metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{N′-[phen­yl(pyridin-2-yl-κN)methyl­­idene]isonicotinohydrazide-κ2N′,O}zinc

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICSN-CNRS, Laboratoire de Cristallochimie, 1 Avenue la Terasse, 91198 Gift sur Yvette, France
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 3 January 2013; accepted 13 January 2013; online 19 January 2013)

The title compound, [ZnCl2(C18H14N4O)], crystallizes with two mol­ecules in the asymmetric unit, which differ in the tautomeric (neutral and zwitterionic) forms of the coordin­ating organic ligand. In both mol­ecules, the ZnII atom adopts a distorted square–pyramidal geometry by two N and one O atoms of the Schiff base ligand and two Cl atoms acting as monodentate chloride anions. The crystal packing is stabilized by N—H⋯N and N—H⋯Cl hydrogen bonds, forming a two-dimensional network parallel to the ac plane.

Related literature

For related structures: see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Despaigne et al. (2009[Despaigne, A. A. R., Da Silva, J. G., do Carmo, A. C. M., Piro, O. E., Castellano, E. E. & Beraldo, H. (2009). Inorg. Chim. Acta, 362, 2117-2122.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C18H14N4O)]

  • Mr = 438.60

  • Triclinic, [P \overline 1]

  • a = 11.517 (3) Å

  • b = 13.248 (2) Å

  • c = 13.459 (1) Å

  • α = 91.130 (5)°

  • β = 104.708 (4)°

  • γ = 109.798 (4)°

  • V = 1856.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 293 K

  • 0.45 × 0.22 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.379, Tmax = 0.745

  • 15524 measured reflections

  • 6674 independent reflections

  • 4122 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.102

  • S = 0.97

  • 6668 reflections

  • 476 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯Cl2 0.85 (2) 2.46 (2) 3.250 (3) 156 (4)
N4—H4N⋯N8i 0.98 (4) 1.78 (4) 2.749 (4) 170 (4)
Symmetry code: (i) x, y, z-1.

Data collection: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CRYSTALBUILDER (Welter, 2006[Welter, R. (2006). Acta Cryst. A62, s252.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound crystallizes with two different molecules in the asymmetric unit (Fig. 1), which differ from two tautomeric forms of the Schiff base. The ligand molecules coordinate respectively to one of the zinc(II) atom in a tridentate manner in his hydrazide form and to the other zinc(II) center in the tautomeric form where the nitrogen atom of the uncoordinated pyridine ring is protonated by the proton atom from the nitrogen of the hydrazide moiety. In both cases the coordination manner creates two five-membered chelate metalla rings. The two molecules in the asymmetric unit interact via hydrogen bond N—H···N between the two uncoordinated pyridine rings. The bond between Zn center and the pyridine nitrogen are slightly (2.200 (3) and 2.131 (3) Å) different to the two other Zn–N bonds (2.078 (3) and 2.136 (3)). These distances are comparable to those found in the complex [Zn(H2BzpClPh)Cl2] (H2BzpClPh is 2-benzoylpyridine-para-chloro-phenylhydrazone) (Despaigne et al., 2009). In the complex, significant variations were observed for the C—O and Zn—O bond distances in the two hydrazone moieties. The C1—O1 bond distance of 1.252 (4) Å is in accordance with a higher single bond character while the C19—O2 bond distance of 1.217 (4) Å is in accordance with a double bond character. The Zn2—O2 bond distance is 2.248 (2) Å while the Zn1—O1 length is 2.127 Å. The decreasing of the length is in accordance with the presence of a negative charge at the oxygen atom O1, which increases the strength of the Zn1—O1 bond. The largest angles around the Zn(II) centers (<β>: N3—Zn1—O1 = 148.50 (11) ° and <β> N7—Zn2—O2 = 114.79 (11) °) are slightly larger than the second-largest ones (<α>: N2—Zn1—Cl2 = 128.30 (10)and <α>: N6—Zn2—Cl3 = 133.10 (10) °). Since the distortion (τ = (β-α)/60) value of the coordination polyhedron, <τ> = 0.337 for Zn1 and <τ> = 0.191 for Zn2 which can be compared with the ideal value for 1 for trigonal-bipyramidal and 0 for square-pyramidal (Addison et al., 1984), the environment of the metal center can be determinate. Each zinc center has a square pyramidal geometry with appreciable distortions as shown by the Addison <τ> parameter. The basal plane for earch ZnII center is respectively constructed by the coordination of two nitrogen atoms and one oxygen atom from the organic ligand molecule and one chloride atom acting as monodentate anion to zinc. The fifth coordination site is completed by a monodentate chloride anion.

Related literature top

For related structures: see: Addison et al. (1984); Despaigne et al. (2009).

Experimental top

In a 50 ml round bottom flask introduce isonicotinic hydrazide (1 g, 0.0073 mol) dissolved in methanol (10 ml). Benzoylpyridine (1.35 g, 0.0073 mol) in methanol (10 ml) and two drops of galcial acetic acid, were added. The mixture was refluxed for six hours to yield a quantitative precipitate. The white precipitate formed, was separated by filtration, washed with ether and dried under vacuum (yield: 75.2%); m.p.=206 °C. 1H NMR in C2D6SO, δ (p.p.m.): 7.44–7.87 (m, 13H, HAr),, 8.82 (s, 1H, –NH). 13C NMR in C2D6SO, δ (p.p.m.): 121–149 (CAr), 152 (C=N), 162 (C=O). IR (cm-1) 3342, 3279, 3161, 1726, 1698, 1515, 1398, 1359, 1169, 787. Anal. Calc. for C18H14N4O (%): C, 71.51; H, 4.67; N, 18.53. Found: C, 71.53; H, 4.68; N, 18.57. Into an ethanolic solution (10 ml) of zinc chloride (0.067 g, 0.005 mmol) was added an ethanolic solution (10 ml) of the ligand prepared above (0.15 g, 0.005 mmol). The resulting yellow mixture is heated at 60°C for two hours. The yellow precipitate was discarded and the resulting filtrate was then allowed to evaporate slowly in an open atmosphere. After two days, yellow crystals suitable for X-ray analysis were obtained. The crystals were separated and dried (yield: 73%); Anal. Calc. for C18H14ZnCl2N4O (%): C, 49.29; H, 3.22; N, 12.77. Found: C, 49.32; H, 3.20; N, 12.75. Selected IR data (cm-1, KBr pellet): 3445, 3053, 1650, 1511, 1352, 1141, 700.

Refinement top

Six low-resolution reflections affected by the beamstop were omitted from the refinement using the OMIT instruction in SHELXL97 (Sheldrick, 2008). All H atoms were initially located in difference Fourier maps, but for the final refinements, all benzene-bound H atoms were positioned with idealized geometry and included in the calculations as riding on their parent atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). The positions of the H atoms borne by nitrogen atoms were refined freely, giving restraints on N—H distances in the range 0.87 (2) Å with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and CRYSTALBUILDER (Welter, 2006); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.
Dichlorido{N'-[phenyl(pyridin-2-yl- κN)methylidene]isonicotinohydrazide-κ2N',O}zinc top
Crystal data top
[ZnCl2(C18H14N4O)]Z = 4
Mr = 438.6F(000) = 888
Triclinic, P1Dx = 1.569 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 11.517 (3) ÅCell parameters from 5145 reflections
b = 13.248 (2) Åθ = 0.4–24.7°
c = 13.459 (1) ŵ = 1.63 mm1
α = 91.130 (5)°T = 293 K
β = 104.708 (4)°Prism, yellow
γ = 109.798 (4)°0.45 × 0.22 × 0.18 mm
V = 1856.2 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
6674 independent reflections
Radiation source: fine-focus sealed tube, Nonius KappaCCD4122 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 9 pixels mm-1θmax = 25.3°, θmin = 1.6°
phi and ω scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Rigaku, 2009)
k = 1515
Tmin = 0.379, Tmax = 0.745l = 1616
15524 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0372P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
6668 reflectionsΔρmax = 0.32 e Å3
476 parametersΔρmin = 0.42 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0013 (3)
Crystal data top
[ZnCl2(C18H14N4O)]γ = 109.798 (4)°
Mr = 438.6V = 1856.2 (6) Å3
Triclinic, P1Z = 4
a = 11.517 (3) ÅMo Kα radiation
b = 13.248 (2) ŵ = 1.63 mm1
c = 13.459 (1) ÅT = 293 K
α = 91.130 (5)°0.45 × 0.22 × 0.18 mm
β = 104.708 (4)°
Data collection top
Nonius KappaCCD
diffractometer
6674 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 2009)
4122 reflections with I > 2σ(I)
Tmin = 0.379, Tmax = 0.745Rint = 0.040
15524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.32 e Å3
6668 reflectionsΔρmin = 0.42 e Å3
476 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Six low-resolution reflections were rejected due to beamstop shading using the OMIT instruction from SHELX97-L.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.17339 (4)0.03172 (4)0.30977 (3)0.04231 (15)
Cl10.13436 (11)0.14621 (9)0.29370 (9)0.0661 (3)
Cl20.00008 (9)0.07571 (9)0.31555 (8)0.0552 (3)
O10.1627 (3)0.0699 (3)0.15571 (19)0.0685 (10)
N10.3803 (3)0.1689 (3)0.2234 (2)0.0429 (8)
N20.3573 (3)0.1346 (2)0.3148 (2)0.0404 (8)
N30.2819 (3)0.0655 (2)0.4742 (2)0.0393 (8)
N40.2859 (3)0.2290 (3)0.1453 (2)0.0488 (9)
H4N0.288 (3)0.247 (3)0.215 (3)0.059*
C10.2704 (4)0.1297 (3)0.1489 (3)0.0416 (10)
C20.4498 (3)0.1642 (3)0.4008 (3)0.0369 (9)
C30.4088 (3)0.1201 (3)0.4924 (2)0.0356 (9)
C40.4913 (4)0.1357 (3)0.5905 (3)0.0479 (11)
H40.57850.17500.60260.058*
C50.4432 (4)0.0924 (3)0.6705 (3)0.0540 (12)
H50.49820.10010.73640.065*
C60.3148 (4)0.0384 (3)0.6523 (3)0.0548 (12)
H60.28050.01010.70560.066*
C70.2368 (4)0.0265 (3)0.5531 (3)0.0482 (11)
H70.14900.01030.54060.058*
C80.2787 (3)0.1648 (3)0.0446 (2)0.0378 (9)
C90.1685 (4)0.1343 (3)0.0369 (3)0.0510 (11)
H90.09030.09110.02780.061*
C100.1756 (4)0.1681 (3)0.1311 (3)0.0529 (12)
H100.10140.14790.18610.064*
C110.3953 (4)0.2585 (3)0.0685 (3)0.0514 (11)
H110.47250.30010.08050.062*
C120.3932 (4)0.2275 (3)0.0277 (3)0.0437 (10)
H120.46880.24850.08140.052*
C130.5813 (3)0.2388 (3)0.4099 (2)0.0361 (9)
C140.6004 (4)0.3387 (3)0.3735 (3)0.0447 (10)
H140.52980.35680.34080.054*
C150.7222 (4)0.4112 (4)0.3850 (3)0.0566 (12)
H150.73440.47850.36140.068*
C160.8262 (4)0.3831 (5)0.4321 (3)0.0732 (16)
H160.90900.43120.43920.088*
C170.8084 (4)0.2860 (5)0.4682 (4)0.0765 (16)
H170.87930.26810.50030.092*
C180.6868 (4)0.2134 (4)0.4579 (3)0.0539 (11)
H180.67590.14710.48340.065*
Zn20.31778 (4)0.47927 (4)0.17144 (3)0.04310 (16)
Cl30.50465 (9)0.47545 (9)0.15904 (7)0.0536 (3)
Cl40.32363 (11)0.64860 (9)0.19446 (9)0.0688 (4)
O20.3419 (2)0.4448 (2)0.33683 (18)0.0530 (8)
N50.1412 (3)0.3230 (3)0.2757 (2)0.0439 (8)
H5N0.085 (3)0.265 (2)0.283 (3)0.053*
N60.1446 (3)0.3573 (2)0.1811 (2)0.0414 (8)
N70.1966 (3)0.4295 (3)0.0172 (2)0.0460 (9)
N80.2668 (3)0.2860 (3)0.6574 (2)0.0478 (9)
C190.2514 (3)0.3738 (3)0.3533 (3)0.0406 (10)
C200.0454 (3)0.3233 (3)0.1017 (3)0.0375 (9)
C210.0725 (3)0.3694 (3)0.0067 (2)0.0365 (9)
C220.0200 (4)0.3560 (3)0.0847 (3)0.0468 (11)
H220.10590.31760.08990.056*
C230.0162 (4)0.4007 (4)0.1695 (3)0.0605 (13)
H230.04510.39140.23250.073*
C240.1421 (4)0.4581 (4)0.1598 (3)0.0611 (13)
H240.16850.48730.21610.073*
C250.2298 (4)0.4721 (4)0.0645 (3)0.0581 (12)
H250.31560.51300.05710.070*
C260.2530 (3)0.3413 (3)0.4580 (2)0.0360 (9)
C270.3693 (3)0.3604 (3)0.5289 (3)0.0395 (9)
H270.44540.39240.51110.047*
C280.3718 (4)0.3316 (3)0.6264 (3)0.0451 (10)
H280.45130.34460.67360.054*
C290.1532 (4)0.2681 (3)0.5884 (3)0.0477 (11)
H290.07860.23620.60850.057*
C300.1422 (3)0.2949 (3)0.4894 (3)0.0433 (10)
H300.06170.28220.44380.052*
C310.0845 (3)0.2501 (3)0.1009 (3)0.0396 (9)
C320.1420 (4)0.2719 (3)0.1729 (3)0.0484 (11)
H320.09640.33070.22330.058*
C330.2659 (4)0.2085 (4)0.1718 (4)0.0658 (13)
H330.30400.22470.22020.079*
C340.3308 (4)0.1214 (4)0.0979 (4)0.0699 (14)
H340.41400.07780.09620.084*
C350.2754 (4)0.0976 (4)0.0266 (4)0.0708 (14)
H350.32130.03810.02310.085*
C360.1524 (4)0.1606 (3)0.0274 (3)0.0572 (12)
H360.11500.14340.02100.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0348 (3)0.0483 (3)0.0352 (2)0.0049 (2)0.00822 (19)0.0085 (2)
Cl10.0643 (7)0.0521 (7)0.0679 (7)0.0167 (6)0.0003 (6)0.0003 (6)
Cl20.0417 (6)0.0625 (7)0.0589 (6)0.0144 (5)0.0150 (5)0.0116 (5)
O10.0372 (16)0.108 (3)0.0367 (15)0.0019 (17)0.0071 (12)0.0231 (16)
N10.0378 (18)0.055 (2)0.0263 (15)0.0062 (16)0.0066 (13)0.0109 (14)
N20.0388 (18)0.0483 (19)0.0290 (15)0.0085 (15)0.0098 (14)0.0108 (14)
N30.0416 (19)0.0428 (19)0.0333 (16)0.0112 (15)0.0146 (14)0.0098 (14)
N40.055 (2)0.055 (2)0.0299 (17)0.0147 (19)0.0083 (16)0.0119 (16)
C10.043 (2)0.048 (2)0.0304 (19)0.012 (2)0.0078 (18)0.0131 (17)
C20.039 (2)0.036 (2)0.0320 (19)0.0091 (18)0.0088 (17)0.0089 (16)
C30.035 (2)0.036 (2)0.0319 (19)0.0088 (18)0.0090 (16)0.0079 (16)
C40.041 (2)0.054 (3)0.036 (2)0.005 (2)0.0056 (18)0.0066 (19)
C50.058 (3)0.067 (3)0.032 (2)0.018 (2)0.0091 (19)0.017 (2)
C60.064 (3)0.065 (3)0.036 (2)0.020 (2)0.019 (2)0.014 (2)
C70.045 (2)0.052 (3)0.043 (2)0.008 (2)0.0153 (19)0.016 (2)
C80.037 (2)0.041 (2)0.0318 (19)0.0103 (18)0.0076 (16)0.0081 (17)
C90.041 (2)0.064 (3)0.037 (2)0.008 (2)0.0048 (18)0.015 (2)
C100.052 (3)0.063 (3)0.033 (2)0.015 (2)0.0000 (19)0.010 (2)
C110.048 (2)0.057 (3)0.040 (2)0.005 (2)0.0127 (19)0.013 (2)
C120.042 (2)0.053 (3)0.0266 (18)0.010 (2)0.0039 (16)0.0089 (18)
C130.032 (2)0.044 (2)0.0294 (18)0.0130 (18)0.0059 (16)0.0037 (17)
C140.041 (2)0.052 (3)0.040 (2)0.014 (2)0.0113 (18)0.0108 (19)
C150.053 (3)0.054 (3)0.054 (2)0.003 (2)0.021 (2)0.007 (2)
C160.039 (3)0.091 (4)0.061 (3)0.011 (3)0.011 (2)0.009 (3)
C170.031 (2)0.127 (5)0.071 (3)0.027 (3)0.012 (2)0.028 (3)
C180.051 (3)0.070 (3)0.052 (2)0.030 (2)0.019 (2)0.027 (2)
Zn20.0313 (2)0.0511 (3)0.0382 (3)0.0049 (2)0.00794 (19)0.0067 (2)
Cl30.0450 (6)0.0684 (7)0.0499 (6)0.0215 (5)0.0158 (5)0.0086 (5)
Cl40.0511 (7)0.0624 (7)0.0814 (8)0.0248 (6)0.0065 (6)0.0050 (6)
O20.0337 (15)0.0702 (19)0.0363 (14)0.0019 (14)0.0052 (12)0.0095 (13)
N50.0336 (18)0.056 (2)0.0309 (16)0.0033 (16)0.0063 (14)0.0119 (16)
N60.0359 (17)0.053 (2)0.0280 (15)0.0086 (16)0.0051 (13)0.0090 (14)
N70.0383 (18)0.053 (2)0.0368 (17)0.0035 (16)0.0111 (14)0.0088 (15)
N80.049 (2)0.054 (2)0.0324 (16)0.0127 (17)0.0038 (16)0.0106 (15)
C190.031 (2)0.056 (3)0.0318 (19)0.013 (2)0.0073 (16)0.0049 (18)
C200.031 (2)0.043 (2)0.0341 (19)0.0083 (18)0.0078 (16)0.0036 (17)
C210.037 (2)0.037 (2)0.0344 (19)0.0115 (18)0.0089 (17)0.0053 (17)
C220.041 (2)0.057 (3)0.036 (2)0.014 (2)0.0030 (18)0.0120 (19)
C230.064 (3)0.070 (3)0.038 (2)0.020 (3)0.003 (2)0.010 (2)
C240.077 (3)0.073 (3)0.034 (2)0.024 (3)0.021 (2)0.022 (2)
C250.052 (3)0.072 (3)0.045 (2)0.012 (2)0.020 (2)0.013 (2)
C260.034 (2)0.042 (2)0.0296 (18)0.0112 (17)0.0073 (16)0.0049 (16)
C270.031 (2)0.048 (2)0.0334 (19)0.0101 (18)0.0045 (16)0.0069 (17)
C280.041 (2)0.054 (3)0.031 (2)0.015 (2)0.0027 (18)0.0009 (18)
C290.044 (2)0.061 (3)0.035 (2)0.012 (2)0.0147 (18)0.0110 (19)
C300.030 (2)0.057 (3)0.036 (2)0.0110 (19)0.0046 (17)0.0082 (19)
C310.030 (2)0.045 (2)0.037 (2)0.0095 (18)0.0037 (17)0.0095 (18)
C320.042 (2)0.055 (3)0.042 (2)0.012 (2)0.0095 (19)0.0108 (19)
C330.042 (3)0.088 (4)0.069 (3)0.019 (3)0.022 (2)0.017 (3)
C340.035 (2)0.066 (3)0.094 (4)0.002 (2)0.014 (3)0.014 (3)
C350.048 (3)0.052 (3)0.095 (4)0.005 (2)0.007 (3)0.006 (3)
C360.041 (2)0.050 (3)0.068 (3)0.010 (2)0.004 (2)0.009 (2)
Geometric parameters (Å, º) top
Zn1—N22.078 (3)Zn2—N72.131 (3)
Zn1—O12.127 (3)Zn2—N62.136 (3)
Zn1—N32.200 (3)Zn2—Cl32.2176 (13)
Zn1—Cl12.2400 (13)Zn2—Cl42.2343 (13)
Zn1—Cl22.2793 (13)Zn2—O22.248 (2)
O1—C11.252 (4)O2—C191.217 (4)
N1—C11.330 (4)N5—N61.367 (4)
N1—N21.377 (4)N5—C191.369 (4)
N2—C21.304 (4)N5—H5N0.849 (18)
N3—C71.336 (4)N6—C201.289 (4)
N3—C31.348 (4)N7—C251.329 (5)
N4—C101.318 (5)N7—C211.348 (4)
N4—C111.341 (5)N8—C281.332 (5)
N4—H4N0.98 (4)N8—C291.340 (5)
C1—C81.503 (5)C19—C261.479 (5)
C2—C131.474 (5)C20—C311.479 (5)
C2—C31.490 (5)C20—C211.487 (5)
C3—C41.381 (4)C21—C221.370 (5)
C4—C51.382 (5)C22—C231.389 (5)
C4—H40.9300C22—H220.9300
C5—C61.360 (5)C23—C241.360 (6)
C5—H50.9300C23—H230.9300
C6—C71.379 (5)C24—C251.381 (5)
C6—H60.9300C24—H240.9300
C7—H70.9300C25—H250.9300
C8—C121.378 (5)C26—C271.372 (5)
C8—C91.380 (5)C26—C301.392 (5)
C9—C101.366 (5)C27—C281.370 (5)
C9—H90.9300C27—H270.9300
C10—H100.9300C28—H280.9300
C11—C121.370 (5)C29—C301.372 (5)
C11—H110.9300C29—H290.9300
C12—H120.9300C30—H300.9300
C13—C181.377 (5)C31—C321.379 (5)
C13—C141.387 (5)C31—C361.389 (5)
C14—C151.373 (5)C32—C331.385 (5)
C14—H140.9300C32—H320.9300
C15—C161.379 (7)C33—C341.369 (6)
C15—H150.9300C33—H330.9300
C16—C171.352 (7)C34—C351.364 (6)
C16—H160.9300C34—H340.9300
C17—C181.374 (6)C35—C361.377 (6)
C17—H170.9300C35—H350.9300
C18—H180.9300C36—H360.9300
N2—Zn1—O174.86 (10)N7—Zn2—N673.37 (11)
N2—Zn1—N374.29 (11)N7—Zn2—Cl3103.43 (10)
O1—Zn1—N3148.50 (11)N6—Zn2—Cl3133.30 (10)
N2—Zn1—Cl1117.50 (10)N7—Zn2—Cl4100.89 (10)
O1—Zn1—Cl1102.71 (10)N6—Zn2—Cl4114.89 (10)
N3—Zn1—Cl197.02 (9)Cl3—Zn2—Cl4111.46 (5)
N2—Zn1—Cl2128.30 (10)N7—Zn2—O2144.79 (11)
O1—Zn1—Cl293.30 (9)N6—Zn2—O271.72 (9)
N3—Zn1—Cl2100.75 (9)Cl3—Zn2—O297.10 (8)
Cl1—Zn1—Cl2114.20 (5)Cl4—Zn2—O297.70 (8)
C1—O1—Zn1110.7 (2)C19—O2—Zn2115.5 (2)
C1—N1—N2108.2 (3)N6—N5—C19114.4 (3)
C2—N2—N1120.4 (3)N6—N5—H5N122 (3)
C2—N2—Zn1121.7 (2)C19—N5—H5N122 (3)
N1—N2—Zn1117.9 (2)C20—N6—N5121.9 (3)
C7—N3—C3118.7 (3)C20—N6—Zn2120.7 (2)
C7—N3—Zn1126.2 (2)N5—N6—Zn2117.3 (2)
C3—N3—Zn1114.6 (2)C25—N7—C21118.9 (3)
C10—N4—C11121.3 (3)C25—N7—Zn2123.1 (3)
C10—N4—H4N118 (2)C21—N7—Zn2116.5 (2)
C11—N4—H4N120 (2)C28—N8—C29117.3 (3)
O1—C1—N1128.2 (3)O2—C19—N5121.1 (3)
O1—C1—C8117.2 (3)O2—C19—C26122.0 (3)
N1—C1—C8114.5 (3)N5—C19—C26116.9 (3)
N2—C2—C13124.3 (3)N6—C20—C31126.2 (3)
N2—C2—C3113.6 (3)N6—C20—C21112.5 (3)
C13—C2—C3122.0 (3)C31—C20—C21121.3 (3)
N3—C3—C4121.0 (3)N7—C21—C22121.3 (3)
N3—C3—C2115.0 (3)N7—C21—C20114.8 (3)
C4—C3—C2124.0 (3)C22—C21—C20123.8 (3)
C3—C4—C5119.4 (4)C21—C22—C23119.1 (4)
C3—C4—H4120.3C21—C22—H22120.4
C5—C4—H4120.3C23—C22—H22120.4
C6—C5—C4119.6 (3)C24—C23—C22119.5 (4)
C6—C5—H5120.2C24—C23—H23120.3
C4—C5—H5120.2C22—C23—H23120.3
C5—C6—C7118.5 (4)C23—C24—C25118.5 (4)
C5—C6—H6120.8C23—C24—H24120.7
C7—C6—H6120.8C25—C24—H24120.7
N3—C7—C6122.9 (4)N7—C25—C24122.6 (4)
N3—C7—H7118.6N7—C25—H25118.7
C6—C7—H7118.6C24—C25—H25118.7
C12—C8—C9118.6 (3)C27—C26—C30118.1 (3)
C12—C8—C1122.0 (3)C27—C26—C19118.6 (3)
C9—C8—C1119.3 (3)C30—C26—C19123.3 (3)
C10—C9—C8119.4 (4)C28—C27—C26119.0 (4)
C10—C9—H9120.3C28—C27—H27120.5
C8—C9—H9120.3C26—C27—H27120.5
N4—C10—C9121.0 (4)N8—C28—C27123.7 (3)
N4—C10—H10119.5N8—C28—H28118.2
C9—C10—H10119.5C27—C28—H28118.2
N4—C11—C12120.0 (4)N8—C29—C30122.7 (4)
N4—C11—H11120.0N8—C29—H29118.6
C12—C11—H11120.0C30—C29—H29118.6
C11—C12—C8119.7 (3)C29—C30—C26119.1 (3)
C11—C12—H12120.2C29—C30—H30120.4
C8—C12—H12120.2C26—C30—H30120.4
C18—C13—C14118.8 (4)C32—C31—C36118.7 (4)
C18—C13—C2121.3 (4)C32—C31—C20119.8 (3)
C14—C13—C2119.8 (3)C36—C31—C20121.5 (4)
C15—C14—C13120.8 (4)C31—C32—C33121.7 (4)
C15—C14—H14119.6C31—C32—H32119.1
C13—C14—H14119.6C33—C32—H32119.1
C14—C15—C16119.2 (4)C34—C33—C32118.3 (4)
C14—C15—H15120.4C34—C33—H33120.8
C16—C15—H15120.4C32—C33—H33120.8
C17—C16—C15120.4 (4)C35—C34—C33121.0 (4)
C17—C16—H16119.8C35—C34—H34119.5
C15—C16—H16119.8C33—C34—H34119.5
C16—C17—C18120.7 (4)C34—C35—C36120.8 (4)
C16—C17—H17119.6C34—C35—H35119.6
C18—C17—H17119.6C36—C35—H35119.6
C17—C18—C13120.1 (4)C35—C36—C31119.5 (4)
C17—C18—H18120.0C35—C36—H36120.2
C13—C18—H18120.0C31—C36—H36120.2
N2—Zn1—O1—C12.0 (3)N7—Zn2—O2—C195.4 (4)
N3—Zn1—O1—C114.0 (5)N6—Zn2—O2—C192.3 (3)
Cl1—Zn1—O1—C1113.5 (3)Cl3—Zn2—O2—C19131.1 (3)
Cl2—Zn1—O1—C1130.8 (3)Cl4—Zn2—O2—C19116.0 (3)
C1—N1—N2—C2178.5 (3)C19—N5—N6—C20174.8 (4)
C1—N1—N2—Zn13.3 (4)C19—N5—N6—Zn20.8 (4)
O1—Zn1—N2—C2178.9 (3)N7—Zn2—N6—C2010.5 (3)
N3—Zn1—N2—C25.3 (3)Cl3—Zn2—N6—C20103.5 (3)
Cl1—Zn1—N2—C284.5 (3)Cl4—Zn2—N6—C2084.0 (3)
Cl2—Zn1—N2—C296.8 (3)O2—Zn2—N6—C20174.1 (3)
O1—Zn1—N2—N12.9 (3)N7—Zn2—N6—N5173.8 (3)
N3—Zn1—N2—N1176.5 (3)Cl3—Zn2—N6—N580.9 (3)
Cl1—Zn1—N2—N193.7 (3)Cl4—Zn2—N6—N591.7 (3)
Cl2—Zn1—N2—N185.0 (3)O2—Zn2—N6—N51.5 (3)
N2—Zn1—N3—C7179.7 (4)N6—Zn2—N7—C25179.1 (4)
O1—Zn1—N3—C7168.2 (3)Cl3—Zn2—N7—C2549.3 (4)
Cl1—Zn1—N3—C763.1 (3)Cl4—Zn2—N7—C2566.1 (4)
Cl2—Zn1—N3—C753.3 (3)O2—Zn2—N7—C25173.3 (3)
N2—Zn1—N3—C38.2 (3)N6—Zn2—N7—C2113.3 (3)
O1—Zn1—N3—C320.2 (4)Cl3—Zn2—N7—C21145.0 (3)
Cl1—Zn1—N3—C3108.5 (3)Cl4—Zn2—N7—C2199.6 (3)
Cl2—Zn1—N3—C3135.2 (3)O2—Zn2—N7—C2121.0 (4)
Zn1—O1—C1—N10.9 (6)Zn2—O2—C19—N52.8 (5)
Zn1—O1—C1—C8179.5 (3)Zn2—O2—C19—C26179.6 (3)
N2—N1—C1—O11.5 (6)N6—N5—C19—O21.4 (6)
N2—N1—C1—C8177.2 (3)N6—N5—C19—C26179.1 (3)
N1—N2—C2—C133.3 (6)N5—N6—C20—C313.7 (6)
Zn1—N2—C2—C13178.5 (3)Zn2—N6—C20—C31171.7 (3)
N1—N2—C2—C3180.0 (3)N5—N6—C20—C21178.5 (3)
Zn1—N2—C2—C31.8 (4)Zn2—N6—C20—C216.0 (4)
C7—N3—C3—C40.1 (6)C25—N7—C21—C223.2 (6)
Zn1—N3—C3—C4172.2 (3)Zn2—N7—C21—C22163.2 (3)
C7—N3—C3—C2177.8 (3)C25—N7—C21—C20178.7 (4)
Zn1—N3—C3—C210.0 (4)Zn2—N7—C21—C2014.9 (4)
N2—C2—C3—N35.8 (5)N6—C20—C21—N75.9 (5)
C13—C2—C3—N3171.1 (3)C31—C20—C21—N7176.2 (3)
N2—C2—C3—C4176.5 (4)N6—C20—C21—C22172.1 (4)
C13—C2—C3—C46.7 (6)C31—C20—C21—C225.7 (6)
N3—C3—C4—C51.5 (6)N7—C21—C22—C233.4 (6)
C2—C3—C4—C5179.2 (4)C20—C21—C22—C23178.6 (4)
C3—C4—C5—C62.3 (7)C21—C22—C23—C241.1 (7)
C4—C5—C6—C71.5 (7)C22—C23—C24—C251.4 (7)
C3—N3—C7—C60.9 (6)C21—N7—C25—C240.6 (7)
Zn1—N3—C7—C6170.3 (3)Zn2—N7—C25—C24164.8 (3)
C5—C6—C7—N30.1 (7)C23—C24—C25—N71.7 (7)
O1—C1—C8—C12177.7 (4)O2—C19—C26—C2724.1 (6)
N1—C1—C8—C123.5 (6)N5—C19—C26—C27158.2 (4)
O1—C1—C8—C92.7 (6)O2—C19—C26—C30154.0 (4)
N1—C1—C8—C9176.1 (4)N5—C19—C26—C3023.6 (6)
C12—C8—C9—C101.1 (6)C30—C26—C27—C281.1 (6)
C1—C8—C9—C10178.6 (4)C19—C26—C27—C28179.3 (3)
C11—N4—C10—C91.0 (6)C29—N8—C28—C270.1 (6)
C8—C9—C10—N40.3 (7)C26—C27—C28—N80.4 (6)
C10—N4—C11—C121.5 (6)C28—N8—C29—C300.1 (6)
N4—C11—C12—C80.7 (6)N8—C29—C30—C260.9 (6)
C9—C8—C12—C110.5 (6)C27—C26—C30—C291.3 (6)
C1—C8—C12—C11179.1 (4)C19—C26—C30—C29179.5 (4)
N2—C2—C13—C18130.1 (4)N6—C20—C31—C3250.0 (6)
C3—C2—C13—C1853.5 (5)C21—C20—C31—C32127.6 (4)
N2—C2—C13—C1452.6 (5)N6—C20—C31—C36131.8 (4)
C3—C2—C13—C14123.9 (4)C21—C20—C31—C3650.6 (5)
C18—C13—C14—C150.1 (6)C36—C31—C32—C331.5 (6)
C2—C13—C14—C15177.3 (3)C20—C31—C32—C33176.8 (4)
C13—C14—C15—C161.0 (6)C31—C32—C33—C340.9 (7)
C14—C15—C16—C171.2 (7)C32—C33—C34—C350.2 (7)
C15—C16—C17—C180.5 (8)C33—C34—C35—C360.1 (8)
C16—C17—C18—C130.4 (7)C34—C35—C36—C310.7 (7)
C14—C13—C18—C170.6 (6)C32—C31—C36—C351.3 (6)
C2—C13—C18—C17177.9 (4)C20—C31—C36—C35177.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···Cl20.85 (2)2.46 (2)3.250 (3)156 (4)
N4—H4N···N8i0.98 (4)1.78 (4)2.749 (4)170 (4)
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formula[ZnCl2(C18H14N4O)]
Mr438.6
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.517 (3), 13.248 (2), 13.459 (1)
α, β, γ (°)91.130 (5), 104.708 (4), 109.798 (4)
V3)1856.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.45 × 0.22 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 2009)
Tmin, Tmax0.379, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
15524, 6674, 4122
Rint0.040
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.102, 0.97
No. of reflections6668
No. of parameters476
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.42

Computer programs: CrystalClear-SM Expert (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and CRYSTALBUILDER (Welter, 2006), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···Cl20.849 (18)2.46 (2)3.250 (3)156 (4)
N4—H4N···N8i0.98 (4)1.78 (4)2.749 (4)170 (4)
Symmetry code: (i) x, y, z1.
 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationDespaigne, A. A. R., Da Silva, J. G., do Carmo, A. C. M., Piro, O. E., Castellano, E. E. & Beraldo, H. (2009). Inorg. Chim. Acta, 362, 2117–2122.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWelter, R. (2006). Acta Cryst. A62, s252.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds