organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Ethyl-4-{2-[1-(4-methyl­phen­yl)ethyl­­idene]hydrazinyl­­idene}-3,4-di­hydro-1H-2λ6,1-benzo­thia­zine-2,2-dione

aDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, University of Aberdeen, Mston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: hafizshafique@hotmail.com

(Received 27 December 2012; accepted 3 January 2013; online 9 January 2013)

In the title compound, C19H21N3O2S, the dihedral angle between the aromatic rings is 6.7 (2)° and the C=N—N=C torsion angle is 178.0 (2)°. The conformation of the thia­zine ring is an envelope, with the S atom displaced by 0.802 (2) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.022 Å). In the crystal, mol­ecules are linked by C—H⋯O inter­actions, generating C(5) chains propagating in [010]. A weak C—H⋯π inter­action is also observed.

Related literature

For the synthesis and biological activity of the title compound and related materials, see: Shafiq et al. (2011a[Shafiq, M., Zia-Ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011a). J. Chilean Chem. Soc. 56, 527-531.]). For further synthetic details, see: Shafiq et al. (2011b[Shafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011b). Asian J. Chem. 23, 2101-2106.]). For a related structure, see: Shafiq et al. (2013[Shafiq, M., Tahir, M. N., Harrison, W. T. A., Khan, I. U. & Shafique, S. (2013). Acta Cryst. E69, o165.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21N3O2S

  • Mr = 355.45

  • Monoclinic, P 21 /n

  • a = 15.9018 (10) Å

  • b = 7.3716 (4) Å

  • c = 16.8376 (10) Å

  • β = 111.644 (3)°

  • V = 1834.57 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.34 × 0.26 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.955

  • 14168 measured reflections

  • 3597 independent reflections

  • 2598 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.139

  • S = 1.02

  • 3597 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2i 0.97 2.50 3.402 (4) 155
C9—H9ACg3ii 0.97 2.67 3.613 (2) 165
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing studies of benzothiazine derivatives with potential biactivity (Shafiq et al., 2011a,b), we now describe the synthesis and structure of the title compound, (I).

The dihedral angle between the C1–C6 and C13–C18 aromatic rings is 6.68 (15)° and the C10=N2—N3=C11 torsion angle is 177.98 (19)°. The conformation of the C1/C6/C9/C10/N1/S1 thiazine ring is an envelope, with the S atom displaced by 0.802 (2) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.022 Å). A very similar conformation was observed in a related structure (Shafiq et al., 2013). Atoms C7 and C8 in (I) are displaced from the mean plane of the thiazine ring by -0.416 (5) and 0.704 (6) Å, respectively.

In the crystal, the moelcules are linked by C—H···O interactions (Table 1) to generate C(5) chains propagating in the b axis direction. A weak C—H···π interaction to the C13—C18 ring also occurs (Table 1).

Related literature top

For the synthesis and biological activity of the title compound and related materials, see: Shafiq et al. (2011a). For further synthetic details, see: Shafiq et al. (2011b). For a related structure, see: Shafiq et al. (2013).

Experimental top

4-Hydrazinylidene-1-ethyl-3H-2?6,1-benzothiazine-2,2-dione (Shafiq et al., 2011b) was reacted with para-methyl acetophenone according to literature procedure (Shafiq, et al., 2011a). The product obtained was re-crystallized from ethyl acetate solution to yield yellow prisms.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding. The methyl group was allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) was applied.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
1-Ethyl-4-{2-[1-(4-methylphenyl)ethylidene]hydrazinylidene}-3,4-dihydro- 1H-2λ6,1-benzothiazine-2,2-dione top
Crystal data top
C19H21N3O2SF(000) = 752
Mr = 355.45Dx = 1.287 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 335 reflections
a = 15.9018 (10) Åθ = 3.1–23.5°
b = 7.3716 (4) ŵ = 0.19 mm1
c = 16.8376 (10) ÅT = 296 K
β = 111.644 (3)°Prism, yellow
V = 1834.57 (19) Å30.34 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3597 independent reflections
Radiation source: fine-focus sealed tube2598 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1918
Tmin = 0.937, Tmax = 0.955k = 98
14168 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.6783P]
where P = (Fo2 + 2Fc2)/3
3597 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C19H21N3O2SV = 1834.57 (19) Å3
Mr = 355.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.9018 (10) ŵ = 0.19 mm1
b = 7.3716 (4) ÅT = 296 K
c = 16.8376 (10) Å0.34 × 0.26 × 0.24 mm
β = 111.644 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3597 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2598 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.955Rint = 0.025
14168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.02Δρmax = 0.45 e Å3
3597 reflectionsΔρmin = 0.40 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53653 (13)0.1072 (3)0.23121 (12)0.0401 (5)
C20.62165 (14)0.1299 (3)0.22572 (14)0.0504 (6)
H20.63060.22600.19400.060*
C30.69200 (16)0.0146 (4)0.26570 (16)0.0610 (7)
H30.74780.03240.26090.073*
C40.67962 (16)0.1279 (4)0.31306 (17)0.0629 (7)
H40.72740.20570.34110.076*
C50.59694 (17)0.1552 (3)0.31882 (16)0.0609 (7)
H50.58910.25280.35040.073*
C60.52430 (14)0.0399 (3)0.27836 (14)0.0460 (5)
C70.4152 (2)0.2572 (4)0.3072 (2)0.0795 (9)
H7A0.35110.27870.27680.095*
H7B0.44830.34880.28940.095*
C80.4360 (3)0.2746 (6)0.3986 (3)0.1315 (16)
H8A0.49720.23660.42930.197*
H8B0.42900.39890.41210.197*
H8C0.39540.19990.41470.197*
C90.37033 (14)0.2050 (3)0.18892 (14)0.0478 (5)
H9A0.33720.12750.14100.057*
H9B0.33800.31910.18200.057*
C100.46398 (13)0.2394 (3)0.18915 (12)0.0411 (5)
C110.43384 (14)0.6397 (3)0.08403 (13)0.0451 (5)
C120.52607 (16)0.6781 (3)0.08357 (17)0.0603 (6)
H12A0.54860.78910.11380.090*
H12B0.52260.68960.02570.090*
H12C0.56610.58040.11100.090*
C130.36016 (14)0.7729 (3)0.04561 (13)0.0443 (5)
C140.36872 (17)0.9137 (3)0.00555 (15)0.0558 (6)
H140.42210.92550.01570.067*
C150.30017 (17)1.0357 (4)0.04138 (15)0.0620 (7)
H150.30811.12870.07530.074*
C160.21992 (17)1.0238 (3)0.02836 (14)0.0553 (6)
C170.21100 (16)0.8847 (3)0.02377 (14)0.0532 (6)
H170.15780.87480.03440.064*
C180.27955 (15)0.7613 (3)0.05990 (13)0.0497 (5)
H180.27190.66910.09430.060*
C190.1445 (2)1.1567 (5)0.0695 (2)0.0903 (10)
H19A0.16321.27570.04670.135*
H19B0.09201.12120.05800.135*
H19C0.13011.15800.13020.135*
S10.37561 (4)0.10183 (9)0.28376 (4)0.0544 (2)
O10.42132 (12)0.2209 (3)0.35183 (11)0.0773 (6)
O20.28939 (11)0.0333 (3)0.27645 (13)0.0771 (6)
N10.43901 (13)0.0742 (3)0.28385 (14)0.0600 (6)
N20.48467 (12)0.3786 (3)0.15443 (12)0.0536 (5)
N30.41244 (13)0.4972 (3)0.11660 (12)0.0546 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0382 (11)0.0417 (12)0.0417 (10)0.0006 (9)0.0160 (8)0.0016 (9)
C20.0434 (12)0.0530 (14)0.0597 (13)0.0020 (10)0.0248 (10)0.0066 (11)
C30.0432 (13)0.0687 (17)0.0777 (16)0.0086 (11)0.0300 (12)0.0084 (14)
C40.0482 (14)0.0678 (17)0.0753 (16)0.0203 (12)0.0257 (12)0.0186 (13)
C50.0576 (15)0.0597 (16)0.0716 (15)0.0152 (12)0.0311 (12)0.0236 (13)
C60.0406 (12)0.0484 (13)0.0526 (12)0.0046 (9)0.0214 (9)0.0069 (10)
C70.0672 (18)0.071 (2)0.109 (2)0.0089 (14)0.0431 (17)0.0118 (17)
C80.167 (4)0.132 (4)0.138 (3)0.049 (3)0.105 (3)0.063 (3)
C90.0376 (11)0.0468 (13)0.0555 (12)0.0009 (9)0.0132 (9)0.0071 (10)
C100.0383 (11)0.0425 (12)0.0425 (10)0.0002 (9)0.0146 (9)0.0005 (9)
C110.0472 (12)0.0440 (13)0.0459 (11)0.0017 (9)0.0194 (9)0.0027 (10)
C120.0517 (14)0.0525 (15)0.0792 (16)0.0029 (11)0.0272 (12)0.0070 (13)
C130.0477 (12)0.0415 (12)0.0425 (10)0.0024 (9)0.0150 (9)0.0020 (9)
C140.0538 (14)0.0563 (15)0.0589 (13)0.0025 (11)0.0227 (11)0.0149 (11)
C150.0665 (16)0.0588 (16)0.0601 (14)0.0018 (12)0.0226 (12)0.0227 (12)
C160.0605 (15)0.0522 (14)0.0467 (12)0.0083 (11)0.0122 (11)0.0093 (11)
C170.0489 (13)0.0597 (15)0.0511 (12)0.0041 (11)0.0186 (10)0.0026 (11)
C180.0528 (13)0.0472 (13)0.0492 (12)0.0005 (10)0.0191 (10)0.0074 (10)
C190.083 (2)0.099 (2)0.089 (2)0.0348 (18)0.0322 (17)0.0373 (19)
S10.0401 (3)0.0653 (4)0.0638 (4)0.0066 (3)0.0262 (3)0.0137 (3)
O10.0671 (12)0.1064 (16)0.0636 (10)0.0069 (10)0.0302 (9)0.0119 (10)
O20.0449 (10)0.0878 (13)0.1101 (15)0.0094 (9)0.0422 (10)0.0334 (11)
N10.0461 (11)0.0570 (13)0.0836 (14)0.0062 (9)0.0316 (10)0.0266 (11)
N20.0456 (11)0.0509 (12)0.0679 (12)0.0070 (8)0.0251 (9)0.0179 (10)
N30.0481 (11)0.0499 (12)0.0687 (12)0.0076 (9)0.0249 (9)0.0193 (10)
Geometric parameters (Å, º) top
C1—C61.399 (3)C11—N31.287 (3)
C1—C21.400 (3)C11—C131.482 (3)
C1—C101.477 (3)C11—C121.497 (3)
C2—C31.368 (3)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.376 (3)C12—H12C0.9600
C3—H30.9300C13—C141.387 (3)
C4—C51.368 (3)C13—C181.391 (3)
C4—H40.9300C14—C151.370 (3)
C5—C61.393 (3)C14—H140.9300
C5—H50.9300C15—C161.375 (3)
C6—N11.416 (3)C15—H150.9300
C7—C81.456 (5)C16—C171.391 (3)
C7—N11.493 (3)C16—C191.505 (3)
C7—H7A0.9700C17—C181.377 (3)
C7—H7B0.9700C17—H170.9300
C8—H8A0.9600C18—H180.9300
C8—H8B0.9600C19—H19A0.9600
C8—H8C0.9600C19—H19B0.9600
C9—C101.509 (3)C19—H19C0.9600
C9—S11.742 (2)S1—O11.4135 (19)
C9—H9A0.9700S1—O21.4233 (17)
C9—H9B0.9700S1—N11.643 (2)
C10—N21.282 (3)N2—N31.397 (2)
C6—C1—C2118.04 (19)C11—C12—H12A109.5
C6—C1—C10122.43 (18)C11—C12—H12B109.5
C2—C1—C10119.52 (19)H12A—C12—H12B109.5
C3—C2—C1121.9 (2)C11—C12—H12C109.5
C3—C2—H2119.1H12A—C12—H12C109.5
C1—C2—H2119.1H12B—C12—H12C109.5
C2—C3—C4119.6 (2)C14—C13—C18117.4 (2)
C2—C3—H3120.2C14—C13—C11121.6 (2)
C4—C3—H3120.2C18—C13—C11120.97 (19)
C5—C4—C3120.0 (2)C15—C14—C13121.4 (2)
C5—C4—H4120.0C15—C14—H14119.3
C3—C4—H4120.0C13—C14—H14119.3
C4—C5—C6121.4 (2)C14—C15—C16121.5 (2)
C4—C5—H5119.3C14—C15—H15119.3
C6—C5—H5119.3C16—C15—H15119.3
C5—C6—C1119.1 (2)C15—C16—C17117.7 (2)
C5—C6—N1120.1 (2)C15—C16—C19120.9 (2)
C1—C6—N1120.82 (18)C17—C16—C19121.4 (2)
C8—C7—N1112.2 (3)C18—C17—C16121.2 (2)
C8—C7—H7A109.2C18—C17—H17119.4
N1—C7—H7A109.2C16—C17—H17119.4
C8—C7—H7B109.2C17—C18—C13120.9 (2)
N1—C7—H7B109.2C17—C18—H18119.6
H7A—C7—H7B107.9C13—C18—H18119.6
C7—C8—H8A109.5C16—C19—H19A109.5
C7—C8—H8B109.5C16—C19—H19B109.5
H8A—C8—H8B109.5H19A—C19—H19B109.5
C7—C8—H8C109.5C16—C19—H19C109.5
H8A—C8—H8C109.5H19A—C19—H19C109.5
H8B—C8—H8C109.5H19B—C19—H19C109.5
C10—C9—S1110.92 (14)O1—S1—O2118.78 (12)
C10—C9—H9A109.5O1—S1—N1110.96 (11)
S1—C9—H9A109.5O2—S1—N1106.91 (11)
C10—C9—H9B109.5O1—S1—C9107.98 (12)
S1—C9—H9B109.5O2—S1—C9110.88 (10)
H9A—C9—H9B108.0N1—S1—C999.65 (11)
N2—C10—C1117.42 (19)C6—N1—C7121.4 (2)
N2—C10—C9123.51 (19)C6—N1—S1117.47 (16)
C1—C10—C9119.07 (18)C7—N1—S1119.90 (17)
N3—C11—C13115.83 (19)C10—N2—N3113.76 (18)
N3—C11—C12124.8 (2)C11—N3—N2113.78 (19)
C13—C11—C12119.40 (19)
C6—C1—C2—C30.8 (3)C15—C16—C17—C181.1 (3)
C10—C1—C2—C3177.9 (2)C19—C16—C17—C18178.7 (2)
C1—C2—C3—C40.2 (4)C16—C17—C18—C130.3 (3)
C2—C3—C4—C51.0 (4)C14—C13—C18—C170.5 (3)
C3—C4—C5—C60.8 (4)C11—C13—C18—C17179.7 (2)
C4—C5—C6—C10.3 (4)C10—C9—S1—O161.17 (18)
C4—C5—C6—N1178.5 (2)C10—C9—S1—O2167.11 (16)
C2—C1—C6—C51.1 (3)C10—C9—S1—N154.73 (18)
C10—C1—C6—C5177.7 (2)C5—C6—N1—C719.6 (4)
C2—C1—C6—N1177.7 (2)C1—C6—N1—C7159.1 (2)
C10—C1—C6—N13.6 (3)C5—C6—N1—S1147.7 (2)
C6—C1—C10—N2173.5 (2)C1—C6—N1—S133.5 (3)
C2—C1—C10—N25.2 (3)C8—C7—N1—C692.8 (3)
C6—C1—C10—C96.5 (3)C8—C7—N1—S174.3 (3)
C2—C1—C10—C9174.75 (19)O1—S1—N1—C657.8 (2)
S1—C9—C10—N2144.76 (19)O2—S1—N1—C6171.25 (17)
S1—C9—C10—C135.3 (2)C9—S1—N1—C655.80 (19)
N3—C11—C13—C14167.5 (2)O1—S1—N1—C7109.8 (2)
C12—C11—C13—C1413.1 (3)O2—S1—N1—C721.2 (2)
N3—C11—C13—C1812.7 (3)C9—S1—N1—C7136.6 (2)
C12—C11—C13—C18166.7 (2)C1—C10—N2—N3179.62 (17)
C18—C13—C14—C150.7 (3)C9—C10—N2—N30.4 (3)
C11—C13—C14—C15179.6 (2)C13—C11—N3—N2178.06 (18)
C13—C14—C15—C160.1 (4)C12—C11—N3—N21.3 (3)
C14—C15—C16—C171.0 (4)C10—N2—N3—C11177.98 (19)
C14—C15—C16—C19178.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.972.503.402 (4)155
C9—H9A···Cg3ii0.972.673.613 (2)165
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H21N3O2S
Mr355.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.9018 (10), 7.3716 (4), 16.8376 (10)
β (°) 111.644 (3)
V3)1834.57 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.34 × 0.26 × 0.24
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.937, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
14168, 3597, 2598
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.02
No. of reflections3597
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.40

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.972.503.402 (4)155
C9—H9A···Cg3ii0.972.673.613 (2)165
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y1, z.
 

Acknowledgements

MS acknowledges the HEC Pakistan for providing a PhD fellowship and the University of Sargodha for the X-ray diffraction facility.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011b). Asian J. Chem. 23, 2101–2106.  CAS Google Scholar
First citationShafiq, M., Tahir, M. N., Harrison, W. T. A., Khan, I. U. & Shafique, S. (2013). Acta Cryst. E69, o165.  CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Zia-Ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011a). J. Chilean Chem. Soc. 56, 527–531.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds