metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m83-m84

Di-μ-thio­semicarbazide-κ4S:S-bis­­[chlori­dobis(tri­phenyl­phosphane-κP)silver(I)]

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: yupa.t@psu.ac.th

(Received 17 December 2012; accepted 21 December 2012; online 9 January 2013)

The dinuclear title complex, [Ag2Cl2(CH5N3S)2(C18H15P)2], lies across an inversion center. The AgI ion exhibits a slightly distorted tetra­hedral coordination geometry formed by a P atom from a triphenyl­phosphane ligand, two metal-bridging S atoms from thio­semicabazide ligands and one chloride ion. The S atoms bridge two symmetry-related AgI ions, forming a strictly planar Ag2S2 core with an Ag⋯Ag separation of 2.7802 (7) Å. There is an intra­molecular N—H⋯Cl hydrogen bond. In the crystal, N—H⋯Cl and N—H⋯S hydrogen bonds link complex mol­ecules, forming layers parallel to (001). These layers are connected through ππ stacking inter­actions [centroid–centroid distance = 3.665 (2) Å], leading to the formation of a three-dimensional network.

Related literature

For metal(I) complexes of phosphine ligands as precursors for the preparation of mixed-ligand complexes, see: Ferrari et al. (2007[Ferrari, M. B., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233-3240.]); Pakawatchai et al. (2012[Pakawatchai, C., Jantaramas, P., Mokhagul, J. & Nimthong, R. (2012). Acta Cryst. E68, m1506-m1507.]). For potential applications of thio­semicarbazide derivatives and their metal complexes, see: Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25-31.]); Wujec et al. (2009[Wujec, M., Stefańska, J., Siwek, A. & Tatarczak, M. (2009). Acta Polon. Pharm. Drug Res. 66, 73-82.]); Mohareb & Mohamed (2012[Mohareb, R. M. & Mohamed, A. A. (2012). Int. J. Pure. Appl. Chem. 2, 144-155.]); He et al. (2012[He, J., Wang, X., Zhao, X., Liang, Y., He, H. & Fu, L. (2012). Eur. J. Med. Chem. 54, 925-930.]). For examples of related discrete complexes, see: Wattanakanjana et al. (2012[Wattanakanjana, Y., Pakawatchai, C., Kowittheeraphong, S. & Nimthong, R. (2012). Acta Cryst. E68, m1572-m1573.]); Lobana et al. (2008[Lobana, T. S., Sharma, R. S. & Butcher, R. J. (2008). Polyhedron, 27, 1375-1380.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2Cl2(CH5N3S)2(C18H15P)2]

  • Mr = 993.46

  • Triclinic, [P \overline 1]

  • a = 8.7845 (4) Å

  • b = 9.4656 (4) Å

  • c = 13.7529 (6) Å

  • α = 109.276 (1)°

  • β = 98.306 (1)°

  • γ = 99.739 (1)°

  • V = 1038.94 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 293 K

  • 0.38 × 0.30 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.638, Tmax = 0.880

  • 14302 measured reflections

  • 5026 independent reflections

  • 4627 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.069

  • S = 1.06

  • 5026 reflections

  • 251 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯Cl1i 0.87 (2) 2.67 (2) 3.535 (2) 171 (2)
N2—H2⋯S1ii 0.83 (2) 2.66 (2) 3.4320 (15) 155 (2)
N1—H1B⋯Cl1iii 0.85 (2) 2.63 (2) 3.4088 (16) 154 (2)
N1—H1A⋯Cl1 0.89 (2) 2.45 (2) 3.3239 (16) 170 (2)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+1; (iii) -x+2, -y+3, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metal(I) complexes of phosphine ligands have been extensively studied as precursors for preparing mixed-ligand complexes (Ferrari et al., 2007; Pakawatchai et al., 2012) having different geometries such as mononuclear and dinuclear. Thiosemicabazide and thiosemicarbazide derivatives, as well as their metal complexes, have recently attracted considerable attention because of their relevance in biological systems such as antitumor, antimicrobial, antibacterial and antifungal activities (Pandeya et al., 1999; Wujec et al., 2009; Mohareb et al., 2012; He et al., 2012). Herein, the crystal structure of a dinuclear silver(I) chloride complex containing triphenylphosphane and thiosemicarbazide is described.

The molecular structure of the title dinuclear compound is shown in Fig. 1. The molecule lies acroos a crystallographic inversion center which is at the center of the Ag2S2 core with a Ag···Ag separation of 2.7802 (7) Å. The bond angles around AgI ion are approximately in the range of 111.851 (15)–123.445 (15)°. Geometrical distortion from ideal angles (109.47°) can be explained by the need to accommodate the bulky triphenylphosphane groups. The P1—Ag1 bond length of 2.4225 (4) Å is slightly longer than that found in for example [Ag2(C6H7N2S)2(C18H15P)2], which is 2.4088 (6) Å (Wattanakanjana et al., 2012). The bridging Ag—S bond length (Ag1—S1 = 2.5202 (4) Å) is shorter than those observed in related silver(I) complexes containing S-bridged donor ligand, due to 2.5832 (8)–2.7208 (11) Å for [Ag2Cl2(l-S-pySH)2(PPh3)2] and 2.6306 (4)–2.6950 (7) Å for [Ag2Br2(l-S-pySH)2(PPh3)2] (Lobana et al., 2008). There is intramolecular N—H···Cl hydrogen bond with the geometry N1···Cl1 = 3.3239 (16) Å. In the crystal, an N1—H1B···Cl1 hydrogen bond connects molecules forming one dimensional chain alongs [010]. Each chain is linked through N2—H2···S1 and N3—H3B···Cl1 hydrogen bonds forming a layer parallel to (001) (Fig. 2). In addition, the layers are stacked via π···π stacking interactions [centroid–centroid distance = 3.665 (2) Å, centroid = C31—C36 ring] froming the three dimensional network (Fig. 3).

Related literature top

For metal(I) complexes of phosphine ligands as precursors for the preparation of mixed-ligand complexes, see: Ferrari et al. (2007); Pakawatchai et al. (2012). For potential applications of thiosemicarbazide derivatives and their metal complexes, see: Pandeya et al. (1999); Wujec et al. (2009); Mohareb & Mohamed (2012); He et al. (2012). For examples of related discrete complexes, see: Wattanakanjana et al. (2012); Lobana et al. (2008).

Experimental top

Triphenylphosphane (0.37 g, 1.41 mmol) was dissolved in 30 cm3 of acetonitrile at 335 K. AgCl (0.10 g, 0.70 mmol) was added and the mixture was stirred for 2.5 h. Thiosemicabazide (0.06 g, 0.66 mmol) was added and the new reaction mixture was heated under reflux for 5 h. The resulting clear solution was filtered off and left to evaporate at room temperature. The crystalline solid, which was deposited upon standing for few days, was filtered off and dried under reduced pressure.

Refinement top

All H atoms bonded to C atoms were constrained with a riding model of 0.93 Å, and Uiso(H) = 1.2Ueq(C). H atoms bonded to the N atoms were located in a difference Fourier map and refined isotropically, with restrained N—H distances 0.834 (16)–0.888 (16) Å with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure with N—H···S and N—H···Cl hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. Part of the crystal structure with ππ stacking interactions shown as dashed lines.
Di-µ-thiosemicarbazide- κ4S:S-bis[chloridobis(triphenylphosphane-κP)silver(I)] top
Crystal data top
[Ag2Cl2(CH5N3S)2(C18H15P)2]Z = 1
Mr = 993.46F(000) = 500
Triclinic, P1Dx = 1.588 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7845 (4) ÅCell parameters from 9010 reflections
b = 9.4656 (4) Åθ = 2.3–28.0°
c = 13.7529 (6) ŵ = 1.28 mm1
α = 109.276 (1)°T = 293 K
β = 98.306 (1)°Block, colorless
γ = 99.739 (1)°0.38 × 0.30 × 0.10 mm
V = 1038.94 (8) Å3
Data collection top
Bruker SMART CCD
diffractometer
5026 independent reflections
Radiation source: fine-focus sealed tube4627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Full–matrix least–squares on F2 scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1111
Tmin = 0.638, Tmax = 0.880k = 1212
14302 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0293P)2 + 0.2733P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
5026 reflectionsΔρmax = 0.38 e Å3
251 parametersΔρmin = 0.55 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0693 (18)
Crystal data top
[Ag2Cl2(CH5N3S)2(C18H15P)2]γ = 99.739 (1)°
Mr = 993.46V = 1038.94 (8) Å3
Triclinic, P1Z = 1
a = 8.7845 (4) ÅMo Kα radiation
b = 9.4656 (4) ŵ = 1.28 mm1
c = 13.7529 (6) ÅT = 293 K
α = 109.276 (1)°0.38 × 0.30 × 0.10 mm
β = 98.306 (1)°
Data collection top
Bruker SMART CCD
diffractometer
5026 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4627 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.880Rint = 0.036
14302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0265 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.38 e Å3
5026 reflectionsΔρmin = 0.55 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71808 (17)1.20926 (18)0.50782 (12)0.0350 (3)
C111.16762 (18)0.7721 (2)0.21780 (12)0.0418 (3)
C121.2004 (2)0.6279 (3)0.18680 (16)0.0564 (5)
H121.11940.54030.16750.068*
C131.3557 (3)0.6145 (3)0.18463 (19)0.0701 (6)
H131.37810.51770.16350.084*
C141.4747 (3)0.7429 (4)0.21342 (19)0.0712 (7)
H141.57780.73300.21110.085*
C151.4436 (2)0.8871 (3)0.24596 (17)0.0628 (6)
H151.52550.97410.26570.075*
C161.2904 (2)0.9025 (2)0.24935 (14)0.0481 (4)
H161.26950.99990.27270.058*
C210.84762 (18)0.61752 (19)0.20371 (13)0.0404 (3)
C220.7696 (2)0.5083 (2)0.10569 (15)0.0546 (4)
H220.77940.52840.04480.065*
C230.6776 (3)0.3701 (3)0.09818 (19)0.0678 (6)
H230.62570.29770.03220.081*
C240.6619 (3)0.3386 (3)0.1867 (2)0.0732 (6)
H240.60230.24390.18090.088*
C250.7351 (3)0.4481 (3)0.2851 (2)0.0789 (7)
H250.72280.42760.34560.095*
C260.8265 (3)0.5878 (3)0.29402 (17)0.0619 (5)
H260.87370.66180.36030.074*
C310.90601 (19)0.8272 (2)0.09696 (15)0.0447 (4)
C320.9697 (3)0.7705 (2)0.00965 (15)0.0562 (4)
H321.05250.72200.01470.067*
C330.9124 (3)0.7846 (3)0.08519 (19)0.0758 (7)
H330.95640.74630.14330.091*
C340.7892 (4)0.8561 (4)0.0922 (3)0.0916 (10)
H340.74830.86420.15590.110*
C350.7272 (3)0.9150 (4)0.0065 (3)0.0931 (10)
H350.64490.96390.01210.112*
C360.7850 (2)0.9031 (3)0.0888 (2)0.0666 (6)
H360.74320.94570.14720.080*
N10.82011 (18)1.32995 (18)0.51108 (14)0.0474 (3)
N20.57728 (17)1.22460 (17)0.52697 (14)0.0478 (3)
N30.5365 (2)1.3672 (2)0.54628 (19)0.0609 (5)
P10.96967 (5)0.80383 (5)0.22142 (3)0.03895 (10)
S10.75685 (4)1.02919 (4)0.47995 (3)0.03889 (10)
Cl11.13857 (6)1.28186 (5)0.41121 (4)0.05418 (12)
Ag10.977789 (17)1.016088 (15)0.381354 (12)0.05737 (8)
H1A0.912 (2)1.320 (3)0.4929 (19)0.069*
H1B0.797 (3)1.417 (2)0.530 (2)0.069*
H20.518 (3)1.146 (2)0.526 (2)0.069*
H3A0.528 (3)1.404 (3)0.6102 (14)0.069*
H3B0.443 (2)1.349 (3)0.5070 (18)0.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (7)0.0382 (7)0.0346 (7)0.0098 (6)0.0061 (5)0.0142 (6)
C110.0328 (7)0.0549 (10)0.0334 (7)0.0156 (7)0.0070 (6)0.0082 (7)
C120.0476 (10)0.0577 (11)0.0546 (10)0.0222 (9)0.0088 (8)0.0047 (9)
C130.0606 (13)0.0856 (17)0.0659 (13)0.0444 (13)0.0159 (10)0.0154 (12)
C140.0395 (10)0.116 (2)0.0689 (13)0.0367 (12)0.0176 (9)0.0363 (14)
C150.0352 (9)0.0982 (17)0.0597 (12)0.0118 (10)0.0102 (8)0.0366 (12)
C160.0377 (8)0.0630 (11)0.0454 (9)0.0119 (8)0.0088 (7)0.0218 (8)
C210.0336 (7)0.0431 (8)0.0419 (8)0.0124 (6)0.0080 (6)0.0107 (7)
C220.0610 (11)0.0483 (10)0.0432 (9)0.0011 (8)0.0152 (8)0.0063 (8)
C230.0743 (14)0.0492 (11)0.0610 (12)0.0057 (10)0.0126 (11)0.0063 (9)
C240.0709 (14)0.0592 (13)0.0896 (17)0.0004 (11)0.0118 (12)0.0368 (13)
C250.0872 (17)0.0848 (17)0.0714 (15)0.0060 (14)0.0063 (13)0.0483 (14)
C260.0638 (12)0.0692 (13)0.0483 (10)0.0083 (10)0.0014 (9)0.0249 (10)
C310.0343 (7)0.0401 (8)0.0552 (10)0.0030 (6)0.0044 (7)0.0166 (7)
C320.0637 (12)0.0529 (11)0.0468 (10)0.0099 (9)0.0097 (8)0.0141 (8)
C330.0969 (19)0.0617 (13)0.0547 (12)0.0107 (13)0.0015 (12)0.0234 (11)
C340.0875 (19)0.0859 (19)0.097 (2)0.0152 (15)0.0220 (16)0.0621 (18)
C350.0588 (14)0.100 (2)0.138 (3)0.0163 (14)0.0038 (16)0.078 (2)
C360.0438 (10)0.0688 (13)0.1000 (17)0.0183 (9)0.0158 (11)0.0442 (13)
N10.0388 (7)0.0386 (7)0.0699 (10)0.0106 (6)0.0169 (7)0.0230 (7)
N20.0372 (7)0.0396 (7)0.0729 (10)0.0145 (6)0.0200 (7)0.0226 (7)
N30.0468 (9)0.0477 (9)0.0920 (14)0.0236 (7)0.0164 (9)0.0234 (9)
P10.03125 (19)0.0388 (2)0.0393 (2)0.00988 (15)0.00878 (15)0.00323 (16)
S10.03454 (18)0.03454 (19)0.0490 (2)0.01021 (14)0.01279 (15)0.01437 (16)
Cl10.0497 (2)0.0406 (2)0.0713 (3)0.00658 (17)0.0195 (2)0.0183 (2)
Ag10.05604 (11)0.04168 (10)0.06025 (12)0.00514 (6)0.02583 (7)0.00213 (7)
Geometric parameters (Å, º) top
C1—N11.311 (2)C25—H250.9300
C1—N21.323 (2)C26—H260.9300
C1—S11.7236 (16)C31—C321.383 (3)
C11—C121.383 (3)C31—C361.391 (3)
C11—C161.391 (3)C31—P11.8184 (18)
C11—P11.8189 (16)C32—C331.386 (3)
C12—C131.394 (3)C32—H320.9300
C12—H120.9300C33—C341.377 (4)
C13—C141.364 (4)C33—H330.9300
C13—H130.9300C34—C351.360 (5)
C14—C151.377 (4)C34—H340.9300
C14—H140.9300C35—C361.383 (4)
C15—C161.384 (3)C35—H350.9300
C15—H150.9300C36—H360.9300
C16—H160.9300N1—H1A0.888 (16)
C21—C221.389 (2)N1—H1B0.851 (17)
C21—C261.391 (3)N2—N31.406 (2)
C21—P11.8221 (18)N2—H20.834 (16)
C22—C231.381 (3)N3—H3A0.851 (16)
C22—H220.9300N3—H3B0.870 (16)
C23—C241.366 (4)P1—Ag12.4225 (4)
C23—H230.9300S1—Ag12.5202 (4)
C24—C251.384 (4)Cl1—Ag12.5378 (5)
C24—H240.9300Ag1—Ag1i3.3502 (4)
C25—C261.383 (3)
N1—C1—N2119.02 (15)C32—C31—P1123.22 (14)
N1—C1—S1123.57 (12)C36—C31—P1118.21 (17)
N2—C1—S1117.41 (12)C31—C32—C33121.2 (2)
C12—C11—C16119.68 (16)C31—C32—H32119.4
C12—C11—P1123.64 (15)C33—C32—H32119.4
C16—C11—P1116.68 (13)C34—C33—C32119.1 (3)
C11—C12—C13119.7 (2)C34—C33—H33120.5
C11—C12—H12120.2C32—C33—H33120.5
C13—C12—H12120.2C35—C34—C33120.4 (2)
C14—C13—C12120.2 (2)C35—C34—H34119.8
C14—C13—H13119.9C33—C34—H34119.8
C12—C13—H13119.9C34—C35—C36120.9 (3)
C13—C14—C15120.57 (19)C34—C35—H35119.6
C13—C14—H14119.7C36—C35—H35119.6
C15—C14—H14119.7C35—C36—C31119.8 (3)
C14—C15—C16120.0 (2)C35—C36—H36120.1
C14—C15—H15120.0C31—C36—H36120.1
C16—C15—H15120.0C1—N1—H1A120.0 (17)
C15—C16—C11119.9 (2)C1—N1—H1B119.0 (18)
C15—C16—H16120.1H1A—N1—H1B121 (2)
C11—C16—H16120.1C1—N2—N3120.06 (15)
C22—C21—C26118.97 (18)C1—N2—H2115.7 (18)
C22—C21—P1123.40 (14)N3—N2—H2124.3 (19)
C26—C21—P1117.55 (14)N2—N3—H3A109.2 (19)
C23—C22—C21120.31 (19)N2—N3—H3B106.8 (18)
C23—C22—H22119.8H3A—N3—H3B107 (2)
C21—C22—H22119.8C31—P1—C11103.77 (8)
C24—C23—C22120.6 (2)C31—P1—C21103.33 (8)
C24—C23—H23119.7C11—P1—C21105.00 (8)
C22—C23—H23119.7C31—P1—Ag1117.05 (6)
C23—C24—C25119.7 (2)C11—P1—Ag1109.59 (5)
C23—C24—H24120.1C21—P1—Ag1116.71 (6)
C25—C24—H24120.1C1—S1—Ag1108.17 (5)
C26—C25—C24120.3 (2)P1—Ag1—S1123.445 (15)
C26—C25—H25119.8P1—Ag1—Cl1119.164 (17)
C24—C25—H25119.8S1—Ag1—Cl1111.851 (15)
C25—C26—C21120.0 (2)P1—Ag1—Ag1i122.531 (13)
C25—C26—H26120.0S1—Ag1—Ag1i58.885 (10)
C21—C26—H26120.0Cl1—Ag1—Ag1i105.880 (14)
C32—C31—C36118.6 (2)
C16—C11—C12—C131.8 (3)C36—C31—P1—C2191.93 (16)
P1—C11—C12—C13178.80 (17)C32—C31—P1—Ag1143.54 (15)
C11—C12—C13—C140.3 (4)C36—C31—P1—Ag137.84 (17)
C12—C13—C14—C150.7 (4)C12—C11—P1—C3196.91 (17)
C13—C14—C15—C160.2 (3)C16—C11—P1—C3183.68 (14)
C14—C15—C16—C111.3 (3)C12—C11—P1—C2111.23 (18)
C12—C11—C16—C152.3 (3)C16—C11—P1—C21168.18 (13)
P1—C11—C16—C15178.27 (14)C12—C11—P1—Ag1137.34 (15)
C26—C21—C22—C232.5 (3)C16—C11—P1—Ag142.07 (14)
P1—C21—C22—C23179.27 (18)C22—C21—P1—C3118.41 (17)
C21—C22—C23—C240.0 (4)C26—C21—P1—C31158.39 (15)
C22—C23—C24—C252.0 (4)C22—C21—P1—C1190.05 (16)
C23—C24—C25—C261.3 (5)C26—C21—P1—C1193.14 (16)
C24—C25—C26—C211.3 (4)C22—C21—P1—Ag1148.38 (14)
C22—C21—C26—C253.1 (3)C26—C21—P1—Ag128.42 (16)
P1—C21—C26—C25179.9 (2)N1—C1—S1—Ag121.93 (16)
C36—C31—C32—C331.7 (3)N2—C1—S1—Ag1158.21 (12)
P1—C31—C32—C33176.89 (16)C31—P1—Ag1—S196.31 (6)
C31—C32—C33—C340.2 (3)C11—P1—Ag1—S1145.95 (6)
C32—C33—C34—C351.4 (4)C21—P1—Ag1—S126.83 (6)
C33—C34—C35—C360.7 (4)C31—P1—Ag1—Cl155.26 (7)
C34—C35—C36—C311.3 (4)C11—P1—Ag1—Cl162.48 (7)
C32—C31—C36—C352.5 (3)C21—P1—Ag1—Cl1178.40 (6)
P1—C31—C36—C35176.20 (19)C31—P1—Ag1—Ag1i168.06 (6)
N1—C1—N2—N32.5 (3)C11—P1—Ag1—Ag1i74.21 (7)
S1—C1—N2—N3177.61 (15)C21—P1—Ag1—Ag1i44.92 (6)
C32—C31—P1—C1122.69 (18)C1—S1—Ag1—P1132.43 (5)
C36—C31—P1—C11158.69 (16)C1—S1—Ag1—Cl120.96 (6)
C32—C31—P1—C2186.69 (17)C1—S1—Ag1—Ag1i116.84 (5)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl1ii0.87 (2)2.67 (2)3.535 (2)171 (2)
N2—H2···S1iii0.83 (2)2.66 (2)3.4320 (15)155 (2)
N1—H1B···Cl1iv0.85 (2)2.63 (2)3.4088 (16)154 (2)
N1—H1A···Cl10.89 (2)2.45 (2)3.3239 (16)170 (2)
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x+2, y+3, z+1.

Experimental details

Crystal data
Chemical formula[Ag2Cl2(CH5N3S)2(C18H15P)2]
Mr993.46
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.7845 (4), 9.4656 (4), 13.7529 (6)
α, β, γ (°)109.276 (1), 98.306 (1), 99.739 (1)
V3)1038.94 (8)
Z1
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.38 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.638, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
14302, 5026, 4627
Rint0.036
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.06
No. of reflections5026
No. of parameters251
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.55

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl1i0.870 (16)2.673 (17)3.535 (2)171 (2)
N2—H2···S1ii0.834 (16)2.656 (19)3.4320 (15)155 (2)
N1—H1B···Cl1iii0.851 (17)2.625 (19)3.4088 (16)154 (2)
N1—H1A···Cl10.888 (16)2.446 (17)3.3239 (16)170 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1; (iii) x+2, y+3, z+1.
 

Acknowledgements

We gratefully acknowledge financial support from the Center for Innovation in Chemistry (PERCH–CIC), the Commission on Higher Education, Ministry of Education, the Department of Chemistry and the Graduate School, Prince of Songkla University.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerrari, M. B., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233–3240.  Web of Science CSD CrossRef Google Scholar
First citationHe, J., Wang, X., Zhao, X., Liang, Y., He, H. & Fu, L. (2012). Eur. J. Med. Chem. 54, 925–930.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLobana, T. S., Sharma, R. S. & Butcher, R. J. (2008). Polyhedron, 27, 1375–1380.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohareb, R. M. & Mohamed, A. A. (2012). Int. J. Pure. Appl. Chem. 2, 144–155.  CrossRef CAS Google Scholar
First citationPakawatchai, C., Jantaramas, P., Mokhagul, J. & Nimthong, R. (2012). Acta Cryst. E68, m1506–m1507.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25–31.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWattanakanjana, Y., Pakawatchai, C., Kowittheeraphong, S. & Nimthong, R. (2012). Acta Cryst. E68, m1572–m1573.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWujec, M., Stefańska, J., Siwek, A. & Tatarczak, M. (2009). Acta Polon. Pharm. Drug Res. 66, 73–82.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m83-m84
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds