metal-organic compounds
A correction has been published for this article. To view the correction, click here.
μ-Oxalato-bis[bis(triphenylphosphine)copper(I)] dichloromethane disolvate†
aDepartment of Chemistry, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, USA, bDepartment of Chemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and cDepartment of Chemistry, University of California, San Diego, Urey Hall 5128, mail code 0358, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: royappa@uwf.edu
The dinuclear molecule of the title compound, [Cu2(C2O4)(C18H15P)4]·2CH2Cl2, lies across an inversion center with a strictly planar bridging oxalate ligand coordinating two CuI ions via two pairs of O atoms. Two triphenylphosphine ligands also coordinate each symmetry-related CuI ion, resulting in a distorted tetrahedral geometry [O—Cu—O = 80.57 (5)° and P—Cu—P = 125.72 (2)°]. In the crystal, there are two dichloromethane solvent molecules for each dinuclear complex.
Related literature
For the applications of copper(I) oxalates, see: Doyle (1982); Köhler et al. (2003); Angamuthu et al. (2010). For a comprehensive patent covering CVD applications of copper(I) oxalates, see: Köhler & Meyer (2004). For related copper(I) oxalate complexes, see: Frosch et al. (2000); He et al. (2008); Teichgräber et al. (2005). For the chemical fixation of CO2 to form oxalates, see: Savéant (2008). For an alternate synthesis of the title compound, see: Díez et al. (1988).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and CHEMDRAW (Cambridgesoft, 2003).
Supporting information
10.1107/S1600536813002080/lh5575sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813002080/lh5575Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813002080/lh5575Isup3.cdx
All manipulations were carried out on a Schlenk line under nitrogen unless otherwise mentioned. Initially, bis(tetrabutylammonium) oxalate was synthesized in situ by dissolving 1 ml of 1 M tetrabutylammonium hydroxide solution (in methanol; 1 mmol) and 0.045 g anhydrous oxalic acid (0.5 mmol) in 20 ml degassed absolute ethanol. Next, 0.526 g triphenylphosphine (2 mmol) were dissolved in this solution. Separately, 0.373 g tetrakis(acetonitrile)copper(I) hexafluorophosphate (1 mmol) were dissolved in 20 ml degassed absolute ethanol to form a cloudy solution, which was added to the oxalate solution. The product was formed by the metathesis reaction as a white precipitate, washed with 3 x 5 ml ice-cold degassed absolute ethanol, dried under a nitrogen stream and finally air-dried. Colorless block crystals were grown at room temperature from dichloromethane by layering with hexane under nitrogen. The title compound has also been prepared by Díez et al. (1988) by an alternate method.
H atoms were placed in calculated positions with C—H = 0.95Å (phenyl) or C—H = 0.96Å (solvent CH2) and included in the
in a riding-motion approximation with Uiso(H) = 1.2Ueq(C).Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and CHEMDRAW (Cambridgesoft, 2003).[Cu2(C2O4)(C18H15P)4]·2CH2Cl2 | F(000) = 1476 |
Mr = 1434.03 | Dx = 1.395 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8477 reflections |
a = 13.4735 (4) Å | θ = 2.7–26.4° |
b = 14.7294 (4) Å | µ = 0.92 mm−1 |
c = 18.2282 (6) Å | T = 100 K |
β = 109.255 (1)° | Block, colourless |
V = 3415.14 (18) Å3 | 0.30 × 0.25 × 0.20 mm |
Z = 2 |
Bruker Kappa diffractometer equipped with a Photon100 CMOS detector | 6960 independent reflections |
Radiation source: high-brilliance IµS microsource | 5738 reflections with I > 2σ(I) |
Doubly curved mirrors monochromator | Rint = 0.053 |
ϕ and ω scans | θmax = 26.4°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −16→16 |
Tmin = 0.769, Tmax = 0.837 | k = −18→18 |
27318 measured reflections | l = −22→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0382P)2 + 2.6822P] where P = (Fo2 + 2Fc2)/3 |
6960 reflections | (Δ/σ)max = 0.002 |
406 parameters | Δρmax = 0.83 e Å−3 |
0 restraints | Δρmin = −0.55 e Å−3 |
[Cu2(C2O4)(C18H15P)4]·2CH2Cl2 | V = 3415.14 (18) Å3 |
Mr = 1434.03 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.4735 (4) Å | µ = 0.92 mm−1 |
b = 14.7294 (4) Å | T = 100 K |
c = 18.2282 (6) Å | 0.30 × 0.25 × 0.20 mm |
β = 109.255 (1)° |
Bruker Kappa diffractometer equipped with a Photon100 CMOS detector | 6960 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 5738 reflections with I > 2σ(I) |
Tmin = 0.769, Tmax = 0.837 | Rint = 0.053 |
27318 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.83 e Å−3 |
6960 reflections | Δρmin = −0.55 e Å−3 |
406 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.125878 (19) | 0.366123 (17) | 0.583149 (14) | 0.01365 (8) | |
P1 | 0.07910 (4) | 0.22305 (4) | 0.55130 (3) | 0.01249 (12) | |
P2 | 0.28337 (4) | 0.41243 (4) | 0.65979 (3) | 0.01340 (12) | |
O1 | 0.10808 (11) | 0.44751 (10) | 0.48437 (8) | 0.0150 (3) | |
O2 | −0.00215 (11) | 0.44403 (10) | 0.58463 (8) | 0.0159 (3) | |
C1 | 0.03183 (15) | 0.50110 (14) | 0.47093 (11) | 0.0122 (4) | |
C2 | 0.18062 (16) | 0.13501 (14) | 0.57999 (11) | 0.0137 (4) | |
C3 | 0.25280 (17) | 0.13802 (15) | 0.65523 (12) | 0.0171 (4) | |
H3A | 0.2519 | 0.1878 | 0.6881 | 0.021* | |
C4 | 0.32562 (17) | 0.06921 (16) | 0.68236 (12) | 0.0210 (5) | |
H4A | 0.3737 | 0.0716 | 0.7339 | 0.025* | |
C5 | 0.32864 (17) | −0.00325 (15) | 0.63458 (13) | 0.0207 (5) | |
H5A | 0.3779 | −0.0510 | 0.6535 | 0.025* | |
C6 | 0.25906 (17) | −0.00560 (15) | 0.55883 (13) | 0.0193 (5) | |
H6A | 0.2621 | −0.0543 | 0.5255 | 0.023* | |
C7 | 0.18551 (17) | 0.06262 (14) | 0.53183 (12) | 0.0158 (4) | |
H7A | 0.1379 | 0.0602 | 0.4801 | 0.019* | |
C8 | −0.01994 (16) | 0.17979 (14) | 0.59146 (11) | 0.0149 (4) | |
C9 | −0.01072 (18) | 0.09664 (15) | 0.62985 (12) | 0.0189 (5) | |
H9A | 0.0494 | 0.0597 | 0.6366 | 0.023* | |
C10 | −0.08918 (19) | 0.06765 (16) | 0.65827 (13) | 0.0247 (5) | |
H10A | −0.0819 | 0.0114 | 0.6850 | 0.030* | |
C11 | −0.17783 (19) | 0.12024 (16) | 0.64786 (13) | 0.0244 (5) | |
H11A | −0.2318 | 0.0999 | 0.6668 | 0.029* | |
C12 | −0.18743 (18) | 0.20289 (17) | 0.60956 (13) | 0.0246 (5) | |
H12A | −0.2485 | 0.2389 | 0.6019 | 0.029* | |
C13 | −0.10859 (17) | 0.23327 (15) | 0.58236 (12) | 0.0197 (5) | |
H13A | −0.1150 | 0.2907 | 0.5575 | 0.024* | |
C14 | 0.01648 (16) | 0.20439 (14) | 0.44683 (11) | 0.0141 (4) | |
C15 | −0.05785 (17) | 0.13649 (15) | 0.41739 (12) | 0.0179 (4) | |
H15A | −0.0780 | 0.0982 | 0.4520 | 0.021* | |
C16 | −0.10276 (19) | 0.12437 (15) | 0.33775 (12) | 0.0219 (5) | |
H16A | −0.1545 | 0.0787 | 0.3180 | 0.026* | |
C17 | −0.07221 (19) | 0.17883 (16) | 0.28711 (12) | 0.0240 (5) | |
H17A | −0.1021 | 0.1698 | 0.2326 | 0.029* | |
C18 | 0.00167 (19) | 0.24642 (16) | 0.31567 (13) | 0.0243 (5) | |
H18A | 0.0226 | 0.2836 | 0.2807 | 0.029* | |
C19 | 0.04551 (17) | 0.26022 (15) | 0.39536 (12) | 0.0179 (4) | |
H19A | 0.0951 | 0.3076 | 0.4148 | 0.021* | |
C20 | 0.31334 (16) | 0.41751 (14) | 0.76456 (11) | 0.0148 (4) | |
C21 | 0.25409 (18) | 0.36501 (15) | 0.79846 (13) | 0.0203 (5) | |
H21A | 0.1967 | 0.3301 | 0.7666 | 0.024* | |
C22 | 0.27853 (19) | 0.36349 (16) | 0.87860 (13) | 0.0241 (5) | |
H22A | 0.2380 | 0.3274 | 0.9014 | 0.029* | |
C23 | 0.36174 (19) | 0.41440 (16) | 0.92545 (12) | 0.0226 (5) | |
H23A | 0.3788 | 0.4127 | 0.9803 | 0.027* | |
C24 | 0.41993 (18) | 0.46772 (16) | 0.89227 (12) | 0.0221 (5) | |
H24A | 0.4766 | 0.5031 | 0.9245 | 0.027* | |
C25 | 0.39610 (17) | 0.46986 (15) | 0.81225 (12) | 0.0181 (4) | |
H25A | 0.4361 | 0.5070 | 0.7898 | 0.022* | |
C26 | 0.38700 (16) | 0.34037 (14) | 0.64731 (12) | 0.0147 (4) | |
C27 | 0.46538 (17) | 0.29877 (15) | 0.70808 (13) | 0.0195 (5) | |
H27A | 0.4705 | 0.3108 | 0.7604 | 0.023* | |
C28 | 0.53603 (19) | 0.23968 (16) | 0.69202 (15) | 0.0269 (5) | |
H28A | 0.5885 | 0.2106 | 0.7335 | 0.032* | |
C29 | 0.53046 (19) | 0.22288 (16) | 0.61622 (15) | 0.0285 (6) | |
H29A | 0.5793 | 0.1828 | 0.6056 | 0.034* | |
C30 | 0.4533 (2) | 0.26483 (16) | 0.55562 (14) | 0.0272 (5) | |
H30A | 0.4499 | 0.2541 | 0.5035 | 0.033* | |
C31 | 0.38112 (18) | 0.32224 (16) | 0.57094 (12) | 0.0216 (5) | |
H31A | 0.3273 | 0.3494 | 0.5292 | 0.026* | |
C32 | 0.31737 (17) | 0.52613 (14) | 0.63571 (11) | 0.0170 (4) | |
C33 | 0.24358 (19) | 0.59455 (16) | 0.62971 (13) | 0.0246 (5) | |
H33A | 0.1800 | 0.5811 | 0.6393 | 0.029* | |
C34 | 0.2629 (2) | 0.68252 (17) | 0.60975 (15) | 0.0343 (6) | |
H34A | 0.2128 | 0.7291 | 0.6063 | 0.041* | |
C35 | 0.3542 (2) | 0.70211 (18) | 0.59500 (15) | 0.0372 (7) | |
H35A | 0.3667 | 0.7619 | 0.5807 | 0.045* | |
C36 | 0.4276 (2) | 0.63505 (18) | 0.60101 (15) | 0.0340 (6) | |
H36A | 0.4910 | 0.6490 | 0.5913 | 0.041* | |
C37 | 0.40962 (19) | 0.54707 (16) | 0.62126 (13) | 0.0245 (5) | |
H37A | 0.4606 | 0.5012 | 0.6252 | 0.029* | |
Cl1 | 0.26132 (6) | 0.38380 (5) | 0.35916 (4) | 0.04137 (18) | |
Cl2 | 0.32029 (5) | 0.57549 (5) | 0.36247 (4) | 0.04004 (17) | |
C38 | 0.2329 (3) | 0.4967 (2) | 0.3772 (3) | 0.0854 (16) | |
H38B | 0.1610 | 0.5118 | 0.3428 | 0.102* | |
H38A | 0.2337 | 0.5015 | 0.4316 | 0.102* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01215 (14) | 0.01202 (14) | 0.01490 (13) | 0.00153 (10) | 0.00195 (10) | 0.00055 (10) |
P1 | 0.0126 (3) | 0.0118 (3) | 0.0126 (2) | 0.0010 (2) | 0.0035 (2) | 0.00036 (19) |
P2 | 0.0116 (3) | 0.0140 (3) | 0.0135 (2) | 0.0009 (2) | 0.0027 (2) | −0.0001 (2) |
O1 | 0.0134 (7) | 0.0150 (7) | 0.0178 (7) | 0.0033 (6) | 0.0065 (6) | 0.0027 (6) |
O2 | 0.0168 (8) | 0.0157 (7) | 0.0163 (7) | 0.0029 (6) | 0.0070 (6) | 0.0035 (6) |
C1 | 0.0108 (10) | 0.0102 (10) | 0.0142 (9) | −0.0025 (8) | 0.0021 (8) | −0.0034 (8) |
C2 | 0.0128 (10) | 0.0138 (10) | 0.0161 (10) | 0.0008 (8) | 0.0071 (8) | 0.0040 (8) |
C3 | 0.0175 (11) | 0.0155 (11) | 0.0178 (10) | 0.0000 (9) | 0.0052 (8) | −0.0012 (8) |
C4 | 0.0169 (11) | 0.0255 (12) | 0.0172 (10) | 0.0022 (9) | 0.0010 (9) | 0.0031 (9) |
C5 | 0.0147 (11) | 0.0189 (11) | 0.0289 (11) | 0.0047 (9) | 0.0079 (9) | 0.0070 (9) |
C6 | 0.0205 (11) | 0.0160 (11) | 0.0246 (11) | 0.0016 (9) | 0.0119 (9) | −0.0007 (9) |
C7 | 0.0150 (10) | 0.0173 (11) | 0.0165 (10) | −0.0006 (9) | 0.0070 (8) | 0.0001 (8) |
C8 | 0.0151 (10) | 0.0170 (11) | 0.0121 (9) | −0.0026 (9) | 0.0038 (8) | −0.0031 (8) |
C9 | 0.0204 (11) | 0.0182 (11) | 0.0201 (10) | −0.0006 (9) | 0.0092 (9) | −0.0009 (9) |
C10 | 0.0322 (14) | 0.0218 (12) | 0.0230 (11) | −0.0067 (10) | 0.0131 (10) | 0.0004 (9) |
C11 | 0.0248 (13) | 0.0285 (13) | 0.0248 (12) | −0.0102 (10) | 0.0148 (10) | −0.0090 (10) |
C12 | 0.0174 (12) | 0.0282 (13) | 0.0299 (12) | −0.0016 (10) | 0.0103 (10) | −0.0094 (10) |
C13 | 0.0183 (11) | 0.0191 (12) | 0.0223 (11) | −0.0003 (9) | 0.0077 (9) | −0.0035 (9) |
C14 | 0.0131 (10) | 0.0143 (10) | 0.0144 (9) | 0.0040 (8) | 0.0039 (8) | −0.0001 (8) |
C15 | 0.0184 (11) | 0.0163 (11) | 0.0170 (10) | 0.0003 (9) | 0.0032 (8) | 0.0023 (8) |
C16 | 0.0226 (12) | 0.0179 (12) | 0.0201 (11) | −0.0022 (9) | 0.0001 (9) | −0.0008 (9) |
C17 | 0.0293 (13) | 0.0243 (12) | 0.0140 (10) | 0.0026 (10) | 0.0012 (9) | 0.0003 (9) |
C18 | 0.0319 (13) | 0.0220 (12) | 0.0197 (11) | −0.0023 (10) | 0.0095 (10) | 0.0040 (9) |
C19 | 0.0186 (11) | 0.0171 (11) | 0.0182 (10) | −0.0012 (9) | 0.0063 (9) | −0.0007 (8) |
C20 | 0.0142 (10) | 0.0146 (11) | 0.0157 (10) | 0.0025 (8) | 0.0052 (8) | −0.0010 (8) |
C21 | 0.0191 (11) | 0.0214 (12) | 0.0216 (11) | −0.0034 (9) | 0.0083 (9) | −0.0048 (9) |
C22 | 0.0282 (13) | 0.0256 (13) | 0.0242 (11) | −0.0035 (10) | 0.0162 (10) | −0.0003 (9) |
C23 | 0.0270 (13) | 0.0261 (13) | 0.0158 (10) | 0.0015 (10) | 0.0087 (9) | −0.0012 (9) |
C24 | 0.0204 (12) | 0.0251 (12) | 0.0196 (10) | −0.0029 (10) | 0.0049 (9) | −0.0040 (9) |
C25 | 0.0160 (11) | 0.0211 (12) | 0.0174 (10) | −0.0002 (9) | 0.0056 (8) | 0.0007 (9) |
C26 | 0.0147 (10) | 0.0120 (10) | 0.0193 (10) | −0.0003 (8) | 0.0079 (8) | −0.0001 (8) |
C27 | 0.0161 (11) | 0.0199 (12) | 0.0210 (10) | 0.0019 (9) | 0.0040 (9) | 0.0003 (9) |
C28 | 0.0171 (12) | 0.0220 (12) | 0.0395 (14) | 0.0045 (10) | 0.0066 (10) | 0.0019 (10) |
C29 | 0.0240 (13) | 0.0196 (12) | 0.0497 (15) | 0.0025 (10) | 0.0226 (12) | −0.0036 (11) |
C30 | 0.0363 (14) | 0.0220 (13) | 0.0315 (13) | −0.0033 (11) | 0.0221 (11) | −0.0058 (10) |
C31 | 0.0258 (12) | 0.0206 (12) | 0.0192 (10) | 0.0007 (10) | 0.0088 (9) | 0.0020 (9) |
C32 | 0.0178 (11) | 0.0154 (11) | 0.0144 (9) | −0.0003 (9) | 0.0007 (8) | −0.0005 (8) |
C33 | 0.0194 (12) | 0.0204 (12) | 0.0273 (12) | 0.0023 (10) | −0.0013 (9) | −0.0004 (10) |
C34 | 0.0358 (15) | 0.0176 (13) | 0.0365 (14) | 0.0076 (11) | −0.0056 (11) | 0.0019 (11) |
C35 | 0.0493 (17) | 0.0201 (13) | 0.0329 (14) | −0.0060 (12) | 0.0012 (12) | 0.0103 (11) |
C36 | 0.0391 (16) | 0.0296 (14) | 0.0358 (14) | −0.0068 (12) | 0.0158 (12) | 0.0087 (11) |
C37 | 0.0259 (13) | 0.0227 (12) | 0.0254 (11) | 0.0005 (10) | 0.0091 (10) | 0.0048 (10) |
Cl1 | 0.0484 (4) | 0.0482 (4) | 0.0329 (3) | −0.0163 (3) | 0.0207 (3) | 0.0031 (3) |
Cl2 | 0.0320 (4) | 0.0366 (4) | 0.0549 (4) | 0.0016 (3) | 0.0188 (3) | −0.0048 (3) |
C38 | 0.069 (3) | 0.053 (2) | 0.173 (4) | 0.033 (2) | 0.092 (3) | 0.070 (3) |
Cu1—O2 | 2.0794 (14) | C17—C18 | 1.382 (3) |
Cu1—O1 | 2.1099 (14) | C17—H17A | 0.9500 |
Cu1—P1 | 2.2213 (6) | C18—C19 | 1.391 (3) |
Cu1—P2 | 2.2281 (6) | C18—H18A | 0.9500 |
P1—C14 | 1.831 (2) | C19—H19A | 0.9500 |
P1—C2 | 1.832 (2) | C20—C21 | 1.394 (3) |
P1—C8 | 1.835 (2) | C20—C25 | 1.398 (3) |
P2—C20 | 1.819 (2) | C21—C22 | 1.388 (3) |
P2—C26 | 1.827 (2) | C21—H21A | 0.9500 |
P2—C32 | 1.828 (2) | C22—C23 | 1.385 (3) |
O1—C1 | 1.254 (2) | C22—H22A | 0.9500 |
O2—C1i | 1.254 (2) | C23—C24 | 1.382 (3) |
C1—O2i | 1.254 (2) | C23—H23A | 0.9500 |
C1—C1i | 1.568 (4) | C24—C25 | 1.387 (3) |
C2—C3 | 1.396 (3) | C24—H24A | 0.9500 |
C2—C7 | 1.396 (3) | C25—H25A | 0.9500 |
C3—C4 | 1.384 (3) | C26—C31 | 1.394 (3) |
C3—H3A | 0.9500 | C26—C27 | 1.395 (3) |
C4—C5 | 1.387 (3) | C27—C28 | 1.390 (3) |
C4—H4A | 0.9500 | C27—H27A | 0.9500 |
C5—C6 | 1.390 (3) | C28—C29 | 1.381 (3) |
C5—H5A | 0.9500 | C28—H28A | 0.9500 |
C6—C7 | 1.383 (3) | C29—C30 | 1.388 (4) |
C6—H6A | 0.9500 | C29—H29A | 0.9500 |
C7—H7A | 0.9500 | C30—C31 | 1.384 (3) |
C8—C13 | 1.394 (3) | C30—H30A | 0.9500 |
C8—C9 | 1.396 (3) | C31—H31A | 0.9500 |
C9—C10 | 1.389 (3) | C32—C37 | 1.388 (3) |
C9—H9A | 0.9500 | C32—C33 | 1.394 (3) |
C10—C11 | 1.383 (3) | C33—C34 | 1.393 (4) |
C10—H10A | 0.9500 | C33—H33A | 0.9500 |
C11—C12 | 1.388 (3) | C34—C35 | 1.374 (4) |
C11—H11A | 0.9500 | C34—H34A | 0.9500 |
C12—C13 | 1.386 (3) | C35—C36 | 1.376 (4) |
C12—H12A | 0.9500 | C35—H35A | 0.9500 |
C13—H13A | 0.9500 | C36—C37 | 1.390 (3) |
C14—C15 | 1.392 (3) | C36—H36A | 0.9500 |
C14—C19 | 1.397 (3) | C37—H37A | 0.9500 |
C15—C16 | 1.388 (3) | Cl1—C38 | 1.761 (4) |
C15—H15A | 0.9500 | Cl2—C38 | 1.737 (3) |
C16—C17 | 1.384 (3) | C38—H38B | 0.9900 |
C16—H16A | 0.9500 | C38—H38A | 0.9900 |
O2—Cu1—O1 | 80.57 (5) | C18—C17—H17A | 119.9 |
O2—Cu1—P1 | 111.21 (4) | C16—C17—H17A | 119.9 |
O1—Cu1—P1 | 111.92 (4) | C17—C18—C19 | 120.2 (2) |
O2—Cu1—P2 | 116.46 (4) | C17—C18—H18A | 119.9 |
O1—Cu1—P2 | 100.25 (4) | C19—C18—H18A | 119.9 |
P1—Cu1—P2 | 125.72 (2) | C18—C19—C14 | 119.9 (2) |
C14—P1—C2 | 103.61 (9) | C18—C19—H19A | 120.0 |
C14—P1—C8 | 102.50 (9) | C14—C19—H19A | 120.0 |
C2—P1—C8 | 102.30 (9) | C21—C20—C25 | 119.10 (19) |
C14—P1—Cu1 | 114.07 (7) | C21—C20—P2 | 118.78 (16) |
C2—P1—Cu1 | 118.44 (7) | C25—C20—P2 | 122.08 (16) |
C8—P1—Cu1 | 113.96 (7) | C22—C21—C20 | 120.3 (2) |
C20—P2—C26 | 103.91 (9) | C22—C21—H21A | 119.9 |
C20—P2—C32 | 103.18 (9) | C20—C21—H21A | 119.9 |
C26—P2—C32 | 103.90 (10) | C23—C22—C21 | 120.2 (2) |
C20—P2—Cu1 | 120.45 (7) | C23—C22—H22A | 119.9 |
C26—P2—Cu1 | 110.67 (7) | C21—C22—H22A | 119.9 |
C32—P2—Cu1 | 113.10 (7) | C24—C23—C22 | 119.9 (2) |
C1—O1—Cu1 | 112.31 (12) | C24—C23—H23A | 120.0 |
C1i—O2—Cu1 | 112.97 (12) | C22—C23—H23A | 120.0 |
O2i—C1—O1 | 125.87 (18) | C23—C24—C25 | 120.3 (2) |
O2i—C1—C1i | 117.4 (2) | C23—C24—H24A | 119.8 |
O1—C1—C1i | 116.8 (2) | C25—C24—H24A | 119.8 |
C3—C2—C7 | 118.68 (19) | C24—C25—C20 | 120.1 (2) |
C3—C2—P1 | 118.08 (16) | C24—C25—H25A | 119.9 |
C7—C2—P1 | 123.14 (16) | C20—C25—H25A | 119.9 |
C4—C3—C2 | 120.7 (2) | C31—C26—C27 | 119.2 (2) |
C4—C3—H3A | 119.7 | C31—C26—P2 | 116.21 (16) |
C2—C3—H3A | 119.7 | C27—C26—P2 | 124.47 (16) |
C3—C4—C5 | 120.2 (2) | C28—C27—C26 | 120.0 (2) |
C3—C4—H4A | 119.9 | C28—C27—H27A | 120.0 |
C5—C4—H4A | 119.9 | C26—C27—H27A | 120.0 |
C4—C5—C6 | 119.5 (2) | C29—C28—C27 | 120.5 (2) |
C4—C5—H5A | 120.2 | C29—C28—H28A | 119.7 |
C6—C5—H5A | 120.2 | C27—C28—H28A | 119.7 |
C7—C6—C5 | 120.3 (2) | C28—C29—C30 | 119.7 (2) |
C7—C6—H6A | 119.8 | C28—C29—H29A | 120.1 |
C5—C6—H6A | 119.8 | C30—C29—H29A | 120.1 |
C6—C7—C2 | 120.52 (19) | C31—C30—C29 | 120.2 (2) |
C6—C7—H7A | 119.7 | C31—C30—H30A | 119.9 |
C2—C7—H7A | 119.7 | C29—C30—H30A | 119.9 |
C13—C8—C9 | 119.1 (2) | C30—C31—C26 | 120.4 (2) |
C13—C8—P1 | 117.61 (16) | C30—C31—H31A | 119.8 |
C9—C8—P1 | 123.27 (16) | C26—C31—H31A | 119.8 |
C10—C9—C8 | 120.3 (2) | C37—C32—C33 | 119.0 (2) |
C10—C9—H9A | 119.9 | C37—C32—P2 | 124.09 (17) |
C8—C9—H9A | 119.9 | C33—C32—P2 | 116.90 (17) |
C11—C10—C9 | 120.4 (2) | C34—C33—C32 | 120.2 (2) |
C11—C10—H10A | 119.8 | C34—C33—H33A | 119.9 |
C9—C10—H10A | 119.8 | C32—C33—H33A | 119.9 |
C10—C11—C12 | 119.5 (2) | C35—C34—C33 | 120.2 (2) |
C10—C11—H11A | 120.2 | C35—C34—H34A | 119.9 |
C12—C11—H11A | 120.2 | C33—C34—H34A | 119.9 |
C13—C12—C11 | 120.5 (2) | C34—C35—C36 | 120.0 (2) |
C13—C12—H12A | 119.7 | C34—C35—H35A | 120.0 |
C11—C12—H12A | 119.7 | C36—C35—H35A | 120.0 |
C12—C13—C8 | 120.2 (2) | C35—C36—C37 | 120.4 (3) |
C12—C13—H13A | 119.9 | C35—C36—H36A | 119.8 |
C8—C13—H13A | 119.9 | C37—C36—H36A | 119.8 |
C15—C14—C19 | 119.30 (19) | C32—C37—C36 | 120.2 (2) |
C15—C14—P1 | 122.34 (16) | C32—C37—H37A | 119.9 |
C19—C14—P1 | 118.36 (16) | C36—C37—H37A | 119.9 |
C16—C15—C14 | 120.4 (2) | Cl2—C38—Cl1 | 113.68 (18) |
C16—C15—H15A | 119.8 | Cl2—C38—H38B | 108.8 |
C14—C15—H15A | 119.8 | Cl1—C38—H38B | 108.8 |
C17—C16—C15 | 120.0 (2) | Cl2—C38—H38A | 108.8 |
C17—C16—H16A | 120.0 | Cl1—C38—H38A | 108.8 |
C15—C16—H16A | 120.0 | H38B—C38—H38A | 107.7 |
C18—C17—C16 | 120.1 (2) | ||
O2—Cu1—P1—C14 | 79.79 (8) | C8—P1—C14—C15 | −26.7 (2) |
O1—Cu1—P1—C14 | −8.32 (9) | Cu1—P1—C14—C15 | −150.37 (15) |
P2—Cu1—P1—C14 | −130.02 (7) | C2—P1—C14—C19 | −100.01 (17) |
O2—Cu1—P1—C2 | −157.87 (8) | C8—P1—C14—C19 | 153.83 (17) |
O1—Cu1—P1—C2 | 114.03 (8) | Cu1—P1—C14—C19 | 30.14 (18) |
P2—Cu1—P1—C2 | −7.68 (8) | C19—C14—C15—C16 | −0.1 (3) |
O2—Cu1—P1—C8 | −37.48 (8) | P1—C14—C15—C16 | −179.54 (17) |
O1—Cu1—P1—C8 | −125.58 (8) | C14—C15—C16—C17 | 1.2 (3) |
P2—Cu1—P1—C8 | 112.72 (7) | C15—C16—C17—C18 | −1.1 (4) |
O2—Cu1—P2—C20 | 61.84 (9) | C16—C17—C18—C19 | −0.2 (4) |
O1—Cu1—P2—C20 | 146.33 (9) | C17—C18—C19—C14 | 1.4 (3) |
P1—Cu1—P2—C20 | −86.99 (8) | C15—C14—C19—C18 | −1.2 (3) |
O2—Cu1—P2—C26 | −176.83 (8) | P1—C14—C19—C18 | 178.27 (17) |
O1—Cu1—P2—C26 | −92.34 (8) | C26—P2—C20—C21 | −102.92 (18) |
P1—Cu1—P2—C26 | 34.34 (8) | C32—P2—C20—C21 | 148.89 (17) |
O2—Cu1—P2—C32 | −60.73 (9) | Cu1—P2—C20—C21 | 21.7 (2) |
O1—Cu1—P2—C32 | 23.77 (9) | C26—P2—C20—C25 | 74.82 (19) |
P1—Cu1—P2—C32 | 150.44 (8) | C32—P2—C20—C25 | −33.4 (2) |
O2—Cu1—O1—C1 | −1.49 (13) | Cu1—P2—C20—C25 | −160.60 (15) |
P1—Cu1—O1—C1 | 107.70 (13) | C25—C20—C21—C22 | −1.3 (3) |
P2—Cu1—O1—C1 | −116.89 (13) | P2—C20—C21—C22 | 176.49 (18) |
O1—Cu1—O2—C1i | 1.51 (13) | C20—C21—C22—C23 | 0.3 (3) |
P1—Cu1—O2—C1i | −108.46 (13) | C21—C22—C23—C24 | 0.7 (4) |
P2—Cu1—O2—C1i | 98.33 (13) | C22—C23—C24—C25 | −0.6 (4) |
Cu1—O1—C1—O2i | −178.72 (16) | C23—C24—C25—C20 | −0.5 (3) |
Cu1—O1—C1—C1i | 1.2 (3) | C21—C20—C25—C24 | 1.4 (3) |
C14—P1—C2—C3 | 171.60 (16) | P2—C20—C25—C24 | −176.32 (17) |
C8—P1—C2—C3 | −82.10 (18) | C20—P2—C26—C31 | 177.94 (17) |
Cu1—P1—C2—C3 | 44.12 (18) | C32—P2—C26—C31 | −74.41 (18) |
C14—P1—C2—C7 | −12.1 (2) | Cu1—P2—C26—C31 | 47.28 (18) |
C8—P1—C2—C7 | 94.24 (18) | C20—P2—C26—C27 | 2.3 (2) |
Cu1—P1—C2—C7 | −139.54 (15) | C32—P2—C26—C27 | 109.95 (19) |
C7—C2—C3—C4 | −2.0 (3) | Cu1—P2—C26—C27 | −128.36 (18) |
P1—C2—C3—C4 | 174.51 (17) | C31—C26—C27—C28 | −0.4 (3) |
C2—C3—C4—C5 | 0.9 (3) | P2—C26—C27—C28 | 175.17 (17) |
C3—C4—C5—C6 | 1.0 (3) | C26—C27—C28—C29 | 1.1 (4) |
C4—C5—C6—C7 | −1.6 (3) | C27—C28—C29—C30 | −0.5 (4) |
C5—C6—C7—C2 | 0.5 (3) | C28—C29—C30—C31 | −0.9 (4) |
C3—C2—C7—C6 | 1.3 (3) | C29—C30—C31—C26 | 1.7 (4) |
P1—C2—C7—C6 | −174.98 (16) | C27—C26—C31—C30 | −1.1 (3) |
C14—P1—C8—C13 | −75.12 (17) | P2—C26—C31—C30 | −176.95 (18) |
C2—P1—C8—C13 | 177.72 (16) | C20—P2—C32—C37 | 101.43 (19) |
Cu1—P1—C8—C13 | 48.64 (17) | C26—P2—C32—C37 | −6.8 (2) |
C14—P1—C8—C9 | 104.56 (18) | Cu1—P2—C32—C37 | −126.83 (17) |
C2—P1—C8—C9 | −2.60 (19) | C20—P2—C32—C33 | −80.39 (18) |
Cu1—P1—C8—C9 | −131.68 (16) | C26—P2—C32—C33 | 171.41 (16) |
C13—C8—C9—C10 | 0.2 (3) | Cu1—P2—C32—C33 | 51.35 (18) |
P1—C8—C9—C10 | −179.45 (17) | C37—C32—C33—C34 | −0.2 (3) |
C8—C9—C10—C11 | 0.9 (3) | P2—C32—C33—C34 | −178.49 (17) |
C9—C10—C11—C12 | −0.8 (3) | C32—C33—C34—C35 | 0.7 (4) |
C10—C11—C12—C13 | −0.5 (3) | C33—C34—C35—C36 | −0.9 (4) |
C11—C12—C13—C8 | 1.7 (3) | C34—C35—C36—C37 | 0.6 (4) |
C9—C8—C13—C12 | −1.5 (3) | C33—C32—C37—C36 | −0.1 (3) |
P1—C8—C13—C12 | 178.17 (16) | P2—C32—C37—C36 | 178.04 (18) |
C2—P1—C14—C15 | 79.48 (19) | C35—C36—C37—C32 | −0.1 (4) |
Symmetry code: (i) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C2O4)(C18H15P)4]·2CH2Cl2 |
Mr | 1434.03 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 13.4735 (4), 14.7294 (4), 18.2282 (6) |
β (°) | 109.255 (1) |
V (Å3) | 3415.14 (18) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.92 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa diffractometer equipped with a Photon100 CMOS detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.769, 0.837 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27318, 6960, 5738 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.088, 1.01 |
No. of reflections | 6960 |
No. of parameters | 406 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.83, −0.55 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008) and CHEMDRAW (Cambridgesoft, 2003).
Footnotes
†ATR dedicates this paper to the honor of Professor S. Peter Tanner for rekindling a love of inorganic chemistry.
Acknowledgements
ATR and ADR thank the Office of Research and Sponsored Programs at the University of West Florida for financial support.
References
Angamuthu, R., Byers, P., Lutz, M., Spek, A. L. & Bouwman, E. (2010). Science, 327, 313–315. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cambridgesoft (2003). CHEMDRAW. Cambridgesoft Corporation, Cambridge, MA, USA. Google Scholar
Díez, J., Falagán, S., Gamasa, P. & Gimeno, J. (1988). Polyhedron, 7, 37–42. Google Scholar
Doyle, G. (1982). US Patent 4347066. Google Scholar
Frosch, W., Back, S., Rheinwald, G., Köhler, K., Zsolnai, L., Huttner, G. & Lang, H. (2000). Organometallics, 19, 5769–5779. Web of Science CSD CrossRef CAS Google Scholar
He, Y., Li, J., Zhang, P., Chen, X., Ma, Y. & Han, Z. (2008). J. Coord. Chem. 61, 2876–2883. Web of Science CSD CrossRef CAS Google Scholar
Köhler, K., Eichhorn, J., Meyer, F. & Vidovic, D. (2003). Organometallics, 22, 4426–4432. Google Scholar
Köhler, K. & Meyer, F. (2004). World Patent WO 2004/000850. Google Scholar
Savéant, J.-M. (2008). Chem. Rev. 108, 2348–2378. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teichgräber, J., Dechert, S. & Meyer, F. (2005). J. Organomet. Chem. 690, 5255–5263. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Though numerous copper(II) oxalate complexes are known, copper(I) oxalates as a family are poorly understood. Nevertheless, the latter compounds have important applications in, e.g., CO capture (Doyle, 1982), CVD of metallic copper (Köhler et al., 2003; Köhler & Meyer, 2004) and CO2 fixation (Angamuthu et al., 2010). Very few oxalato complexes of copper(I) have been structurally characterized, and those that have been studied crystallographically are organometallic species containing ligands bound to the copper(I) centers via carbon atoms (Köhler et al., 2003; Teichgräber et al., 2005). To date, no examples of copper(I) oxalate compounds containing triphenylphosphine ligands coordinated through the phosphorus atoms to the metal centers have been structurally characterized.
The molecular structure of the title compound is shown in Fig. 1. The dinuclear complex lies across an inversion center. In addition, the asymmetric unit contains a dichloromethane solvent. The CuI ions are bridged by a strictly planar oxalate ligand, with two oxygen atoms coordinated to each CuI ion. The coordination geometry at each CuI ion is distorted tetrahedral. The bite angle involving the oxalate ligand is fairly small (80.57 (5)°), while the two phosphorus atoms from the coordinated triphenylphosphine ligands form an angle of 125.72 (2)° with each symmetry-related CuI ion. A similar geometry is observed in the copper(I) oxalate isonitrile complexes studied previously (Teichgräber et al., 2005).