organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzhydryl-6-tert-butyl-4-methyl­phenol

aDepartment of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea, and bDepartment of Chemistry, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: ykim@chungbuk.ac.kr

(Received 28 November 2012; accepted 21 January 2013; online 26 January 2013)

The title compound, C24H26O, was prepared by the reaction between 2-tert-butyl-4-methyl­phenol and diphenyl­methanol in the presence of sulfuric acid. Three benzene rings are attached directly to the central C—H group in a twisted propeller conformation with the local pseudo-C3 rotational axis coinciding with the C—H bond. There are three short C—H⋯O contacts in the molecule.

Related literature

For similar structure types, see: Kim et al. (2012[Kim, S. H., Yoon, S., Mun, S.-D., Lee, H.-H., Lee, J. & Kim, Y. (2012). Polyhedron, 31, 665-670.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26O

  • Mr = 330.45

  • Monoclinic, P 21 /n

  • a = 8.014 (4) Å

  • b = 15.472 (7) Å

  • c = 16.006 (7) Å

  • β = 99.98 (2)°

  • V = 1954.6 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.20 × 0.17 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.987, Tmax = 0.990

  • 17522 measured reflections

  • 3422 independent reflections

  • 1532 reflections with I > 2σ(I)

  • Rint = 0.138

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.172

  • S = 1.00

  • 3422 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8C⋯O 0.96 2.41 3.049 (4) 123
C10—H10A⋯O 0.96 2.44 3.071 (5) 123
C12—H12⋯O 0.98 2.38 2.771 (4) 103

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular structure of the title compound, C24H26O, is shown in Figure 1. The C—O and C—C bond lengths in the phenol ring and two phenyl rings are in the range of typical values determined on similar compounds (Kim et al. 2012). The three aromatic rings are twisted and form a propeller conformation with the local pseudo-C3 rotational axis coinciding with C12—H12. The orientation of the rings can be characterized by the torsion angles H12-C12-C2-C1 (-35 °), H12-C12-C19-C24 (-59 °) and H12-C12-C13-C14 (-26 °). The molecules display three intramolecular C—H···O contacts (geometric details are given in Table 1), but no intermolecular hydrogen bonds are present.

Related literature top

For similar structure types, see: Kim et al. (2012).

Experimental top

The title compound could be isolated in 94% yield via the reaction of sulfuric acid, 2-tert-butyl-4-methylphenol, and diphenylmethanol in glacial acetic acid. The crystal was obtained by slow evaporation of solvent in refrigerator.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms with with C—H = 0.93–0.98 Å and O—H = 0.82 Å: Uiso(H) = 1.2 Ueq(parent C-atom),Uiso(H) = 1.5 Ueq(parent O-atom). The initial position of the hydroxyl H was derived from an electron density calculation.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms, with exception of H12 and H0, are omitted for clarity.
2-Benzhydryl-6-tert-butyl-4-methylphenol top
Crystal data top
C24H26OF(000) = 712
Mr = 330.45Dx = 1.123 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.014 (4) ÅCell parameters from 925 reflections
b = 15.472 (7) Åθ = 2.7–16.4°
c = 16.006 (7) ŵ = 0.07 mm1
β = 99.98 (2)°T = 296 K
V = 1954.6 (15) Å3Block, colorless
Z = 40.20 × 0.17 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
3422 independent reflections
Radiation source: fine-focus sealed tube1532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.138
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.987, Tmax = 0.990k = 1717
17522 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0803P)2]
where P = (Fo2 + 2Fc2)/3
3422 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C24H26OV = 1954.6 (15) Å3
Mr = 330.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.014 (4) ŵ = 0.07 mm1
b = 15.472 (7) ÅT = 296 K
c = 16.006 (7) Å0.20 × 0.17 × 0.15 mm
β = 99.98 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3422 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1532 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.990Rint = 0.138
17522 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.00Δρmax = 0.15 e Å3
3422 reflectionsΔρmin = 0.21 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.0324 (3)0.35794 (17)0.04276 (16)0.0721 (8)
H00.07890.38410.07690.108*
C30.3942 (4)0.3867 (2)0.1619 (2)0.0473 (9)
H30.45910.43040.19140.057*
C20.2285 (4)0.4048 (2)0.1234 (2)0.0436 (9)
C130.0376 (4)0.4945 (2)0.1985 (2)0.0477 (9)
C10.1322 (4)0.3377 (2)0.0801 (2)0.0459 (9)
C50.3647 (5)0.2417 (2)0.1124 (2)0.0523 (10)
H50.41140.18710.10880.063*
C40.4652 (4)0.3057 (2)0.1578 (2)0.0480 (9)
C60.1977 (4)0.2555 (2)0.0721 (2)0.0473 (9)
C240.3685 (4)0.5791 (2)0.0708 (2)0.0551 (10)
H240.36270.53740.02850.066*
C190.2722 (4)0.5693 (2)0.1352 (2)0.0442 (9)
C120.1469 (4)0.4931 (2)0.1297 (2)0.0449 (9)
H120.06840.50090.07610.054*
C210.3905 (5)0.7026 (2)0.1965 (3)0.0645 (11)
H210.39760.74410.23890.077*
C230.4725 (5)0.6503 (3)0.0696 (3)0.0688 (12)
H230.53540.65640.02630.083*
C200.2870 (4)0.6314 (2)0.1981 (2)0.0535 (10)
H200.22630.62520.24220.064*
C140.1169 (5)0.5383 (2)0.1838 (3)0.0633 (11)
H140.15290.56500.13170.076*
C70.0933 (5)0.1835 (2)0.0202 (2)0.0565 (10)
C180.0871 (5)0.4564 (2)0.2772 (2)0.0593 (10)
H180.18950.42670.28820.071*
C170.0125 (6)0.4612 (3)0.3404 (3)0.0739 (12)
H170.02270.43510.39280.089*
C220.4836 (5)0.7122 (3)0.1319 (3)0.0708 (12)
H220.55300.76020.13060.085*
C80.0686 (5)0.1625 (2)0.0564 (3)0.0857 (14)
H8A0.03780.14430.11440.129*
H8B0.12980.11700.02380.129*
H8C0.13860.21310.05370.129*
C90.1948 (5)0.0992 (2)0.0221 (3)0.0924 (15)
H9A0.29630.10940.00060.139*
H9B0.12740.05620.01150.139*
H9C0.22400.07910.07950.139*
C150.2170 (5)0.5426 (3)0.2458 (3)0.0772 (13)
H150.32090.57080.23470.093*
C160.1636 (6)0.5053 (3)0.3238 (3)0.0807 (14)
H160.23020.50990.36570.097*
C100.0469 (6)0.2111 (3)0.0734 (2)0.0864 (14)
H10A0.02140.26240.07750.130*
H10B0.01550.16550.10560.130*
H10C0.14850.22250.09560.130*
C110.6475 (5)0.2879 (2)0.1987 (2)0.0733 (12)
H11A0.71930.29210.15670.110*
H11B0.65580.23080.22270.110*
H11C0.68280.32950.24270.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0540 (17)0.071 (2)0.086 (2)0.0068 (14)0.0039 (15)0.0090 (16)
C30.049 (2)0.048 (2)0.044 (2)0.0002 (18)0.0064 (18)0.0042 (18)
C20.047 (2)0.040 (2)0.043 (2)0.0048 (18)0.0068 (17)0.0015 (18)
C130.044 (2)0.037 (2)0.064 (3)0.0031 (17)0.014 (2)0.0000 (19)
C10.047 (2)0.043 (2)0.047 (2)0.0051 (19)0.0068 (18)0.0031 (19)
C50.071 (3)0.037 (2)0.052 (2)0.009 (2)0.021 (2)0.0022 (19)
C40.051 (2)0.048 (2)0.046 (2)0.013 (2)0.0101 (18)0.0005 (19)
C60.060 (3)0.041 (2)0.044 (2)0.0000 (19)0.0153 (19)0.0031 (19)
C240.060 (2)0.053 (3)0.054 (2)0.003 (2)0.015 (2)0.000 (2)
C190.043 (2)0.040 (2)0.047 (2)0.0047 (17)0.0011 (18)0.0055 (19)
C120.049 (2)0.038 (2)0.047 (2)0.0041 (17)0.0030 (17)0.0017 (17)
C210.068 (3)0.048 (3)0.077 (3)0.005 (2)0.011 (2)0.005 (2)
C230.066 (3)0.072 (3)0.071 (3)0.013 (2)0.021 (2)0.019 (3)
C200.057 (2)0.045 (2)0.060 (2)0.0050 (19)0.0153 (19)0.004 (2)
C140.055 (2)0.051 (3)0.086 (3)0.003 (2)0.019 (2)0.003 (2)
C70.068 (3)0.047 (3)0.054 (3)0.007 (2)0.013 (2)0.009 (2)
C180.063 (2)0.055 (3)0.062 (3)0.006 (2)0.019 (2)0.008 (2)
C170.088 (3)0.062 (3)0.079 (3)0.004 (2)0.036 (3)0.005 (2)
C220.070 (3)0.056 (3)0.084 (3)0.012 (2)0.009 (3)0.009 (3)
C80.091 (3)0.071 (3)0.102 (3)0.032 (3)0.037 (3)0.019 (3)
C90.108 (4)0.047 (3)0.121 (4)0.003 (3)0.018 (3)0.027 (3)
C150.058 (3)0.063 (3)0.116 (4)0.008 (2)0.031 (3)0.001 (3)
C160.083 (3)0.059 (3)0.112 (4)0.001 (3)0.050 (3)0.006 (3)
C100.104 (4)0.089 (3)0.063 (3)0.025 (3)0.009 (3)0.018 (3)
C110.059 (3)0.075 (3)0.081 (3)0.018 (2)0.000 (2)0.002 (2)
Geometric parameters (Å, º) top
O—C11.386 (4)C20—H200.9300
O—H00.8200C14—C151.382 (5)
C3—C41.382 (4)C14—H140.9300
C3—C21.392 (4)C7—C91.535 (5)
C3—H30.9300C7—C101.541 (5)
C2—C11.403 (4)C7—C81.545 (5)
C2—C121.526 (4)C18—C171.395 (5)
C13—C181.386 (4)C18—H180.9300
C13—C141.395 (4)C17—C161.375 (5)
C13—C121.521 (4)C17—H170.9300
C1—C61.390 (4)C22—H220.9300
C5—C61.398 (4)C8—H8A0.9600
C5—C41.398 (5)C8—H8B0.9600
C5—H50.9300C8—H8C0.9600
C4—C111.519 (5)C9—H9A0.9600
C6—C71.546 (5)C9—H9B0.9600
C24—C231.384 (5)C9—H9C0.9600
C24—C191.400 (4)C15—C161.374 (5)
C24—H240.9300C15—H150.9300
C19—C201.382 (4)C16—H160.9300
C19—C121.540 (4)C10—H10A0.9600
C12—H120.9800C10—H10B0.9600
C21—C201.381 (5)C10—H10C0.9600
C21—C221.384 (5)C11—H11A0.9600
C21—H210.9300C11—H11B0.9600
C23—C221.373 (5)C11—H11C0.9600
C23—H230.9300
C1—O—H0109.5C9—C7—C10107.0 (3)
C4—C3—C2122.0 (3)C9—C7—C8106.9 (3)
C4—C3—H3119.0C10—C7—C8110.3 (3)
C2—C3—H3119.0C9—C7—C6111.5 (3)
C3—C2—C1118.1 (3)C10—C7—C6109.9 (3)
C3—C2—C12122.5 (3)C8—C7—C6111.2 (3)
C1—C2—C12119.3 (3)C13—C18—C17121.8 (4)
C18—C13—C14117.8 (3)C13—C18—H18119.1
C18—C13—C12122.8 (3)C17—C18—H18119.1
C14—C13—C12119.4 (3)C16—C17—C18118.8 (4)
O—C1—C6120.9 (3)C16—C17—H17120.6
O—C1—C2116.5 (3)C18—C17—H17120.6
C6—C1—C2122.6 (3)C23—C22—C21119.4 (4)
C6—C5—C4123.4 (3)C23—C22—H22120.3
C6—C5—H5118.3C21—C22—H22120.3
C4—C5—H5118.3C7—C8—H8A109.5
C3—C4—C5117.5 (3)C7—C8—H8B109.5
C3—C4—C11121.1 (3)H8A—C8—H8B109.5
C5—C4—C11121.3 (3)C7—C8—H8C109.5
C1—C6—C5116.4 (3)H8A—C8—H8C109.5
C1—C6—C7122.1 (3)H8B—C8—H8C109.5
C5—C6—C7121.6 (3)C7—C9—H9A109.5
C23—C24—C19120.4 (4)C7—C9—H9B109.5
C23—C24—H24119.8H9A—C9—H9B109.5
C19—C24—H24119.8C7—C9—H9C109.5
C20—C19—C24118.2 (3)H9A—C9—H9C109.5
C20—C19—C12123.2 (3)H9B—C9—H9C109.5
C24—C19—C12118.5 (3)C16—C15—C14120.3 (4)
C13—C12—C2111.6 (3)C16—C15—H15119.8
C13—C12—C19113.5 (3)C14—C15—H15119.8
C2—C12—C19114.0 (3)C15—C16—C17120.6 (4)
C13—C12—H12105.6C15—C16—H16119.7
C2—C12—H12105.6C17—C16—H16119.7
C19—C12—H12105.6C7—C10—H10A109.5
C20—C21—C22120.2 (4)C7—C10—H10B109.5
C20—C21—H21119.9H10A—C10—H10B109.5
C22—C21—H21119.9C7—C10—H10C109.5
C22—C23—C24120.6 (4)H10A—C10—H10C109.5
C22—C23—H23119.7H10B—C10—H10C109.5
C24—C23—H23119.7C4—C11—H11A109.5
C21—C20—C19121.2 (4)C4—C11—H11B109.5
C21—C20—H20119.4H11A—C11—H11B109.5
C19—C20—H20119.4C4—C11—H11C109.5
C15—C14—C13120.7 (4)H11A—C11—H11C109.5
C15—C14—H14119.6H11B—C11—H11C109.5
C13—C14—H14119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···O0.962.413.049 (4)123
C10—H10A···O0.962.443.071 (5)123
C12—H12···O0.982.382.771 (4)103

Experimental details

Crystal data
Chemical formulaC24H26O
Mr330.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.014 (4), 15.472 (7), 16.006 (7)
β (°) 99.98 (2)
V3)1954.6 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.17 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.987, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
17522, 3422, 1532
Rint0.138
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.172, 1.00
No. of reflections3422
No. of parameters231
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···O0.95972.41423.049 (4)123.35
C10—H10A···O0.95992.44073.071 (5)123.02
C12—H12···O0.97942.38332.771 (4)102.89
 

Acknowledgements

YK gratefully acknowledges financial support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010–0007092).

References

First citationBruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, S. H., Yoon, S., Mun, S.-D., Lee, H.-H., Lee, J. & Kim, Y. (2012). Polyhedron, 31, 665–670.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds