metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

μ-Oxalato-bis­­[bis­­(tri­phenyl­phosphine)copper(I)] di­chloro­methane disolvate

aDepartment of Chemistry, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, USA, bDepartment of Chemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and cDepartment of Chemistry, University of California, San Diego, Urey Hall 5128, mail code 0358, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: royappa@uwf.edu

(Received 10 January 2013; accepted 21 January 2013; online 31 January 2013)

The dinuclear molecule of the title compound, [Cu2(C2O4)(C18H15P)4]·2CH2Cl2, lies across an inversion center with a strictly planar bridging oxalate ligand coordinating two CuI ions via two pairs of O atoms. Two triphenyl­phosphine ligands also coordinate each symmetry-related CuI ion, resulting in a distorted tetra­hedral geometry [O—Cu—O = 80.57 (5)° and P—Cu—P = 125.72 (2)°]. In the crystal, there are two dichloro­methane solvent mol­ecules for each dinuclear complex.

Related literature

For the applications of copper(I) oxalates, see: Doyle (1982[Doyle, G. (1982). US Patent 4347066.]); Köhler et al. (2003[Köhler, K., Eichhorn, J., Meyer, F. & Vidovic, D. (2003). Organometallics, 22, 4426-4432.]); Angamuthu et al. (2010[Angamuthu, R., Byers, P., Lutz, M., Spek, A. L. & Bouwman, E. (2010). Science, 327, 313-315.]). For a comprehensive patent covering CVD applications of copper(I) oxalates, see: Köhler & Meyer (2004[Köhler, K. & Meyer, F. (2004). World Patent WO 2004/000850.]). For related copper(I) oxalate complexes, see: Frosch et al. (2000[Frosch, W., Back, S., Rheinwald, G., Köhler, K., Zsolnai, L., Huttner, G. & Lang, H. (2000). Organometallics, 19, 5769-5779.]); He et al. (2008[He, Y., Li, J., Zhang, P., Chen, X., Ma, Y. & Han, Z. (2008). J. Coord. Chem. 61, 2876-2883.]); Teichgräber et al. (2005[Teichgräber, J., Dechert, S. & Meyer, F. (2005). J. Organomet. Chem. 690, 5255-5263.]). For the chemical fixation of CO2 to form oxalates, see: Savéant (2008[Savéant, J.-M. (2008). Chem. Rev. 108, 2348-2378.]). For an alternate synthesis of the title compound, see: Díez et al. (1988[Díez, J., Falagán, S., Gamasa, P. & Gimeno, J. (1988). Polyhedron, 7, 37-42.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2O4)(C18H15P)4]·2CH2Cl2

  • Mr = 1434.03

  • Monoclinic, P 21 /c

  • a = 13.4735 (4) Å

  • b = 14.7294 (4) Å

  • c = 18.2282 (6) Å

  • β = 109.255 (1)°

  • V = 3415.14 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa diffractometer equipped with a Photon100 CMOS detector

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.769, Tmax = 0.837

  • 27318 measured reflections

  • 6960 independent reflections

  • 5738 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.01

  • 6960 reflections

  • 406 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CHEMDRAW (Cambridgesoft, 2003[Cambridgesoft (2003). CHEMDRAW. Cambridgesoft Corporation, Cambridge, MA, USA.]).

Supporting information


Comment top

Though numerous copper(II) oxalate complexes are known, copper(I) oxalates as a family are poorly understood. Nevertheless, the latter compounds have important applications in, e.g., CO capture (Doyle, 1982), CVD of metallic copper (Köhler et al., 2003; Köhler & Meyer, 2004) and CO2 fixation (Angamuthu et al., 2010). Very few oxalato complexes of copper(I) have been structurally characterized, and those that have been studied crystallographically are organometallic species containing ligands bound to the copper(I) centers via carbon atoms (Köhler et al., 2003; Teichgräber et al., 2005). To date, no examples of copper(I) oxalate compounds containing triphenylphosphine ligands coordinated through the phosphorus atoms to the metal centers have been structurally characterized.

The molecular structure of the title compound is shown in Fig. 1. The dinuclear complex lies across an inversion center. In addition, the asymmetric unit contains a dichloromethane solvent. The CuI ions are bridged by a strictly planar oxalate ligand, with two oxygen atoms coordinated to each CuI ion. The coordination geometry at each CuI ion is distorted tetrahedral. The bite angle involving the oxalate ligand is fairly small (80.57 (5)°), while the two phosphorus atoms from the coordinated triphenylphosphine ligands form an angle of 125.72 (2)° with each symmetry-related CuI ion. A similar geometry is observed in the copper(I) oxalate isonitrile complexes studied previously (Teichgräber et al., 2005).

Related literature top

For the applications of copper(I) oxalates, see: Doyle (1982); Köhler et al. (2003); Angamuthu et al. (2010). For a comprehensive patent covering CVD applications of copper(I) oxalates, see: Köhler & Meyer (2004). For related copper(I) oxalate complexes, see: Frosch et al. (2000); He et al. (2008); Teichgräber et al. (2005). For the chemical fixation of CO2 to form oxalates, see: Savéant (2008). For an alternate synthesis of the title compound, see: Díez et al. (1988).

Experimental top

All manipulations were carried out on a Schlenk line under nitrogen unless otherwise mentioned. Initially, bis(tetrabutylammonium) oxalate was synthesized in situ by dissolving 1 ml of 1 M tetrabutylammonium hydroxide solution (in methanol; 1 mmol) and 0.045 g anhydrous oxalic acid (0.5 mmol) in 20 ml degassed absolute ethanol. Next, 0.526 g triphenylphosphine (2 mmol) were dissolved in this solution. Separately, 0.373 g tetrakis(acetonitrile)copper(I) hexafluorophosphate (1 mmol) were dissolved in 20 ml degassed absolute ethanol to form a cloudy solution, which was added to the oxalate solution. The product was formed by the metathesis reaction as a white precipitate, washed with 3 x 5 ml ice-cold degassed absolute ethanol, dried under a nitrogen stream and finally air-dried. Colorless block crystals were grown at room temperature from dichloromethane by layering with hexane under nitrogen. The title compound has also been prepared by Díez et al. (1988) by an alternate method.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95Å (phenyl) or C—H = 0.96Å (solvent CH2) and included in the refinement in a riding-motion approximation with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and CHEMDRAW (Cambridgesoft, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 30% probability level. Neither the H atoms nor the solvent molecules are shown (Symmetry code: (a) -x, -y+1, -z+1).
µ-Oxalato-bis[bis(triphenylphosphine)copper(I)] dichloromethane disolvate top
Crystal data top
[Cu2(C2O4)(C18H15P)4]·2CH2Cl2F(000) = 1476
Mr = 1434.03Dx = 1.395 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8477 reflections
a = 13.4735 (4) Åθ = 2.7–26.4°
b = 14.7294 (4) ŵ = 0.92 mm1
c = 18.2282 (6) ÅT = 100 K
β = 109.255 (1)°Block, colourless
V = 3415.14 (18) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker Kappa
diffractometer equipped with a Photon100 CMOS detector
6960 independent reflections
Radiation source: high-brilliance IµS microsource5738 reflections with I > 2σ(I)
Doubly curved mirrors monochromatorRint = 0.053
ϕ and ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1616
Tmin = 0.769, Tmax = 0.837k = 1818
27318 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0382P)2 + 2.6822P]
where P = (Fo2 + 2Fc2)/3
6960 reflections(Δ/σ)max = 0.002
406 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cu2(C2O4)(C18H15P)4]·2CH2Cl2V = 3415.14 (18) Å3
Mr = 1434.03Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.4735 (4) ŵ = 0.92 mm1
b = 14.7294 (4) ÅT = 100 K
c = 18.2282 (6) Å0.30 × 0.25 × 0.20 mm
β = 109.255 (1)°
Data collection top
Bruker Kappa
diffractometer equipped with a Photon100 CMOS detector
6960 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
5738 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 0.837Rint = 0.053
27318 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.01Δρmax = 0.83 e Å3
6960 reflectionsΔρmin = 0.55 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.125878 (19)0.366123 (17)0.583149 (14)0.01365 (8)
P10.07910 (4)0.22305 (4)0.55130 (3)0.01249 (12)
P20.28337 (4)0.41243 (4)0.65979 (3)0.01340 (12)
O10.10808 (11)0.44751 (10)0.48437 (8)0.0150 (3)
O20.00215 (11)0.44403 (10)0.58463 (8)0.0159 (3)
C10.03183 (15)0.50110 (14)0.47093 (11)0.0122 (4)
C20.18062 (16)0.13501 (14)0.57999 (11)0.0137 (4)
C30.25280 (17)0.13802 (15)0.65523 (12)0.0171 (4)
H3A0.25190.18780.68810.021*
C40.32562 (17)0.06921 (16)0.68236 (12)0.0210 (5)
H4A0.37370.07160.73390.025*
C50.32864 (17)0.00325 (15)0.63458 (13)0.0207 (5)
H5A0.37790.05100.65350.025*
C60.25906 (17)0.00560 (15)0.55883 (13)0.0193 (5)
H6A0.26210.05430.52550.023*
C70.18551 (17)0.06262 (14)0.53183 (12)0.0158 (4)
H7A0.13790.06020.48010.019*
C80.01994 (16)0.17979 (14)0.59146 (11)0.0149 (4)
C90.01072 (18)0.09664 (15)0.62985 (12)0.0189 (5)
H9A0.04940.05970.63660.023*
C100.08918 (19)0.06765 (16)0.65827 (13)0.0247 (5)
H10A0.08190.01140.68500.030*
C110.17783 (19)0.12024 (16)0.64786 (13)0.0244 (5)
H11A0.23180.09990.66680.029*
C120.18743 (18)0.20289 (17)0.60956 (13)0.0246 (5)
H12A0.24850.23890.60190.029*
C130.10859 (17)0.23327 (15)0.58236 (12)0.0197 (5)
H13A0.11500.29070.55750.024*
C140.01648 (16)0.20439 (14)0.44683 (11)0.0141 (4)
C150.05785 (17)0.13649 (15)0.41739 (12)0.0179 (4)
H15A0.07800.09820.45200.021*
C160.10276 (19)0.12437 (15)0.33775 (12)0.0219 (5)
H16A0.15450.07870.31800.026*
C170.07221 (19)0.17883 (16)0.28711 (12)0.0240 (5)
H17A0.10210.16980.23260.029*
C180.00167 (19)0.24642 (16)0.31567 (13)0.0243 (5)
H18A0.02260.28360.28070.029*
C190.04551 (17)0.26022 (15)0.39536 (12)0.0179 (4)
H19A0.09510.30760.41480.021*
C200.31334 (16)0.41751 (14)0.76456 (11)0.0148 (4)
C210.25409 (18)0.36501 (15)0.79846 (13)0.0203 (5)
H21A0.19670.33010.76660.024*
C220.27853 (19)0.36349 (16)0.87860 (13)0.0241 (5)
H22A0.23800.32740.90140.029*
C230.36174 (19)0.41440 (16)0.92545 (12)0.0226 (5)
H23A0.37880.41270.98030.027*
C240.41993 (18)0.46772 (16)0.89227 (12)0.0221 (5)
H24A0.47660.50310.92450.027*
C250.39610 (17)0.46986 (15)0.81225 (12)0.0181 (4)
H25A0.43610.50700.78980.022*
C260.38700 (16)0.34037 (14)0.64731 (12)0.0147 (4)
C270.46538 (17)0.29877 (15)0.70808 (13)0.0195 (5)
H27A0.47050.31080.76040.023*
C280.53603 (19)0.23968 (16)0.69202 (15)0.0269 (5)
H28A0.58850.21060.73350.032*
C290.53046 (19)0.22288 (16)0.61622 (15)0.0285 (6)
H29A0.57930.18280.60560.034*
C300.4533 (2)0.26483 (16)0.55562 (14)0.0272 (5)
H30A0.44990.25410.50350.033*
C310.38112 (18)0.32224 (16)0.57094 (12)0.0216 (5)
H31A0.32730.34940.52920.026*
C320.31737 (17)0.52613 (14)0.63571 (11)0.0170 (4)
C330.24358 (19)0.59455 (16)0.62971 (13)0.0246 (5)
H33A0.18000.58110.63930.029*
C340.2629 (2)0.68252 (17)0.60975 (15)0.0343 (6)
H34A0.21280.72910.60630.041*
C350.3542 (2)0.70211 (18)0.59500 (15)0.0372 (7)
H35A0.36670.76190.58070.045*
C360.4276 (2)0.63505 (18)0.60101 (15)0.0340 (6)
H36A0.49100.64900.59130.041*
C370.40962 (19)0.54707 (16)0.62126 (13)0.0245 (5)
H37A0.46060.50120.62520.029*
Cl10.26132 (6)0.38380 (5)0.35916 (4)0.04137 (18)
Cl20.32029 (5)0.57549 (5)0.36247 (4)0.04004 (17)
C380.2329 (3)0.4967 (2)0.3772 (3)0.0854 (16)
H38B0.16100.51180.34280.102*
H38A0.23370.50150.43160.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01215 (14)0.01202 (14)0.01490 (13)0.00153 (10)0.00195 (10)0.00055 (10)
P10.0126 (3)0.0118 (3)0.0126 (2)0.0010 (2)0.0035 (2)0.00036 (19)
P20.0116 (3)0.0140 (3)0.0135 (2)0.0009 (2)0.0027 (2)0.0001 (2)
O10.0134 (7)0.0150 (7)0.0178 (7)0.0033 (6)0.0065 (6)0.0027 (6)
O20.0168 (8)0.0157 (7)0.0163 (7)0.0029 (6)0.0070 (6)0.0035 (6)
C10.0108 (10)0.0102 (10)0.0142 (9)0.0025 (8)0.0021 (8)0.0034 (8)
C20.0128 (10)0.0138 (10)0.0161 (10)0.0008 (8)0.0071 (8)0.0040 (8)
C30.0175 (11)0.0155 (11)0.0178 (10)0.0000 (9)0.0052 (8)0.0012 (8)
C40.0169 (11)0.0255 (12)0.0172 (10)0.0022 (9)0.0010 (9)0.0031 (9)
C50.0147 (11)0.0189 (11)0.0289 (11)0.0047 (9)0.0079 (9)0.0070 (9)
C60.0205 (11)0.0160 (11)0.0246 (11)0.0016 (9)0.0119 (9)0.0007 (9)
C70.0150 (10)0.0173 (11)0.0165 (10)0.0006 (9)0.0070 (8)0.0001 (8)
C80.0151 (10)0.0170 (11)0.0121 (9)0.0026 (9)0.0038 (8)0.0031 (8)
C90.0204 (11)0.0182 (11)0.0201 (10)0.0006 (9)0.0092 (9)0.0009 (9)
C100.0322 (14)0.0218 (12)0.0230 (11)0.0067 (10)0.0131 (10)0.0004 (9)
C110.0248 (13)0.0285 (13)0.0248 (12)0.0102 (10)0.0148 (10)0.0090 (10)
C120.0174 (12)0.0282 (13)0.0299 (12)0.0016 (10)0.0103 (10)0.0094 (10)
C130.0183 (11)0.0191 (12)0.0223 (11)0.0003 (9)0.0077 (9)0.0035 (9)
C140.0131 (10)0.0143 (10)0.0144 (9)0.0040 (8)0.0039 (8)0.0001 (8)
C150.0184 (11)0.0163 (11)0.0170 (10)0.0003 (9)0.0032 (8)0.0023 (8)
C160.0226 (12)0.0179 (12)0.0201 (11)0.0022 (9)0.0001 (9)0.0008 (9)
C170.0293 (13)0.0243 (12)0.0140 (10)0.0026 (10)0.0012 (9)0.0003 (9)
C180.0319 (13)0.0220 (12)0.0197 (11)0.0023 (10)0.0095 (10)0.0040 (9)
C190.0186 (11)0.0171 (11)0.0182 (10)0.0012 (9)0.0063 (9)0.0007 (8)
C200.0142 (10)0.0146 (11)0.0157 (10)0.0025 (8)0.0052 (8)0.0010 (8)
C210.0191 (11)0.0214 (12)0.0216 (11)0.0034 (9)0.0083 (9)0.0048 (9)
C220.0282 (13)0.0256 (13)0.0242 (11)0.0035 (10)0.0162 (10)0.0003 (9)
C230.0270 (13)0.0261 (13)0.0158 (10)0.0015 (10)0.0087 (9)0.0012 (9)
C240.0204 (12)0.0251 (12)0.0196 (10)0.0029 (10)0.0049 (9)0.0040 (9)
C250.0160 (11)0.0211 (12)0.0174 (10)0.0002 (9)0.0056 (8)0.0007 (9)
C260.0147 (10)0.0120 (10)0.0193 (10)0.0003 (8)0.0079 (8)0.0001 (8)
C270.0161 (11)0.0199 (12)0.0210 (10)0.0019 (9)0.0040 (9)0.0003 (9)
C280.0171 (12)0.0220 (12)0.0395 (14)0.0045 (10)0.0066 (10)0.0019 (10)
C290.0240 (13)0.0196 (12)0.0497 (15)0.0025 (10)0.0226 (12)0.0036 (11)
C300.0363 (14)0.0220 (13)0.0315 (13)0.0033 (11)0.0221 (11)0.0058 (10)
C310.0258 (12)0.0206 (12)0.0192 (10)0.0007 (10)0.0088 (9)0.0020 (9)
C320.0178 (11)0.0154 (11)0.0144 (9)0.0003 (9)0.0007 (8)0.0005 (8)
C330.0194 (12)0.0204 (12)0.0273 (12)0.0023 (10)0.0013 (9)0.0004 (10)
C340.0358 (15)0.0176 (13)0.0365 (14)0.0076 (11)0.0056 (11)0.0019 (11)
C350.0493 (17)0.0201 (13)0.0329 (14)0.0060 (12)0.0012 (12)0.0103 (11)
C360.0391 (16)0.0296 (14)0.0358 (14)0.0068 (12)0.0158 (12)0.0087 (11)
C370.0259 (13)0.0227 (12)0.0254 (11)0.0005 (10)0.0091 (10)0.0048 (10)
Cl10.0484 (4)0.0482 (4)0.0329 (3)0.0163 (3)0.0207 (3)0.0031 (3)
Cl20.0320 (4)0.0366 (4)0.0549 (4)0.0016 (3)0.0188 (3)0.0048 (3)
C380.069 (3)0.053 (2)0.173 (4)0.033 (2)0.092 (3)0.070 (3)
Geometric parameters (Å, º) top
Cu1—O22.0794 (14)C17—C181.382 (3)
Cu1—O12.1099 (14)C17—H17A0.9500
Cu1—P12.2213 (6)C18—C191.391 (3)
Cu1—P22.2281 (6)C18—H18A0.9500
P1—C141.831 (2)C19—H19A0.9500
P1—C21.832 (2)C20—C211.394 (3)
P1—C81.835 (2)C20—C251.398 (3)
P2—C201.819 (2)C21—C221.388 (3)
P2—C261.827 (2)C21—H21A0.9500
P2—C321.828 (2)C22—C231.385 (3)
O1—C11.254 (2)C22—H22A0.9500
O2—C1i1.254 (2)C23—C241.382 (3)
C1—O2i1.254 (2)C23—H23A0.9500
C1—C1i1.568 (4)C24—C251.387 (3)
C2—C31.396 (3)C24—H24A0.9500
C2—C71.396 (3)C25—H25A0.9500
C3—C41.384 (3)C26—C311.394 (3)
C3—H3A0.9500C26—C271.395 (3)
C4—C51.387 (3)C27—C281.390 (3)
C4—H4A0.9500C27—H27A0.9500
C5—C61.390 (3)C28—C291.381 (3)
C5—H5A0.9500C28—H28A0.9500
C6—C71.383 (3)C29—C301.388 (4)
C6—H6A0.9500C29—H29A0.9500
C7—H7A0.9500C30—C311.384 (3)
C8—C131.394 (3)C30—H30A0.9500
C8—C91.396 (3)C31—H31A0.9500
C9—C101.389 (3)C32—C371.388 (3)
C9—H9A0.9500C32—C331.394 (3)
C10—C111.383 (3)C33—C341.393 (4)
C10—H10A0.9500C33—H33A0.9500
C11—C121.388 (3)C34—C351.374 (4)
C11—H11A0.9500C34—H34A0.9500
C12—C131.386 (3)C35—C361.376 (4)
C12—H12A0.9500C35—H35A0.9500
C13—H13A0.9500C36—C371.390 (3)
C14—C151.392 (3)C36—H36A0.9500
C14—C191.397 (3)C37—H37A0.9500
C15—C161.388 (3)Cl1—C381.761 (4)
C15—H15A0.9500Cl2—C381.737 (3)
C16—C171.384 (3)C38—H38B0.9900
C16—H16A0.9500C38—H38A0.9900
O2—Cu1—O180.57 (5)C18—C17—H17A119.9
O2—Cu1—P1111.21 (4)C16—C17—H17A119.9
O1—Cu1—P1111.92 (4)C17—C18—C19120.2 (2)
O2—Cu1—P2116.46 (4)C17—C18—H18A119.9
O1—Cu1—P2100.25 (4)C19—C18—H18A119.9
P1—Cu1—P2125.72 (2)C18—C19—C14119.9 (2)
C14—P1—C2103.61 (9)C18—C19—H19A120.0
C14—P1—C8102.50 (9)C14—C19—H19A120.0
C2—P1—C8102.30 (9)C21—C20—C25119.10 (19)
C14—P1—Cu1114.07 (7)C21—C20—P2118.78 (16)
C2—P1—Cu1118.44 (7)C25—C20—P2122.08 (16)
C8—P1—Cu1113.96 (7)C22—C21—C20120.3 (2)
C20—P2—C26103.91 (9)C22—C21—H21A119.9
C20—P2—C32103.18 (9)C20—C21—H21A119.9
C26—P2—C32103.90 (10)C23—C22—C21120.2 (2)
C20—P2—Cu1120.45 (7)C23—C22—H22A119.9
C26—P2—Cu1110.67 (7)C21—C22—H22A119.9
C32—P2—Cu1113.10 (7)C24—C23—C22119.9 (2)
C1—O1—Cu1112.31 (12)C24—C23—H23A120.0
C1i—O2—Cu1112.97 (12)C22—C23—H23A120.0
O2i—C1—O1125.87 (18)C23—C24—C25120.3 (2)
O2i—C1—C1i117.4 (2)C23—C24—H24A119.8
O1—C1—C1i116.8 (2)C25—C24—H24A119.8
C3—C2—C7118.68 (19)C24—C25—C20120.1 (2)
C3—C2—P1118.08 (16)C24—C25—H25A119.9
C7—C2—P1123.14 (16)C20—C25—H25A119.9
C4—C3—C2120.7 (2)C31—C26—C27119.2 (2)
C4—C3—H3A119.7C31—C26—P2116.21 (16)
C2—C3—H3A119.7C27—C26—P2124.47 (16)
C3—C4—C5120.2 (2)C28—C27—C26120.0 (2)
C3—C4—H4A119.9C28—C27—H27A120.0
C5—C4—H4A119.9C26—C27—H27A120.0
C4—C5—C6119.5 (2)C29—C28—C27120.5 (2)
C4—C5—H5A120.2C29—C28—H28A119.7
C6—C5—H5A120.2C27—C28—H28A119.7
C7—C6—C5120.3 (2)C28—C29—C30119.7 (2)
C7—C6—H6A119.8C28—C29—H29A120.1
C5—C6—H6A119.8C30—C29—H29A120.1
C6—C7—C2120.52 (19)C31—C30—C29120.2 (2)
C6—C7—H7A119.7C31—C30—H30A119.9
C2—C7—H7A119.7C29—C30—H30A119.9
C13—C8—C9119.1 (2)C30—C31—C26120.4 (2)
C13—C8—P1117.61 (16)C30—C31—H31A119.8
C9—C8—P1123.27 (16)C26—C31—H31A119.8
C10—C9—C8120.3 (2)C37—C32—C33119.0 (2)
C10—C9—H9A119.9C37—C32—P2124.09 (17)
C8—C9—H9A119.9C33—C32—P2116.90 (17)
C11—C10—C9120.4 (2)C34—C33—C32120.2 (2)
C11—C10—H10A119.8C34—C33—H33A119.9
C9—C10—H10A119.8C32—C33—H33A119.9
C10—C11—C12119.5 (2)C35—C34—C33120.2 (2)
C10—C11—H11A120.2C35—C34—H34A119.9
C12—C11—H11A120.2C33—C34—H34A119.9
C13—C12—C11120.5 (2)C34—C35—C36120.0 (2)
C13—C12—H12A119.7C34—C35—H35A120.0
C11—C12—H12A119.7C36—C35—H35A120.0
C12—C13—C8120.2 (2)C35—C36—C37120.4 (3)
C12—C13—H13A119.9C35—C36—H36A119.8
C8—C13—H13A119.9C37—C36—H36A119.8
C15—C14—C19119.30 (19)C32—C37—C36120.2 (2)
C15—C14—P1122.34 (16)C32—C37—H37A119.9
C19—C14—P1118.36 (16)C36—C37—H37A119.9
C16—C15—C14120.4 (2)Cl2—C38—Cl1113.68 (18)
C16—C15—H15A119.8Cl2—C38—H38B108.8
C14—C15—H15A119.8Cl1—C38—H38B108.8
C17—C16—C15120.0 (2)Cl2—C38—H38A108.8
C17—C16—H16A120.0Cl1—C38—H38A108.8
C15—C16—H16A120.0H38B—C38—H38A107.7
C18—C17—C16120.1 (2)
O2—Cu1—P1—C1479.79 (8)C8—P1—C14—C1526.7 (2)
O1—Cu1—P1—C148.32 (9)Cu1—P1—C14—C15150.37 (15)
P2—Cu1—P1—C14130.02 (7)C2—P1—C14—C19100.01 (17)
O2—Cu1—P1—C2157.87 (8)C8—P1—C14—C19153.83 (17)
O1—Cu1—P1—C2114.03 (8)Cu1—P1—C14—C1930.14 (18)
P2—Cu1—P1—C27.68 (8)C19—C14—C15—C160.1 (3)
O2—Cu1—P1—C837.48 (8)P1—C14—C15—C16179.54 (17)
O1—Cu1—P1—C8125.58 (8)C14—C15—C16—C171.2 (3)
P2—Cu1—P1—C8112.72 (7)C15—C16—C17—C181.1 (4)
O2—Cu1—P2—C2061.84 (9)C16—C17—C18—C190.2 (4)
O1—Cu1—P2—C20146.33 (9)C17—C18—C19—C141.4 (3)
P1—Cu1—P2—C2086.99 (8)C15—C14—C19—C181.2 (3)
O2—Cu1—P2—C26176.83 (8)P1—C14—C19—C18178.27 (17)
O1—Cu1—P2—C2692.34 (8)C26—P2—C20—C21102.92 (18)
P1—Cu1—P2—C2634.34 (8)C32—P2—C20—C21148.89 (17)
O2—Cu1—P2—C3260.73 (9)Cu1—P2—C20—C2121.7 (2)
O1—Cu1—P2—C3223.77 (9)C26—P2—C20—C2574.82 (19)
P1—Cu1—P2—C32150.44 (8)C32—P2—C20—C2533.4 (2)
O2—Cu1—O1—C11.49 (13)Cu1—P2—C20—C25160.60 (15)
P1—Cu1—O1—C1107.70 (13)C25—C20—C21—C221.3 (3)
P2—Cu1—O1—C1116.89 (13)P2—C20—C21—C22176.49 (18)
O1—Cu1—O2—C1i1.51 (13)C20—C21—C22—C230.3 (3)
P1—Cu1—O2—C1i108.46 (13)C21—C22—C23—C240.7 (4)
P2—Cu1—O2—C1i98.33 (13)C22—C23—C24—C250.6 (4)
Cu1—O1—C1—O2i178.72 (16)C23—C24—C25—C200.5 (3)
Cu1—O1—C1—C1i1.2 (3)C21—C20—C25—C241.4 (3)
C14—P1—C2—C3171.60 (16)P2—C20—C25—C24176.32 (17)
C8—P1—C2—C382.10 (18)C20—P2—C26—C31177.94 (17)
Cu1—P1—C2—C344.12 (18)C32—P2—C26—C3174.41 (18)
C14—P1—C2—C712.1 (2)Cu1—P2—C26—C3147.28 (18)
C8—P1—C2—C794.24 (18)C20—P2—C26—C272.3 (2)
Cu1—P1—C2—C7139.54 (15)C32—P2—C26—C27109.95 (19)
C7—C2—C3—C42.0 (3)Cu1—P2—C26—C27128.36 (18)
P1—C2—C3—C4174.51 (17)C31—C26—C27—C280.4 (3)
C2—C3—C4—C50.9 (3)P2—C26—C27—C28175.17 (17)
C3—C4—C5—C61.0 (3)C26—C27—C28—C291.1 (4)
C4—C5—C6—C71.6 (3)C27—C28—C29—C300.5 (4)
C5—C6—C7—C20.5 (3)C28—C29—C30—C310.9 (4)
C3—C2—C7—C61.3 (3)C29—C30—C31—C261.7 (4)
P1—C2—C7—C6174.98 (16)C27—C26—C31—C301.1 (3)
C14—P1—C8—C1375.12 (17)P2—C26—C31—C30176.95 (18)
C2—P1—C8—C13177.72 (16)C20—P2—C32—C37101.43 (19)
Cu1—P1—C8—C1348.64 (17)C26—P2—C32—C376.8 (2)
C14—P1—C8—C9104.56 (18)Cu1—P2—C32—C37126.83 (17)
C2—P1—C8—C92.60 (19)C20—P2—C32—C3380.39 (18)
Cu1—P1—C8—C9131.68 (16)C26—P2—C32—C33171.41 (16)
C13—C8—C9—C100.2 (3)Cu1—P2—C32—C3351.35 (18)
P1—C8—C9—C10179.45 (17)C37—C32—C33—C340.2 (3)
C8—C9—C10—C110.9 (3)P2—C32—C33—C34178.49 (17)
C9—C10—C11—C120.8 (3)C32—C33—C34—C350.7 (4)
C10—C11—C12—C130.5 (3)C33—C34—C35—C360.9 (4)
C11—C12—C13—C81.7 (3)C34—C35—C36—C370.6 (4)
C9—C8—C13—C121.5 (3)C33—C32—C37—C360.1 (3)
P1—C8—C13—C12178.17 (16)P2—C32—C37—C36178.04 (18)
C2—P1—C14—C1579.48 (19)C35—C36—C37—C320.1 (4)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C2O4)(C18H15P)4]·2CH2Cl2
Mr1434.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.4735 (4), 14.7294 (4), 18.2282 (6)
β (°) 109.255 (1)
V3)3415.14 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa
diffractometer equipped with a Photon100 CMOS detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.769, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
27318, 6960, 5738
Rint0.053
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.01
No. of reflections6960
No. of parameters406
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.55

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008) and CHEMDRAW (Cambridgesoft, 2003).

 

Footnotes

ATR dedicates this paper to the honor of Professor S. Peter Tanner for rekindling a love of inorganic chemistry.

Acknowledgements

ATR and ADR thank the Office of Research and Sponsored Programs at the University of West Florida for financial support.

References

First citationAngamuthu, R., Byers, P., Lutz, M., Spek, A. L. & Bouwman, E. (2010). Science, 327, 313–315.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCambridgesoft (2003). CHEMDRAW. Cambridgesoft Corporation, Cambridge, MA, USA.  Google Scholar
First citationDíez, J., Falagán, S., Gamasa, P. & Gimeno, J. (1988). Polyhedron, 7, 37–42.  Google Scholar
First citationDoyle, G. (1982). US Patent 4347066.  Google Scholar
First citationFrosch, W., Back, S., Rheinwald, G., Köhler, K., Zsolnai, L., Huttner, G. & Lang, H. (2000). Organometallics, 19, 5769–5779.  Web of Science CSD CrossRef CAS Google Scholar
First citationHe, Y., Li, J., Zhang, P., Chen, X., Ma, Y. & Han, Z. (2008). J. Coord. Chem. 61, 2876–2883.  Web of Science CSD CrossRef CAS Google Scholar
First citationKöhler, K., Eichhorn, J., Meyer, F. & Vidovic, D. (2003). Organometallics, 22, 4426–4432.  Google Scholar
First citationKöhler, K. & Meyer, F. (2004). World Patent WO 2004/000850.  Google Scholar
First citationSavéant, J.-M. (2008). Chem. Rev. 108, 2348–2378.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeichgräber, J., Dechert, S. & Meyer, F. (2005). J. Organomet. Chem. 690, 5255–5263.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds