metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-4-(4-carb­­oxy­phen­­oxy)phthalato]bis­­[tri­aqua­cobalt(II)]

aDepartment of Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
*Correspondence e-mail: chg_2010@qq.com

(Received 14 November 2012; accepted 7 January 2013; online 12 January 2013)

The dinuclear title complex, [Co2(C15H8O7)2(H2O)6], lies across an inversion center. The unique CoII ion is coordinated in a slightly distorted octa­hedral coordination geometry by two O atoms from a chelating 4-(carb­oxy­phen­oxy)phthalate ligand, three water O atoms and a further O atom from a bridging carboxyl­ate group of a symmetry-related 4-(carb­oxy­phen­oxy)phthalate ligand. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For background to metal-organic coordination complexes, see: Wang et al. (2009[Wang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L.-F., Tian, L., Jiang, J. & Ni, Z.-H. (2009). Cryst. Growth Des. 9, 5273-5282.]); Leininger et al. (2000[Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853-908.]). For Co—O bond lengths in related structures, see: Chu et al. (2011[Chu, Q., Su, Z., Fan, J., Okamura, T., Lv, G.-C., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2011). Cryst. Growth Des. 11, 3885-3894.]). For the isotypic NiII complex and the synthesis, see: Cai (2011[Cai, X. (2011). Acta Cryst. E67, m60.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C15H8O7)2(H2O)6]

  • Mr = 826.38

  • Monoclinic, P 21 /c

  • a = 14.451 (11) Å

  • b = 9.558 (7) Å

  • c = 11.404 (9) Å

  • β = 92.749 (15)°

  • V = 1573 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 293 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.847, Tmax = 0.894

  • 8135 measured reflections

  • 3087 independent reflections

  • 1591 reflections with I > 2σ(I)

  • Rint = 0.115

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.116

  • S = 0.90

  • 3087 reflections

  • 235 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8B⋯O1i 0.85 2.06 2.839 (5) 152
O6—H6A⋯O2ii 0.85 1.77 2.598 (5) 165
O8—H8A⋯O7iii 0.84 2.14 2.865 (6) 144
O9—H9A⋯O3iv 0.85 2.06 2.861 (5) 157
O9—H9B⋯O7v 0.85 1.93 2.754 (5) 163
O10—H10A⋯O2vi 0.85 2.10 2.788 (5) 138
O10—H10B⋯O3vii 0.85 1.96 2.746 (5) 155
Symmetry codes: (i) [-x+3, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+4, -y, -z; (iii) x-1, y, z; (iv) [-x+3, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-1, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) -x+3, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the field of supramolecular chemistry and crystal engineering, the design and assembly of metal-organic coordination complexes with appealing structures and properties have stimulated interests of chemists in recent decades (Wang et al., 2009; Leininger et al. 2000)). Thus far, a large number of metal-organic coordination complexes have been fabricated. In this paper paper, the synthesis and crystal structure of the title compound, based on the multidentate 4-(4-carboxyphenoxy)phthalate ligand (H3L) is presented.

The molecular structure of the title compound is shown in Fig. 1. The dinuclear complex lies across an inversion center. The unique CoII ion is coordinated in a slightly distorted octahedral coordination geometry by two oxygen atoms from a chelating 4-(carboxyphenoxy)phthalate ligand, three oxygen atoms from aqua ligands and a further O atom from a bridging carboxylate group of a symmetry related 4-(carboxyphenoxy)phthalate ligand. The Co—O bond lengths are as expected based on a a reported structure (Chu et al., 2011). In the crystal, O—H···O hydrogen bonds link molecules into a three-dimensional network (Table 1 and Fig. 2). The crystal structure of the isostructural Ni(II) complex has been published (Cai, 2011).

Related literature top

For background to metal-organic coordination complexes, see: Wang et al. (2009); Leininger et al. (2000). For Co—O bond lengths in related structures, see: Chu et al. (2011). For the isotypic NiII complex and the synthesis, see: Cai (2011).

Experimental top

The title compound was synthesized referring to a reported literature (Cai, 2011). H3L (0.030 g, 0.1 mmol), Co(OAc)2.4H2O (0.050 g, 0.2 mmol), and H2O (15 ml) was sealed in 25 ml Teflon-lined stainless steel reactor and heated to 393K. Purple blocks suitable for X-ray diffraction analysis were separated by filtration with the yield of 27%.

Refinement top

All H atoms bonded to C atoms were placed in geometrically idealized positions and treated as riding on their parent atoms with C—H = 0.93 Å, Uiso = 1.2Ueq (C). The hydrogen atoms of carboxyl group and water molecules were included in 'as found' positions and with O—H distances subsequently fixed at 0.85 (1)Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 30% probability level, hydrogen atoms are omited for clarity [Symmetry code (a): -x+3, -y, -z+1].
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
Bis[µ-4-(4-carboxyphenoxy)phthalato]bis[triaquacobalt(II)] top
Crystal data top
[Co2(C15H8O7)2(H2O)6]F(000) = 844
Mr = 826.38Dx = 1.744 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 679 reflections
a = 14.451 (11) Åθ = 2.8–26.7°
b = 9.558 (7) ŵ = 1.15 mm1
c = 11.404 (9) ÅT = 293 K
β = 92.749 (15)°Block, purple
V = 1573 (2) Å30.15 × 0.12 × 0.10 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
3087 independent reflections
Radiation source: fine-focus sealed tube1591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.115
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1217
Tmin = 0.847, Tmax = 0.894k = 1111
8135 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0393P)2]
where P = (Fo2 + 2Fc2)/3
3087 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.41 e Å3
9 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Co2(C15H8O7)2(H2O)6]V = 1573 (2) Å3
Mr = 826.38Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.451 (11) ŵ = 1.15 mm1
b = 9.558 (7) ÅT = 293 K
c = 11.404 (9) Å0.15 × 0.12 × 0.10 mm
β = 92.749 (15)°
Data collection top
Bruker APEXII
diffractometer
3087 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1591 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.894Rint = 0.115
8135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0599 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 0.90Δρmax = 0.41 e Å3
3087 reflectionsΔρmin = 0.61 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.7277 (4)0.0681 (5)0.4420 (5)0.0259 (13)
C21.7404 (3)0.1470 (5)0.3394 (4)0.0278 (12)
C31.8284 (4)0.1974 (5)0.3174 (5)0.0304 (14)
H31.83710.24860.24950.036*
C41.9030 (4)0.1720 (6)0.3955 (5)0.0325 (14)
C51.8912 (4)0.0994 (5)0.4983 (5)0.0379 (15)
H51.94070.08520.55210.045*
C61.8029 (4)0.0477 (6)0.5196 (5)0.0377 (15)
H61.79460.00210.58840.045*
C72.1261 (4)0.2540 (6)0.2792 (5)0.0383 (15)
H72.14180.32680.33050.046*
C82.0429 (4)0.1863 (5)0.2862 (5)0.0309 (14)
C92.0170 (4)0.0799 (5)0.2099 (5)0.0392 (15)
H91.96030.03500.21530.047*
C102.0772 (4)0.0415 (6)0.1251 (5)0.0361 (15)
H102.05980.02880.07220.043*
C112.1623 (4)0.1044 (5)0.1169 (5)0.0299 (13)
C122.1871 (4)0.2131 (6)0.1944 (5)0.0392 (15)
H122.24390.25790.18930.047*
C131.6620 (4)0.1895 (5)0.2550 (5)0.0263 (13)
C141.6385 (4)0.0012 (5)0.4680 (5)0.0271 (13)
C152.2308 (4)0.0583 (6)0.0309 (5)0.0346 (14)
O11.5943 (2)0.2597 (3)0.2936 (3)0.0293 (9)
O21.6686 (2)0.1614 (4)0.1480 (3)0.0396 (10)
O31.5760 (2)0.0121 (3)0.3846 (3)0.0296 (9)
O41.6298 (2)0.0468 (3)0.5707 (3)0.0319 (9)
O51.9905 (2)0.2297 (4)0.3788 (3)0.0389 (10)
O62.1982 (3)0.0438 (4)0.0387 (3)0.0469 (11)
H6A2.24340.06750.07950.070*
O72.3071 (3)0.1081 (4)0.0223 (3)0.0488 (12)
O81.4474 (2)0.0499 (3)0.2018 (3)0.0369 (10)
H8A1.42510.09320.14240.055*
H8B1.41650.02500.20830.055*
O91.3925 (2)0.3232 (3)0.3192 (3)0.0335 (9)
H9A1.40800.38800.27290.050*
H9B1.36960.36170.37860.050*
O101.5100 (2)0.2415 (3)0.5250 (3)0.0353 (10)
H10A1.54000.30820.55830.053*
H10B1.49190.18020.57220.053*
Co11.47938 (5)0.15569 (7)0.35848 (6)0.0266 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (3)0.023 (3)0.027 (3)0.003 (3)0.008 (3)0.001 (2)
C20.021 (3)0.032 (3)0.031 (3)0.001 (3)0.006 (2)0.004 (3)
C30.036 (4)0.028 (3)0.028 (3)0.001 (3)0.012 (3)0.003 (2)
C40.022 (3)0.038 (3)0.038 (4)0.004 (3)0.010 (3)0.014 (3)
C50.037 (4)0.042 (3)0.035 (4)0.005 (3)0.004 (3)0.000 (3)
C60.037 (4)0.042 (4)0.034 (4)0.003 (3)0.008 (3)0.008 (3)
C70.026 (3)0.041 (4)0.048 (4)0.003 (3)0.010 (3)0.010 (3)
C80.021 (3)0.035 (3)0.037 (3)0.005 (3)0.007 (2)0.006 (3)
C90.026 (3)0.034 (3)0.058 (4)0.012 (3)0.008 (3)0.013 (3)
C100.031 (4)0.038 (3)0.040 (4)0.001 (3)0.008 (3)0.014 (3)
C110.026 (3)0.031 (3)0.033 (3)0.004 (3)0.001 (3)0.002 (3)
C120.029 (4)0.040 (3)0.049 (4)0.014 (3)0.007 (3)0.001 (3)
C130.031 (3)0.024 (3)0.025 (3)0.004 (2)0.007 (3)0.004 (2)
C140.026 (3)0.025 (3)0.031 (4)0.003 (3)0.008 (3)0.002 (3)
C150.033 (4)0.041 (4)0.030 (4)0.001 (3)0.005 (3)0.005 (3)
O10.027 (2)0.0238 (19)0.038 (2)0.0057 (17)0.0099 (17)0.0047 (17)
O20.036 (2)0.055 (2)0.028 (2)0.013 (2)0.0070 (17)0.000 (2)
O30.028 (2)0.027 (2)0.033 (2)0.0039 (18)0.0031 (18)0.0051 (17)
O40.033 (2)0.034 (2)0.029 (2)0.0054 (18)0.0064 (17)0.0037 (18)
O50.029 (2)0.046 (2)0.043 (3)0.007 (2)0.0102 (19)0.0128 (19)
O60.037 (3)0.052 (3)0.052 (3)0.001 (2)0.018 (2)0.015 (2)
O70.031 (2)0.070 (3)0.047 (3)0.014 (2)0.018 (2)0.009 (2)
O80.053 (3)0.031 (2)0.027 (2)0.0061 (19)0.0038 (18)0.0044 (17)
O90.040 (2)0.026 (2)0.036 (2)0.0057 (18)0.0120 (17)0.0065 (17)
O100.047 (3)0.031 (2)0.028 (2)0.0081 (19)0.0044 (18)0.0052 (17)
Co10.0294 (4)0.0233 (4)0.0278 (4)0.0011 (4)0.0072 (3)0.0018 (4)
Geometric parameters (Å, º) top
C1—C61.382 (7)C11—C151.492 (7)
C1—C21.412 (7)C12—H120.9300
C1—C141.491 (7)C13—O21.258 (6)
C2—C31.394 (6)C13—O11.282 (5)
C2—C131.506 (7)C14—O41.262 (6)
C3—C41.387 (7)C14—O31.283 (6)
C3—H30.9300C15—O71.210 (6)
C4—C51.379 (7)C15—O61.330 (6)
C4—O51.401 (6)O1—Co12.101 (3)
C5—C61.402 (7)O3—Co12.138 (3)
C5—H50.9300O4—Co1i2.085 (3)
C6—H60.9300O6—H6A0.8506
C7—C81.372 (7)O8—Co12.086 (4)
C7—C121.395 (7)O8—H8A0.8445
C7—H70.9300O8—H8B0.8482
C8—C91.378 (7)O9—Co12.071 (3)
C8—O51.392 (6)O9—H9A0.8509
C9—C101.381 (7)O9—H9B0.8511
C9—H90.9300O10—Co12.096 (4)
C10—C111.376 (7)O10—H10A0.8500
C10—H100.9300O10—H10B0.8453
C11—C121.399 (7)Co1—O4i2.085 (3)
C6—C1—C2118.4 (5)O2—C13—C2118.2 (5)
C6—C1—C14118.1 (5)O1—C13—C2119.0 (5)
C2—C1—C14123.4 (5)O4—C14—O3124.2 (5)
C3—C2—C1119.4 (5)O4—C14—C1117.6 (5)
C3—C2—C13117.1 (5)O3—C14—C1118.2 (5)
C1—C2—C13123.3 (4)O7—C15—O6122.5 (5)
C4—C3—C2120.8 (5)O7—C15—C11125.0 (6)
C4—C3—H3119.6O6—C15—C11112.5 (5)
C2—C3—H3119.6C13—O1—Co1120.2 (3)
C5—C4—C3120.7 (5)C14—O3—Co1118.3 (3)
C5—C4—O5117.5 (5)C14—O4—Co1i130.0 (4)
C3—C4—O5121.5 (5)C8—O5—C4120.8 (4)
C4—C5—C6118.4 (5)C15—O6—H6A105.3
C4—C5—H5120.8Co1—O8—H8A120.7
C6—C5—H5120.8Co1—O8—H8B115.5
C1—C6—C5122.3 (5)H8A—O8—H8B107.6
C1—C6—H6118.9Co1—O9—H9A121.4
C5—C6—H6118.9Co1—O9—H9B114.6
C8—C7—C12119.5 (5)H9A—O9—H9B107.6
C8—C7—H7120.2Co1—O10—H10A141.2
C12—C7—H7120.2Co1—O10—H10B104.3
C7—C8—C9121.5 (5)H10A—O10—H10B113.7
C7—C8—O5114.5 (5)O9—Co1—O4i90.40 (14)
C9—C8—O5124.0 (5)O9—Co1—O894.71 (14)
C8—C9—C10118.5 (5)O4i—Co1—O887.08 (14)
C8—C9—H9120.7O9—Co1—O1089.59 (13)
C10—C9—H9120.7O4i—Co1—O1088.57 (14)
C11—C10—C9121.8 (5)O8—Co1—O10173.90 (14)
C11—C10—H10119.1O9—Co1—O192.25 (14)
C9—C10—H10119.1O4i—Co1—O1176.92 (15)
C10—C11—C12118.9 (5)O8—Co1—O194.26 (14)
C10—C11—C15122.6 (5)O10—Co1—O189.89 (14)
C12—C11—C15118.5 (5)O9—Co1—O3174.56 (13)
C7—C12—C11119.7 (5)O4i—Co1—O394.21 (14)
C7—C12—H12120.2O8—Co1—O382.66 (14)
C11—C12—H12120.2O10—Co1—O393.40 (14)
O2—C13—O1122.6 (5)O1—Co1—O383.22 (14)
Symmetry code: (i) x+3, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···O1ii0.852.062.839 (5)152
O6—H6A···O2iii0.851.772.598 (5)165
O8—H8A···O7iv0.842.142.865 (6)144
O9—H9A···O3v0.852.062.861 (5)157
O9—H9B···O7vi0.851.932.754 (5)163
O10—H10A···O2vii0.852.102.788 (5)138
O10—H10B···O3i0.851.962.746 (5)155
Symmetry codes: (i) x+3, y, z+1; (ii) x+3, y+1/2, z+1/2; (iii) x+4, y, z; (iv) x1, y, z; (v) x+3, y1/2, z+1/2; (vi) x1, y1/2, z+1/2; (vii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co2(C15H8O7)2(H2O)6]
Mr826.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.451 (11), 9.558 (7), 11.404 (9)
β (°) 92.749 (15)
V3)1573 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.847, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
8135, 3087, 1591
Rint0.115
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.116, 0.90
No. of reflections3087
No. of parameters235
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.61

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···O1i0.852.062.839 (5)151.7
O6—H6A···O2ii0.851.772.598 (5)164.5
O8—H8A···O7iii0.842.142.865 (6)143.9
O9—H9A···O3iv0.852.062.861 (5)157.4
O9—H9B···O7v0.851.932.754 (5)162.7
O10—H10A···O2vi0.852.102.788 (5)137.9
O10—H10B···O3vii0.851.962.746 (5)154.6
Symmetry codes: (i) x+3, y+1/2, z+1/2; (ii) x+4, y, z; (iii) x1, y, z; (iv) x+3, y1/2, z+1/2; (v) x1, y1/2, z+1/2; (vi) x, y1/2, z+1/2; (vii) x+3, y, z+1.
 

Acknowledgements

The author thanks the University of Science and Technology, Beijing, for support.

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, X. (2011). Acta Cryst. E67, m60.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChu, Q., Su, Z., Fan, J., Okamura, T., Lv, G.-C., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2011). Cryst. Growth Des. 11, 3885–3894.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853–908.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L.-F., Tian, L., Jiang, J. & Ni, Z.-H. (2009). Cryst. Growth Des. 9, 5273–5282.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds