organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o190-o191

Ethyl 3-[6-(4-meth­­oxy­benzene­sulfon­amido)-2H-indazol-2-yl]propano­ate monohydrate

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: najat_abbassi@hotmail.com

(Received 6 December 2012; accepted 27 December 2012; online 9 January 2013)

In the title compound, C19H21N3O5S·H2O, the central indazole system is essentially planar (r.m.s. deviation = 0.012 Å), while both the benzene ring and the mean plane defined by the non-H atoms of the ethyl propionic ester unit (r.m.s. deviation = 0.087 Å) are nearly perpendicular to the indazole plane, as indicated by the dihedral angles of 82.45 (8) and 75.62 (8)°, respectively. Consequently, the mol­ecule adopts a U-shaped geometry. In the crystal, the water mol­ecule, which is linked to the indazole system by a strong O—H⋯N hydrogen bond, is also involved in two additional N—H⋯O and O—H⋯O inter­actions, which link the organic mol­ecules into chains along the b-axis direction.

Related literature

For the pharmacological activity of sulfonamides, see: Gadad et al. (2000[Gadad, A. K., Mahajanshetti, C. S., Nimbalkar, S. & Raichurkar, A. (2000). Eur. J. Med. Chem. 35, 853-857.]); Brzozowski et al. (2010[Brzozowski, Z., S1awinski, J., Saczewski, F., Innocenti, A. & Supuran, C. T. (2010). Eur. J. Med. Chem. 45, 2396-2404.]); Drew (2000[Drew, J. (2000). Science, 287, 1960-964.]); Garaj et al. (2005[Garaj, V., Puccetti, L., Fasolis, G., Winum, J. Y., Montero, J. L., Scozzafava, A., Vullo, D., Innocenti, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 3102-3108.]). For their anti­proliferative activity see: Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.]); Bouissane et al. (2006[Bouissane, L., El Kazzouli, S., Léonce, S., Pffeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21N3O5S·H2O

  • Mr = 421.46

  • Monoclinic, P 21

  • a = 9.0248 (3) Å

  • b = 8.7602 (3) Å

  • c = 13.1792 (4) Å

  • β = 101.062 (2)°

  • V = 1022.58 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.42 × 0.37 × 0.28 mm

Data collection
  • Bruker X8 APEX diffractometer

  • 10050 measured reflections

  • 4021 independent reflections

  • 3887 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.077

  • S = 1.05

  • 4021 reflections

  • 262 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1779 Friedel pairs

  • Flack parameter: 0.03 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯N2 0.86 1.94 2.8029 (19) 176
N1—H1⋯O6i 0.81 1.95 2.7575 (19) 177
O6—H6B⋯O1ii 0.86 2.10 2.9094 (17) 156
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamides constitute an important class of drugs. They possess various types of pharmacological activities such as antibacterial (Gadad et al., 2000), anti-carbonic anhydrase (Brzozowski et al., 2010), hypoglycemic (Drew, 2000), and anticancer activity (Garaj et al., 2005). Recently, our research group has reported the synthesis of some new N-(6(4)-indazolyl)aylsulfonamide derivatives. Some of these compounds showed an important antiproliferative activity against some human and murine cell lines (Abbassi et al., 2012; Bouissane et al., 2006).

The crystal structure of the Ethyl-3-[6-(4-methoxybenzenesulfonamido)-2H- indazol-2-yl]-propanoate monohydrate is built up from two fused five- and six-membered rings (N2 N3 C1 to C7) virtually coplanar, with a maximum deviation of 0.021 (2) A Å for C2 atom as shown in Fig.1. Moreover, the two cycles are nearly perpendicular to the plan through the atoms forming the propionic acid ester group (O3O4 C9 to C11) and to benzene ring (C13 to C18) as indicated by the dihedral angles between them of 75.62 (8)° and 82.45 (8)° respectively. As a matter of fact, the molecule has a U shaped geometry.

The cohesion of the crystal structure is ensured by three classic strong hydrogen bonds between the water and the organic molecules: O6–H6A···N2, N1–H1···O6 and O6–H6B···O1, as shown in Fig.2 and Table 2.

Related literature top

For the pharmacological activity of sulfonamides, see: Gadad et al. (2000); Brzozowski et al. (2010); Drew (2000); Garaj et al. (2005). For their antiproliferative activity see: Abbassi et al. (2012); Bouissane et al. (2006).

Experimental top

A mixture of ethyl 3-(6-nitro-2H-indazol-2-yl)propanoate 1 (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated at 333 K for 3 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with Ethyl acetate: Hexane 1:9).

Refinement top

The structure is solved by direct method technique and refined by full-matrix least-squares using SHELXS97 and SHELXL97 program packages. H atoms were located in a difference map and treated as riding with C–H = 0.96 Å, C–H = 0.97 Å, C–H = 0.93 Å and N–H = 0.86 Å for methyl, methylene, aromatic CH and NH respectively. All hydrogen with Uiso(H) = 1.2 Ueq (aromatic, methylene)and Uiso(H) = 1.5 Ueq for methyl. The space group is not centro symmetric and the polar axis restraint is generated automatically by SHELXL program. The 1779 Friedel opposites reflections are not merged. The atomic displacement parameters of the C12 atom are quite large because it is a termial methyl that vibrates.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. A view of crystal packing showing the water units linking the organic molecules in chains along the b axis.
Ethyl 3-[6-(4-methoxybenzenesulfonamido)-2H-indazol-2-yl]propanoate monohydrate top
Crystal data top
C19H21N3O5S·H2OF(000) = 444
Mr = 421.46Dx = 1.369 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2ybCell parameters from 4021 reflections
a = 9.0248 (3) Åθ = 2.3–26.4°
b = 8.7602 (3) ŵ = 0.20 mm1
c = 13.1792 (4) ÅT = 296 K
β = 101.062 (2)°Block, colourless
V = 1022.58 (6) Å30.42 × 0.37 × 0.28 mm
Z = 2
Data collection top
Bruker X8 APEX
diffractometer
3887 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 26.4°, θmin = 2.3°
ϕ and ω scansh = 1111
10050 measured reflectionsk = 1010
4021 independent reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.037P)2 + 0.2529P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4021 reflectionsΔρmax = 0.28 e Å3
262 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack (1983), 1779 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (6)
Crystal data top
C19H21N3O5S·H2OV = 1022.58 (6) Å3
Mr = 421.46Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.0248 (3) ŵ = 0.20 mm1
b = 8.7602 (3) ÅT = 296 K
c = 13.1792 (4) Å0.42 × 0.37 × 0.28 mm
β = 101.062 (2)°
Data collection top
Bruker X8 APEX
diffractometer
3887 reflections with I > 2σ(I)
10050 measured reflectionsRint = 0.027
4021 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.28 e Å3
S = 1.05Δρmin = 0.28 e Å3
4021 reflectionsAbsolute structure: Flack (1983), 1779 Friedel pairs
262 parametersAbsolute structure parameter: 0.03 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.75199 (19)0.7888 (2)0.11333 (12)0.0197 (4)
C20.61152 (18)0.8667 (2)0.10899 (12)0.0216 (3)
H20.60950.97260.10390.026*
C30.4816 (2)0.7914 (2)0.11201 (13)0.0223 (4)
H30.39090.84380.10710.027*
C40.48733 (19)0.6302 (2)0.12290 (12)0.0202 (3)
C50.62772 (18)0.5536 (2)0.12955 (12)0.0191 (3)
C60.76182 (19)0.6328 (2)0.12325 (13)0.0214 (4)
H60.85280.58170.12570.026*
C70.3845 (2)0.5150 (2)0.13056 (13)0.0215 (4)
H70.28150.52680.12830.026*
C80.4016 (2)0.2317 (2)0.15290 (14)0.0241 (4)
H8A0.43220.16430.10220.029*
H8B0.29210.23630.13860.029*
C90.4548 (2)0.1655 (2)0.25982 (14)0.0273 (4)
H9A0.42990.05770.25860.033*
H9B0.56380.17460.27820.033*
C100.3852 (2)0.2433 (2)0.34120 (15)0.0316 (4)
C110.3662 (4)0.2412 (4)0.5169 (2)0.0783 (11)
H11A0.41100.34010.53630.094*
H11B0.25810.25460.49500.094*
C120.3972 (3)0.1377 (5)0.6044 (2)0.0764 (10)
H12A0.35210.17670.65940.115*
H12B0.50430.12900.62770.115*
H12C0.35560.03910.58390.115*
C131.07596 (19)0.8265 (2)0.27877 (13)0.0236 (4)
C141.1631 (2)0.7069 (2)0.32717 (15)0.0309 (4)
H141.20390.63510.28840.037*
C151.1882 (2)0.6960 (3)0.43361 (15)0.0355 (5)
H151.24870.61790.46680.043*
C161.1239 (2)0.8006 (2)0.49155 (15)0.0304 (4)
C171.0371 (3)0.9201 (3)0.44266 (16)0.0367 (5)
H170.99440.99080.48120.044*
C181.0144 (2)0.9330 (2)0.33620 (16)0.0342 (5)
H180.95771.01360.30310.041*
C191.0760 (3)0.8738 (3)0.65678 (15)0.0430 (6)
H19A1.09060.83510.72610.065*
H19B0.97000.87640.62760.065*
H19C1.11670.97510.65760.065*
N10.87396 (16)0.88540 (16)0.10220 (11)0.0222 (3)
H10.86090.97620.10440.027*
N20.61166 (17)0.40098 (17)0.14153 (11)0.0224 (3)
N30.46167 (16)0.38390 (16)0.14178 (10)0.0202 (3)
O11.08832 (15)0.70535 (16)0.10224 (10)0.0269 (3)
O21.13045 (15)0.98256 (17)0.12154 (11)0.0315 (3)
O30.29906 (17)0.3482 (2)0.32659 (11)0.0450 (4)
O40.4297 (2)0.1772 (2)0.43247 (11)0.0520 (5)
O51.15167 (18)0.77637 (19)0.59538 (11)0.0411 (4)
O60.83323 (15)0.19739 (15)0.10176 (10)0.0297 (3)
H6A0.76330.25650.11510.036*
H6B0.84880.22800.04270.036*
S11.05094 (4)0.84904 (5)0.14406 (3)0.02171 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0167 (9)0.0247 (8)0.0181 (8)0.0017 (7)0.0040 (7)0.0004 (6)
C20.0208 (8)0.0207 (8)0.0237 (8)0.0050 (7)0.0055 (6)0.0004 (7)
C30.0171 (9)0.0250 (8)0.0257 (9)0.0078 (7)0.0061 (7)0.0006 (7)
C40.0192 (9)0.0241 (9)0.0173 (8)0.0040 (7)0.0038 (7)0.0000 (6)
C50.0181 (8)0.0219 (8)0.0166 (8)0.0047 (7)0.0015 (6)0.0002 (6)
C60.0157 (8)0.0243 (9)0.0243 (9)0.0078 (7)0.0044 (7)0.0019 (7)
C70.0192 (9)0.0253 (9)0.0202 (8)0.0051 (7)0.0044 (7)0.0011 (7)
C80.0209 (9)0.0225 (9)0.0287 (9)0.0006 (7)0.0043 (7)0.0027 (7)
C90.0273 (10)0.0234 (9)0.0319 (10)0.0020 (7)0.0073 (8)0.0031 (7)
C100.0330 (11)0.0330 (10)0.0309 (10)0.0010 (9)0.0112 (8)0.0053 (8)
C110.110 (3)0.097 (2)0.0363 (14)0.036 (2)0.0350 (16)0.0102 (15)
C120.0642 (19)0.129 (3)0.0388 (14)0.015 (2)0.0174 (13)0.0096 (17)
C130.0187 (8)0.0259 (9)0.0256 (8)0.0004 (7)0.0026 (7)0.0019 (7)
C140.0290 (11)0.0319 (10)0.0319 (10)0.0091 (8)0.0062 (8)0.0010 (8)
C150.0344 (11)0.0375 (11)0.0334 (10)0.0094 (9)0.0033 (9)0.0082 (9)
C160.0251 (10)0.0354 (10)0.0289 (10)0.0046 (7)0.0010 (8)0.0003 (7)
C170.0404 (12)0.0377 (11)0.0321 (10)0.0088 (9)0.0072 (9)0.0068 (8)
C180.0362 (12)0.0331 (10)0.0319 (10)0.0124 (9)0.0028 (9)0.0011 (8)
C190.0374 (12)0.0635 (17)0.0277 (10)0.0016 (11)0.0051 (8)0.0046 (10)
N10.0180 (8)0.0188 (7)0.0298 (7)0.0047 (5)0.0047 (6)0.0040 (6)
N20.0190 (8)0.0228 (7)0.0259 (7)0.0033 (6)0.0053 (6)0.0013 (6)
N30.0178 (7)0.0217 (8)0.0209 (7)0.0018 (6)0.0033 (5)0.0001 (5)
O10.0208 (7)0.0314 (7)0.0300 (7)0.0056 (6)0.0084 (5)0.0007 (6)
O20.0203 (7)0.0324 (7)0.0438 (8)0.0005 (6)0.0114 (6)0.0073 (6)
O30.0536 (9)0.0433 (8)0.0434 (8)0.0182 (9)0.0227 (7)0.0073 (8)
O40.0646 (11)0.0640 (11)0.0303 (8)0.0236 (9)0.0165 (8)0.0126 (7)
O50.0444 (9)0.0506 (9)0.0262 (8)0.0047 (7)0.0020 (6)0.0013 (6)
O60.0334 (8)0.0249 (7)0.0335 (7)0.0082 (6)0.0133 (6)0.0030 (5)
S10.0152 (2)0.0246 (2)0.0263 (2)0.00303 (17)0.00648 (15)0.00187 (18)
Geometric parameters (Å, º) top
C1—C61.374 (2)C12—H12A0.9600
C1—N11.418 (2)C12—H12B0.9600
C1—C21.431 (2)C12—H12C0.9600
C2—C31.353 (3)C13—C181.383 (2)
C2—H20.9300C13—C141.390 (3)
C3—C41.419 (2)C13—S11.7572 (17)
C3—H30.9300C14—C151.381 (3)
C4—C71.387 (2)C14—H140.9300
C4—C51.422 (2)C15—C161.389 (3)
C5—N21.357 (2)C15—H150.9300
C5—C61.411 (2)C16—O51.360 (2)
C6—H60.9300C16—C171.390 (3)
C7—N31.337 (2)C17—C181.383 (3)
C7—H70.9300C17—H170.9300
C8—N31.458 (2)C18—H180.9300
C8—C91.514 (3)C19—O51.436 (3)
C8—H8A0.9700C19—H19A0.9600
C8—H8B0.9700C19—H19B0.9600
C9—C101.506 (3)C19—H19C0.9600
C9—H9A0.9700N1—S11.6183 (14)
C9—H9B0.9700N1—H10.8050
C10—O31.196 (3)N2—N31.363 (2)
C10—O41.326 (2)O1—S11.4399 (14)
C11—C121.451 (4)O2—S11.4327 (14)
C11—O41.458 (3)O6—H6A0.8601
C11—H11A0.9700O6—H6B0.8600
C11—H11B0.9700
C6—C1—N1124.49 (16)H12A—C12—H12B109.5
C6—C1—C2121.23 (17)C11—C12—H12C109.5
N1—C1—C2114.23 (15)H12A—C12—H12C109.5
C3—C2—C1122.16 (17)H12B—C12—H12C109.5
C3—C2—H2118.9C18—C13—C14120.58 (17)
C1—C2—H2118.9C18—C13—S1119.33 (14)
C2—C3—C4118.27 (17)C14—C13—S1120.01 (14)
C2—C3—H3120.9C15—C14—C13119.13 (18)
C4—C3—H3120.9C15—C14—H14120.4
C7—C4—C3135.97 (17)C13—C14—H14120.4
C7—C4—C5104.64 (15)C14—C15—C16120.55 (19)
C3—C4—C5119.38 (16)C14—C15—H15119.7
N2—C5—C6127.09 (15)C16—C15—H15119.7
N2—C5—C4111.00 (15)O5—C16—C15115.76 (18)
C6—C5—C4121.91 (16)O5—C16—C17124.24 (18)
C1—C6—C5117.01 (16)C15—C16—C17120.01 (18)
C1—C6—H6121.5C18—C17—C16119.51 (18)
C5—C6—H6121.5C18—C17—H17120.2
N3—C7—C4106.95 (15)C16—C17—H17120.2
N3—C7—H7126.5C17—C18—C13120.20 (18)
C4—C7—H7126.5C17—C18—H18119.9
N3—C8—C9112.72 (15)C13—C18—H18119.9
N3—C8—H8A109.0O5—C19—H19A109.5
C9—C8—H8A109.0O5—C19—H19B109.5
N3—C8—H8B109.0H19A—C19—H19B109.5
C9—C8—H8B109.0O5—C19—H19C109.5
H8A—C8—H8B107.8H19A—C19—H19C109.5
C10—C9—C8112.84 (16)H19B—C19—H19C109.5
C10—C9—H9A109.0C1—N1—S1125.60 (12)
C8—C9—H9A109.0C1—N1—H1117.6
C10—C9—H9B109.0S1—N1—H1108.9
C8—C9—H9B109.0C5—N2—N3103.70 (13)
H9A—C9—H9B107.8C7—N3—N2113.70 (14)
O3—C10—O4123.80 (19)C7—N3—C8126.97 (15)
O3—C10—C9125.49 (18)N2—N3—C8119.33 (14)
O4—C10—C9110.70 (17)C10—O4—C11115.4 (2)
C12—C11—O4108.8 (3)C16—O5—C19117.30 (17)
C12—C11—H11A109.9H6A—O6—H6B104.5
O4—C11—H11A109.9O2—S1—O1118.09 (7)
C12—C11—H11B109.9O2—S1—N1105.63 (8)
O4—C11—H11B109.9O1—S1—N1109.27 (8)
H11A—C11—H11B108.3O2—S1—C13109.18 (9)
C11—C12—H12A109.5O1—S1—C13107.13 (8)
C11—C12—H12B109.5N1—S1—C13107.07 (8)
C6—C1—C2—C31.5 (3)C14—C13—C18—C171.1 (3)
N1—C1—C2—C3175.96 (15)S1—C13—C18—C17177.88 (17)
C1—C2—C3—C41.9 (3)C6—C1—N1—S126.6 (2)
C2—C3—C4—C7178.80 (18)C2—C1—N1—S1155.99 (12)
C2—C3—C4—C50.4 (3)C6—C5—N2—N3179.35 (15)
C7—C4—C5—N20.54 (19)C4—C5—N2—N30.25 (18)
C3—C4—C5—N2178.89 (15)C4—C7—N3—N20.50 (19)
C7—C4—C5—C6179.08 (15)C4—C7—N3—C8179.99 (15)
C3—C4—C5—C61.5 (2)C5—N2—N3—C70.16 (18)
N1—C1—C6—C5177.59 (14)C5—N2—N3—C8179.70 (14)
C2—C1—C6—C50.4 (2)C9—C8—N3—C7111.10 (19)
N2—C5—C6—C1178.61 (17)C9—C8—N3—N269.41 (19)
C4—C5—C6—C11.8 (2)O3—C10—O4—C110.0 (4)
C3—C4—C7—N3178.7 (2)C9—C10—O4—C11178.6 (2)
C5—C4—C7—N30.61 (18)C12—C11—O4—C10167.3 (3)
N3—C8—C9—C1070.9 (2)C15—C16—O5—C19174.48 (19)
C8—C9—C10—O31.3 (3)C17—C16—O5—C195.2 (3)
C8—C9—C10—O4177.17 (17)C1—N1—S1—O2176.12 (14)
C18—C13—C14—C150.3 (3)C1—N1—S1—O155.87 (16)
S1—C13—C14—C15176.48 (16)C1—N1—S1—C1359.84 (16)
C13—C14—C15—C161.8 (3)C18—C13—S1—O266.47 (17)
C14—C15—C16—O5177.83 (19)C14—C13—S1—O2110.37 (16)
C14—C15—C16—C171.9 (3)C18—C13—S1—O1164.56 (15)
O5—C16—C17—C18179.2 (2)C14—C13—S1—O118.60 (18)
C15—C16—C17—C180.5 (3)C18—C13—S1—N147.44 (18)
C16—C17—C18—C131.0 (3)C14—C13—S1—N1135.72 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···N20.861.942.8029 (19)176
N1—H1···O6i0.811.952.7575 (19)177
O6—H6B···O1ii0.862.102.9094 (17)156
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC19H21N3O5S·H2O
Mr421.46
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)9.0248 (3), 8.7602 (3), 13.1792 (4)
β (°) 101.062 (2)
V3)1022.58 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.42 × 0.37 × 0.28
Data collection
DiffractometerBruker X8 APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10050, 4021, 3887
Rint0.027
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.05
No. of reflections4021
No. of parameters262
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.28
Absolute structureFlack (1983), 1779 Friedel pairs
Absolute structure parameter0.03 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···N20.861.942.8029 (19)176.3
N1—H1···O6i0.811.952.7575 (19)176.5
O6—H6B···O1ii0.862.102.9094 (17)155.7
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBouissane, L., El Kazzouli, S., Léonce, S., Pffeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrzozowski, Z., S1awinski, J., Saczewski, F., Innocenti, A. & Supuran, C. T. (2010). Eur. J. Med. Chem. 45, 2396–2404.  Google Scholar
First citationDrew, J. (2000). Science, 287, 1960–964.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGadad, A. K., Mahajanshetti, C. S., Nimbalkar, S. & Raichurkar, A. (2000). Eur. J. Med. Chem. 35, 853–857.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGaraj, V., Puccetti, L., Fasolis, G., Winum, J. Y., Montero, J. L., Scozzafava, A., Vullo, D., Innocenti, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 3102–3108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o190-o191
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds