angles of O5/C9/C10/S1A and O5/C9/C10/S1B are -20.67 (24)° and 159.92 (34)°, respectively, thereby describing the major component in a cis conformation and the minor component in a trans conformation. Molecular packing shows the molecules forming centrosymmetric dimers linked via weak C12A—H12A···O3 intermolecular interactions (Fig. 2, Table 1).

Related literature top

For background to the use of indoles as scaffolds in the synthesis of HIV-agents, see: Hassam et al. (2012) and for a recent review on stages of non-nucleoside reverse transcriptase inhibitors, see: Reynolds et al. (2012). For the crystal structures of closely related compounds, see: Beddoes et al. (1986), Hassam & Smith (2012).

Experimental top

4-dimethylaminopyridine (0.0100 g, 0.0818 mmol) was added to a solution of ethyl 5-bromo-3-(2-thiophenoyl)-1H-indole-2-carboxylate (1.10 g, 2.91 mmol) in THF (20 ml), followed by the addition of di-tert-butyl dicarbonate (1.16 g, 5.32 mmol). The reaction mixture was stirred at 298.15 K for 2 h. Colourless crystals were obtained from a hexane/dichloromethane solvent mixture (4:1) (1.15 g, 83%).

Refinement top

All non-hydrogen atoms were refined anisotropically. H atoms were placed geometrically [C—H = 0.95 - 0.99 Å; with Uiso(H) = 1.2 - 1.5Ueq(C)] and constrained to ride on their parent atoms. The site-occupancy factors of the disordered thiophene moieties were initially set to 0.5 and then refined, leading to an occupancy of 0.9021 (19) and 0.0979 (19)(2) for the major and minor components, respectively. Bond lengths for the thiophene and phenyl moieties were restrained using the SHELXL SADI command (s.u. = 0.002 Å). Atom displacement parameters for overlaping atoms of the disordered models were constrained using EADP.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with atom displacement ellipsoidsdrawn at the 50% probability level. Disordered components (0.9021 (19) = blue) and (0.0979 (19) = purple).
[Figure 2] Fig. 2. Molecular Packing of the title compound viewed along the b axis. Centrosymmetric dimers are linked via weak C—H···O intermolecular interactions (dashed lines).
1-tert-Butyl 2-ethyl 5-bromo-3-(thiophen-2-ylcarbonyl)-1H-indole-1,2-dicarboxylate top
Crystal data top
C21H20BrNO5SF(000) = 1952
Mr = 478.35Dx = 1.530 Mg m3
Monoclinic, C2/cMelting point: 370.13 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 16.220 (3) ÅCell parameters from 6586 reflections
b = 15.361 (3) Åθ = 2.4–27.6°
c = 18.224 (4) ŵ = 2.11 mm1
β = 113.792 (2)°T = 100 K
V = 4154.7 (15) Å3Rectangular prisms, colourless
Z = 80.34 × 0.21 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
4855 independent reflections
Radiation source: fine-focus sealed tube, Bruker SMART Apex4101 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 28.2°, θmin = 1.9°
Absorption correction: multi-scan
[symmetry-related measurements (SADABS; Bruker, 2009)]
h = 2020
Tmin = 0.537, Tmax = 0.721k = 1919
23562 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0296P)2 + 2.6317P]
where P = (Fo2 + 2Fc2)/3
4855 reflections(Δ/σ)max = 0.001
279 parametersΔρmax = 0.38 e Å3
13 restraintsΔρmin = 0.38 e Å3
Crystal data top
C21H20BrNO5SV = 4154.7 (15) Å3
Mr = 478.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.220 (3) ŵ = 2.11 mm1
b = 15.361 (3) ÅT = 100 K
c = 18.224 (4) Å0.34 × 0.21 × 0.17 mm
β = 113.792 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4855 independent reflections
Absorption correction: multi-scan
[symmetry-related measurements (SADABS; Bruker, 2009)]
4101 reflections with I > 2σ(I)
Tmin = 0.537, Tmax = 0.721Rint = 0.039
23562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02913 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
4855 reflectionsΔρmin = 0.38 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.187401 (12)0.022969 (12)0.284234 (11)0.02154 (6)
O10.21832 (9)0.04217 (8)0.06003 (8)0.0220 (3)
N10.09114 (9)0.12572 (9)0.02039 (8)0.0140 (3)
C10.04334 (12)0.19832 (11)0.02894 (10)0.0143 (4)
O20.22623 (8)0.18743 (8)0.08505 (7)0.0168 (3)
C20.03540 (10)0.08118 (9)0.04949 (10)0.0143 (3)
O30.11295 (9)0.22588 (8)0.16936 (7)0.0223 (3)
C30.05264 (11)0.00587 (10)0.08360 (9)0.0165 (4)
H30.10830.02430.05980.020*
O40.06607 (8)0.33759 (8)0.08185 (7)0.0167 (3)
C40.01584 (11)0.02275 (11)0.15432 (10)0.0173 (4)
H40.00720.07400.17950.021*
O50.14693 (9)0.30149 (9)0.11372 (7)0.0229 (3)
C50.09682 (11)0.02238 (10)0.18879 (10)0.0167 (4)
C60.11345 (11)0.09814 (10)0.15555 (9)0.0159 (4)
H60.16870.12890.18020.019*
C70.04550 (10)0.12713 (11)0.08437 (9)0.0143 (3)
C80.03952 (12)0.20088 (11)0.03284 (10)0.0147 (4)
C90.11022 (12)0.26847 (12)0.04742 (11)0.0165 (4)
C100.13346 (11)0.29232 (11)0.01992 (10)0.0147 (4)
C140.07984 (11)0.25376 (11)0.10226 (11)0.0158 (4)
C150.08485 (13)0.39806 (12)0.14842 (11)0.0217 (4)
H15A0.14850.39320.18690.026*
H15B0.04570.38530.17710.026*
C160.06589 (15)0.48791 (13)0.11250 (13)0.0294 (5)
H16C0.00260.49180.07480.044*
H16A0.10470.49940.08400.044*
H16B0.07800.53100.15530.044*
C170.18541 (12)0.11267 (11)0.05822 (10)0.0159 (4)
C180.32643 (12)0.19106 (12)0.13180 (11)0.0190 (4)
C190.37308 (13)0.16063 (14)0.07930 (12)0.0249 (4)
H19C0.34710.19070.02750.037*
H19A0.36480.09770.07080.037*
H19B0.43760.17380.10560.037*
C200.34088 (14)0.28765 (13)0.14976 (13)0.0293 (5)
H20A0.30610.30630.18020.044*
H20B0.32090.32020.09930.044*
H20C0.40500.29880.18140.044*
C210.35137 (14)0.13828 (14)0.20765 (11)0.0278 (5)
H21A0.34170.07630.19400.042*
H21C0.31370.15610.23570.042*
H21B0.41490.14810.24250.042*
S1A0.18632 (4)0.39061 (3)0.01797 (3)0.01650 (16)0.9021 (19)
C11A0.12031 (18)0.24830 (18)0.08752 (18)0.0212 (5)0.902 (2)
H11A0.09240.19270.09870.025*0.9021 (19)
C12A0.1506 (2)0.2902 (3)0.1402 (3)0.0196 (4)0.9021 (19)
H12A0.14620.26670.18990.024*0.9021 (19)
C13A0.1874 (3)0.3695 (3)0.11084 (15)0.0161 (6)0.9021 (19)
H13A0.21080.40840.13820.019*0.9021 (19)
S1B0.1088 (5)0.2256 (4)0.1026 (3)0.01650 (16)0.0979 (19)
C11B0.1782 (13)0.3643 (9)0.0245 (15)0.0212 (5)0.0979 (19)
H11B0.19710.40820.01570.025*0.0979 (19)
C12B0.194 (3)0.368 (3)0.0944 (18)0.0161 (6)0.0979 (19)
H12B0.22510.41490.10650.019*0.0979 (19)
C13B0.161 (2)0.298 (2)0.143 (3)0.0196 (4)0.0979 (19)
H13B0.16550.28950.19300.024*0.0979 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01920 (10)0.02324 (11)0.01899 (10)0.00231 (8)0.00438 (7)0.00483 (7)
O10.0186 (7)0.0174 (7)0.0266 (7)0.0045 (5)0.0056 (6)0.0011 (5)
N10.0133 (7)0.0144 (7)0.0138 (7)0.0008 (6)0.0051 (6)0.0017 (6)
C10.0166 (9)0.0130 (8)0.0164 (9)0.0025 (7)0.0099 (7)0.0014 (7)
O20.0136 (6)0.0167 (6)0.0178 (6)0.0006 (5)0.0040 (5)0.0017 (5)
C20.0147 (8)0.0139 (8)0.0145 (8)0.0028 (7)0.0061 (7)0.0000 (7)
O30.0296 (7)0.0216 (7)0.0148 (7)0.0044 (6)0.0078 (6)0.0005 (5)
C30.0165 (9)0.0145 (9)0.0199 (9)0.0022 (7)0.0087 (7)0.0006 (7)
O40.0196 (6)0.0139 (6)0.0158 (6)0.0004 (5)0.0062 (5)0.0028 (5)
C40.0213 (9)0.0141 (8)0.0189 (9)0.0002 (7)0.0106 (8)0.0022 (7)
O50.0266 (7)0.0251 (7)0.0167 (7)0.0076 (6)0.0084 (6)0.0043 (5)
C50.0176 (9)0.0186 (9)0.0138 (8)0.0040 (7)0.0065 (7)0.0013 (7)
C60.0152 (9)0.0179 (9)0.0158 (9)0.0003 (7)0.0075 (7)0.0019 (7)
C70.0158 (9)0.0143 (8)0.0158 (9)0.0009 (7)0.0093 (7)0.0016 (7)
C80.0185 (9)0.0143 (8)0.0146 (9)0.0008 (7)0.0103 (7)0.0010 (7)
C90.0154 (9)0.0165 (9)0.0183 (9)0.0005 (7)0.0074 (7)0.0011 (7)
C100.0116 (8)0.0154 (8)0.0172 (9)0.0019 (7)0.0059 (7)0.0003 (7)
C140.0131 (8)0.0175 (9)0.0193 (9)0.0013 (7)0.0091 (7)0.0015 (7)
C150.0258 (10)0.0202 (10)0.0167 (9)0.0030 (8)0.0060 (8)0.0082 (7)
C160.0334 (12)0.0202 (10)0.0264 (11)0.0014 (9)0.0034 (9)0.0064 (8)
C170.0172 (9)0.0186 (9)0.0124 (8)0.0006 (7)0.0068 (7)0.0005 (7)
C180.0128 (8)0.0260 (10)0.0161 (9)0.0030 (7)0.0036 (7)0.0009 (7)
C190.0187 (10)0.0322 (11)0.0250 (10)0.0017 (8)0.0100 (8)0.0047 (9)
C200.0249 (11)0.0277 (11)0.0309 (11)0.0083 (9)0.0068 (9)0.0066 (9)
C210.0235 (10)0.0381 (12)0.0178 (10)0.0044 (9)0.0043 (8)0.0046 (9)
S1A0.0180 (3)0.0143 (3)0.0192 (3)0.0051 (2)0.0095 (2)0.0010 (2)
C11A0.0184 (13)0.0143 (13)0.0291 (14)0.0058 (10)0.0080 (11)0.0014 (10)
C12A0.0206 (13)0.0209 (13)0.0189 (10)0.0016 (10)0.0096 (10)0.0000 (8)
C13A0.0188 (12)0.0188 (9)0.0142 (15)0.0031 (9)0.0102 (14)0.0018 (14)
S1B0.0180 (3)0.0143 (3)0.0192 (3)0.0051 (2)0.0095 (2)0.0010 (2)
C11B0.0184 (13)0.0143 (13)0.0291 (14)0.0058 (10)0.0080 (11)0.0014 (10)
C12B0.0188 (12)0.0188 (9)0.0142 (15)0.0031 (9)0.0102 (14)0.0018 (14)
C13B0.0206 (13)0.0209 (13)0.0189 (10)0.0016 (10)0.0096 (10)0.0000 (8)
Geometric parameters (Å, º) top
Br1—C51.8993 (17)C15—H15A0.9900
O1—C171.202 (2)C15—H15B0.9900
N1—C11.402 (2)C16—H16C0.9800
N1—C21.406 (2)C16—H16A0.9800
N1—C171.415 (2)C16—H16B0.9800
C1—C81.362 (2)C18—C211.510 (3)
C1—C141.491 (2)C18—C191.514 (3)
O2—C171.317 (2)C18—C201.517 (3)
O2—C181.501 (2)C19—H19C0.9800
C2—C31.3940 (15)C19—H19A0.9800
C2—C71.3968 (15)C19—H19B0.9800
O3—C141.199 (2)C20—H20A0.9800
C3—C41.3903 (16)C20—H20B0.9800
C3—H30.9500C20—H20C0.9800
O4—C141.334 (2)C21—H21A0.9800
O4—C151.459 (2)C21—H21C0.9800
C4—C51.3909 (16)C21—H21B0.9800
C4—H40.9500S1A—C13A1.730 (3)
O5—C91.221 (2)C11A—C12A1.400 (3)
C5—C61.3878 (15)C11A—H11A0.9500
C6—C71.3935 (16)C12A—C13A1.367 (3)
C6—H60.9500C12A—H12A0.9500
C7—C81.450 (2)C13A—H13A0.9500
C8—C91.489 (2)S1B—C13B1.730 (3)
C9—C101.468 (2)C11B—C12B1.400 (4)
C10—C11B1.344 (4)C11B—H11B0.9500
C10—C11A1.345 (3)C12B—C13B1.367 (3)
C10—S1A1.7297 (17)C12B—H12B0.9500
C10—S1B1.730 (2)C13B—H13B0.9500
C15—C161.505 (3)
C1—N1—C2107.77 (13)H16C—C16—H16A109.5
C1—N1—C17126.56 (15)C15—C16—H16B109.5
C2—N1—C17123.07 (13)H16C—C16—H16B109.5
C8—C1—N1109.67 (15)H16A—C16—H16B109.5
C8—C1—C14128.83 (16)O1—C17—O2128.62 (17)
N1—C1—C14121.09 (15)O1—C17—N1121.44 (16)
C17—O2—C18120.67 (14)O2—C17—N1109.86 (15)
C3—C2—C7122.48 (14)O2—C18—C21109.18 (15)
C3—C2—N1129.51 (13)O2—C18—C19109.43 (14)
C7—C2—N1108.00 (12)C21—C18—C19113.28 (17)
C4—C3—C2116.55 (15)O2—C18—C20101.33 (14)
C4—C3—H3121.7C21—C18—C20111.51 (16)
C2—C3—H3121.7C19—C18—C20111.42 (16)
C14—O4—C15115.31 (14)C18—C19—H19C109.5
C3—C4—C5121.11 (15)C18—C19—H19A109.5
C3—C4—H4119.4H19C—C19—H19A109.5
C5—C4—H4119.4C18—C19—H19B109.5
C6—C5—C4122.36 (15)H19C—C19—H19B109.5
C6—C5—Br1119.51 (11)H19A—C19—H19B109.5
C4—C5—Br1118.13 (11)C18—C20—H20A109.5
C5—C6—C7117.02 (15)C18—C20—H20B109.5
C5—C6—H6121.5H20A—C20—H20B109.5
C7—C6—H6121.5C18—C20—H20C109.5
C6—C7—C2120.47 (14)H20A—C20—H20C109.5
C6—C7—C8132.37 (15)H20B—C20—H20C109.5
C2—C7—C8107.16 (14)C18—C21—H21A109.5
C1—C8—C7107.38 (15)C18—C21—H21C109.5
C1—C8—C9126.85 (16)H21A—C21—H21C109.5
C7—C8—C9125.72 (15)C18—C21—H21B109.5
O5—C9—C10122.43 (16)H21A—C21—H21B109.5
O5—C9—C8119.94 (16)H21C—C21—H21B109.5
C10—C9—C8117.62 (15)C10—S1A—C13A90.96 (18)
C11B—C10—C11A104.3 (12)C10—C11A—C12A115.3 (3)
C11B—C10—C9125.8 (12)C10—C11A—H11A122.3
C11A—C10—C9129.86 (16)C12A—C11A—H11A122.3
C11A—C10—S1A110.60 (15)C13A—C12A—C11A111.1 (4)
C9—C10—S1A119.53 (12)C13A—C12A—H12A124.5
C11B—C10—S1B112.0 (12)C11A—C12A—H12A124.5
C9—C10—S1B122.2 (3)C12A—C13A—S1A112.1 (4)
S1A—C10—S1B118.3 (3)C12A—C13A—H13A124.0
O3—C14—O4125.80 (16)S1A—C13A—H13A124.0
O3—C14—C1124.23 (16)C13B—S1B—C1090.7 (19)
O4—C14—C1109.90 (15)C10—C11B—C12B113 (3)
O4—C15—C16106.54 (15)C10—C11B—H11B123.4
O4—C15—H15A110.4C12B—C11B—H11B123.4
C16—C15—H15A110.4C13B—C12B—C11B113 (4)
O4—C15—H15B110.4C13B—C12B—H12B123.6
C16—C15—H15B110.4C11B—C12B—H12B123.6
H15A—C15—H15B108.6C12B—C13B—S1B111 (4)
C15—C16—H16C109.5C12B—C13B—H13B124.4
C15—C16—H16A109.5S1B—C13B—H13B124.4
C2—N1—C1—C80.25 (19)C8—C9—C10—S1B19.6 (4)
C17—N1—C1—C8161.74 (16)C15—O4—C14—O36.9 (2)
C2—N1—C1—C14173.05 (15)C15—O4—C14—C1170.13 (14)
C17—N1—C1—C1425.0 (3)C8—C1—C14—O3127.0 (2)
C1—N1—C2—C3179.52 (17)N1—C1—C14—O344.9 (3)
C17—N1—C2—C316.8 (3)C8—C1—C14—O450.1 (2)
C1—N1—C2—C71.06 (19)N1—C1—C14—O4138.06 (16)
C17—N1—C2—C7161.70 (15)C14—O4—C15—C16179.51 (15)
C7—C2—C3—C41.0 (3)C18—O2—C17—O16.5 (3)
N1—C2—C3—C4179.25 (17)C18—O2—C17—N1176.60 (14)
C2—C3—C4—C50.3 (3)C1—N1—C17—O1165.06 (17)
C3—C4—C5—C60.7 (3)C2—N1—C17—O135.5 (3)
C3—C4—C5—Br1178.72 (14)C1—N1—C17—O217.8 (2)
C4—C5—C6—C71.1 (3)C2—N1—C17—O2141.64 (15)
Br1—C5—C6—C7178.34 (12)C17—O2—C18—C2161.6 (2)
C5—C6—C7—C20.4 (2)C17—O2—C18—C1962.9 (2)
C5—C6—C7—C8178.75 (17)C17—O2—C18—C20179.30 (15)
C3—C2—C7—C60.6 (3)C11B—C10—S1A—C13A24 (8)
N1—C2—C7—C6179.21 (15)C11A—C10—S1A—C13A0.89 (19)
C3—C2—C7—C8179.98 (16)C9—C10—S1A—C13A179.27 (18)
N1—C2—C7—C81.43 (19)S1B—C10—S1A—C13A0.2 (3)
N1—C1—C8—C70.63 (19)C11B—C10—C11A—C12A3.2 (11)
C14—C1—C8—C7173.26 (16)C9—C10—C11A—C12A179.8 (2)
N1—C1—C8—C9178.36 (16)S1A—C10—C11A—C12A0.4 (3)
C14—C1—C8—C99.0 (3)S1B—C10—C11A—C12A175 (3)
C6—C7—C8—C1179.46 (18)C10—C11A—C12A—C13A0.5 (3)
C2—C7—C8—C11.28 (19)C11A—C12A—C13A—S1A1.2 (2)
C6—C7—C8—C91.7 (3)C10—S1A—C13A—C12A1.20 (17)
C2—C7—C8—C9179.04 (16)C11B—C10—S1B—C13B0.0 (4)
C1—C8—C9—O5131.0 (2)C11A—C10—S1B—C13B2 (3)
C7—C8—C9—O546.3 (3)C9—C10—S1B—C13B177.5 (11)
C1—C8—C9—C1049.4 (3)S1A—C10—S1B—C13B3.1 (10)
C7—C8—C9—C10133.27 (18)C11A—C10—C11B—C12B0.3 (6)
O5—C9—C10—C11B17.3 (12)C9—C10—C11B—C12B177.4 (11)
C8—C9—C10—C11B163.2 (11)S1A—C10—C11B—C12B157 (8)
O5—C9—C10—C11A159.1 (2)S1B—C10—C11B—C12B0.0 (5)
C8—C9—C10—C11A20.4 (3)C10—C11B—C12B—C13B0.0 (3)
O5—C9—C10—S1A20.7 (2)C11B—C12B—C13B—S1B0.0 (2)
C8—C9—C10—S1A159.78 (13)C10—S1B—C13B—C12B0.0 (3)
O5—C9—C10—S1B159.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12A—H12A···O3i0.952.483.418 (5)169
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H20BrNO5S
Mr478.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)16.220 (3), 15.361 (3), 18.224 (4)
β (°) 113.792 (2)
V3)4154.7 (15)
Z8
Radiation typeMo Kα
µ (mm1)2.11
Crystal size (mm)0.34 × 0.21 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
[symmetry-related measurements (SADABS; Bruker, 2009)]
Tmin, Tmax0.537, 0.721
No. of measured, independent and
observed [I > 2σ(I)] reflections
23562, 4855, 4101
Rint0.039
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.066, 1.05
No. of reflections4855
No. of parameters279
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12A—H12A···O3i0.952.483.418 (5)169
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

MH thanks Professor Willem A. L. van Otterlo and Dr S. C. Pelly for their valuable input and research oversight. Stellenbosch University's Science Faculty is also acknowledged for providing laboratory space and financial research support (Subcommittee B). The South African National Research Foundation (NRF), Pretoria, is also acknowledged for providing research funds.

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHassam, M., Basson, A. E., Liotta, D. C., Morris, L., van Otterlo, W. A. L. & Pelly, S. C. (2012). ACS Med. Chem. Lett. 3, 470–475.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHassam, M. & Smith, V. J. (2012). Acta Cryst. E68, o3357.  CSD CrossRef IUCr Journals Google Scholar
First citationReynolds, C., Koning, C. B., Pelly, S. C., van Otterlo, W. A. L. & Bode, M. L. (2012). Chem. Soc. Rev. 41, 4657–4670.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds