organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Methyl (1R,3′S)-1′,1′′-di­methyl-2,2′′-dioxo-2H-di­spiro­[ace­naphthyl­ene-1,2′-pyrrolidine-3′,3′′-indoline]-4′-carboxyl­ate

aDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, bIndustrial Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 22 December 2012; accepted 5 January 2013; online 12 January 2013)

In the title compound, C26H22N2O4, the pyrrolidine ring adopts a twisted conformation and the other five-membered rings adopt envelope conformations with the spiro C atoms as the flap atoms. The naphthalene ring system of the dihydro­acenaphthyl­ene group forms dihedral angles of 89.2 (9) and 75.5 (6)° with the pyrrolidine and indole rings, respectively. The pyrrolidine ring makes a dihedral angle of 80.1 (9)° with the indole ring. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming chains along the b-axis direction.

Related literature

For the biological activity of naphthalene derivatives, see: Wiltz et al. (1998[Wiltz, B. A., Henderson, G. & Chen, J. (1998). Environ. Entomol. 27, 936-940.]); Wright et al. (2000[Wright, M. S., Lax, A. R., Henderson, G. & Chen, J. A. (2000). Mycologia, 92, 42-45.]); Varma et al. (1994[Varma, A., Kolli, B. K., Paul, J., Saxena, S. & Konig, H. (1994). FEMS Microbiol. Rev. 15, 9-28.]). For a related structure, see: Wei et al. (2012[Wei, A. C., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o1340-o1341.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22N2O4

  • Mr = 426.46

  • Monoclinic, P 21 /c

  • a = 15.4839 (4) Å

  • b = 9.5832 (2) Å

  • c = 15.6375 (4) Å

  • β = 115.184 (1)°

  • V = 2099.81 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.983

  • 19264 measured reflections

  • 4057 independent reflections

  • 3017 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.03

  • 4057 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.93 2.60 3.268 (2) 130
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Naphthalene derivatives have manifested applications in many fields, for example, as a colorant, explosive, disinfectant, insecticide and plant hormone auxin. Naphthalene is believed to play a role in the chemical defence against biological enemies (Wiltz et al., 1998; Wright et al., 2000). It may be produced by metabolic processes in termites or by associated microorganisms which inhabit, e.g., the termite guts (Varma et al., 1994). In view of these importance and continuation of our work on the crystal structure analyis of napthalene derivatives, the crystal structure of the title compound has been carried out and the results are presented here.

X–Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometry of acenaphthylene and pyrrolidine ring systems are comparable with the related structure [Wei et al. (2012)]. The sum of the angles at N1 [338.2 (1)°] and N2 [359.4 (1)°] of the pyrrolidine rings are in accordance with sp3 and sp2 hybridizations. The naphthalene ring system of the dihydroacenaphthylene group [C7–C16] forms dihedral angles of 89.2 (8) and 75.5 (5)° with the central pyrrolidine ring [N1/C2–C5] and the indole ring [N2/C4/C17–C23], respectively. It clearly shows that the naphthalene ring system of the dihydroacenaphthylene group attached to the central pyrrolidine ring are almost perpendicular to each other. Also the dihedral angle between the central pyrrolidine and the indole ring forms a a dihedral angle of 80.1 (8)°.

The central pyrrolidine ring adopts twisted conformations on N1 and C2 atoms with the pukering parameter of q2 = 0.3942 (2) Å, ϕ = 13.72 (3)° (Cremer & Pople, 1975). The pyrrolidine ring [N2/C4/C17–C19] in the indole group adopts envelope conformations, q2 = 0.0889 (2) Å and ϕ = 219.39 (1)°, and with atom C17 deviating -0.0565 (2) Å from the least–squares plane passing through the remaining four atoms (N2/C19/C18/C4) of that ring. In the crystal the molecules are linked by weak intermolecular C—H···O hydrogen bonds (Table 1), forming one-dimensional chains along the b–axis.

Related literature top

For the biological activity of naphthalene derivatives, see: Wiltz et al. (1998); Wright et al. (2000); Varma et al. (1994). For a related structure, see: Wei et al. (2012). For ring conformations, see: Cremer & Pople (1975).

Experimental top

To a mixture of 1eq of (E)–methyl 2–(1–methyl–2–oxoindolin –3–ylidene) acetate, 1eq of isatin and 1.5eq of acenaphthylene–1,2 –dione were dissolved in acetonitrile. This reaction mixture refluxed at 80°C for 8 hours. The reaction mixture was monitored for completion by thin layar chromatography. Upon completion, the reaction mixture was extracted with ethyl acetate and water. The product was dried and purified by coloumn chromatography using ethyl acetate and hexane (1:9) as an elutent to affored pure Dispiro oxindole. Yield (78%). Single crystals suitable for X–ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
rac-Methyl (1R,3'S)-1',1''-dimethyl-2,2''-dioxo-2H- dispiro[acenaphthylene-1,2'-pyrrolidine-3',3''-indoline]-4'-carboxylate top
Crystal data top
C26H22N2O4F(000) = 896
Mr = 426.46Dx = 1.349 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4057 reflections
a = 15.4839 (4) Åθ = 1.5–25.8°
b = 9.5832 (2) ŵ = 0.09 mm1
c = 15.6375 (4) ÅT = 293 K
β = 115.184 (1)°Block, colourless
V = 2099.81 (9) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4057 independent reflections
Radiation source: fine-focus sealed tube3017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 25.8°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1818
Tmin = 0.977, Tmax = 0.983k = 1111
19264 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.5222P]
where P = (Fo2 + 2Fc2)/3
4057 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C26H22N2O4V = 2099.81 (9) Å3
Mr = 426.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.4839 (4) ŵ = 0.09 mm1
b = 9.5832 (2) ÅT = 293 K
c = 15.6375 (4) Å0.25 × 0.22 × 0.19 mm
β = 115.184 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4057 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3017 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.983Rint = 0.031
19264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
4057 reflectionsΔρmin = 0.17 e Å3
292 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69067 (8)0.37535 (12)0.28269 (9)0.0565 (3)
O20.87808 (9)0.87118 (12)0.39458 (9)0.0552 (3)
O30.64333 (11)0.58931 (15)0.48841 (11)0.0762 (4)
O40.65285 (10)0.81185 (13)0.45236 (10)0.0648 (4)
N10.87057 (9)0.51097 (14)0.41944 (9)0.0456 (3)
N20.73670 (10)0.90053 (13)0.26438 (10)0.0490 (3)
C10.91612 (13)0.37648 (19)0.42302 (14)0.0590 (5)
H1A0.86830.30500.39990.088*
H1B0.95960.35600.48710.088*
H1C0.95050.38000.38440.088*
C20.81537 (13)0.51929 (18)0.47465 (12)0.0537 (4)
H2A0.85620.51230.54180.064*
H2B0.76730.44650.45680.064*
C30.77008 (12)0.66228 (17)0.44928 (11)0.0468 (4)
H30.81740.73030.48900.056*
C40.75428 (11)0.68832 (15)0.34492 (11)0.0385 (3)
C50.81077 (10)0.56359 (15)0.32472 (10)0.0377 (3)
C60.74144 (11)0.44844 (15)0.25997 (12)0.0410 (4)
C70.75797 (10)0.43438 (15)0.17441 (11)0.0399 (4)
C80.71903 (12)0.34921 (17)0.09679 (12)0.0503 (4)
H80.66770.29130.08780.060*
C90.75897 (13)0.35191 (18)0.03135 (12)0.0566 (5)
H90.73210.29650.02250.068*
C100.83614 (14)0.43324 (18)0.04395 (12)0.0544 (4)
H100.86130.43040.00040.065*
C110.87793 (12)0.52114 (16)0.12320 (11)0.0437 (4)
C120.83529 (10)0.52056 (15)0.18635 (10)0.0375 (3)
C130.86999 (10)0.59774 (15)0.27095 (11)0.0377 (3)
C140.95079 (11)0.67546 (17)0.29344 (12)0.0470 (4)
H140.97690.72550.34970.056*
C150.99391 (13)0.67866 (19)0.23017 (13)0.0550 (5)
H151.04820.73310.24540.066*
C160.95951 (13)0.60548 (19)0.14783 (13)0.0545 (4)
H160.98980.61110.10780.065*
C170.79970 (12)0.82915 (16)0.33990 (12)0.0430 (4)
C180.65287 (11)0.70826 (15)0.27105 (11)0.0394 (4)
C190.64718 (11)0.83487 (16)0.22577 (11)0.0429 (4)
C200.56296 (13)0.88569 (19)0.15782 (13)0.0555 (5)
H200.56090.97010.12760.067*
C210.48165 (13)0.8071 (2)0.13602 (14)0.0601 (5)
H210.42370.83900.09020.072*
C220.48497 (12)0.6824 (2)0.18089 (14)0.0584 (5)
H220.42920.63170.16570.070*
C230.57069 (11)0.63162 (17)0.24860 (12)0.0489 (4)
H230.57270.54700.27850.059*
C240.75568 (16)1.03779 (19)0.23647 (17)0.0747 (6)
H24A0.71891.10660.25110.112*
H24B0.73831.03850.16980.112*
H24C0.82241.05890.27010.112*
C250.68278 (13)0.68033 (18)0.46619 (12)0.0511 (4)
C260.56590 (17)0.8428 (3)0.4604 (2)0.0891 (8)
H26A0.51440.79060.41390.134*
H26B0.55250.94080.45030.134*
H26C0.57270.81780.52240.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0570 (7)0.0447 (7)0.0803 (9)0.0125 (6)0.0413 (7)0.0052 (6)
O20.0555 (7)0.0507 (7)0.0624 (8)0.0152 (6)0.0281 (6)0.0144 (6)
O30.0945 (10)0.0629 (8)0.1036 (11)0.0088 (8)0.0734 (10)0.0024 (8)
O40.0775 (9)0.0521 (7)0.0881 (10)0.0029 (6)0.0577 (8)0.0005 (7)
N10.0475 (8)0.0464 (8)0.0437 (8)0.0061 (6)0.0202 (6)0.0065 (6)
N20.0579 (9)0.0333 (7)0.0603 (9)0.0026 (6)0.0295 (7)0.0028 (6)
C10.0604 (11)0.0532 (11)0.0598 (11)0.0149 (9)0.0223 (9)0.0104 (9)
C20.0652 (11)0.0552 (10)0.0481 (10)0.0046 (9)0.0313 (9)0.0099 (8)
C30.0543 (10)0.0472 (9)0.0452 (9)0.0055 (8)0.0272 (8)0.0025 (7)
C40.0422 (8)0.0358 (8)0.0422 (8)0.0021 (6)0.0225 (7)0.0013 (7)
C50.0387 (8)0.0352 (8)0.0410 (8)0.0005 (6)0.0188 (7)0.0005 (6)
C60.0364 (8)0.0335 (8)0.0546 (10)0.0022 (6)0.0207 (7)0.0012 (7)
C70.0392 (8)0.0320 (8)0.0448 (9)0.0037 (6)0.0144 (7)0.0016 (7)
C80.0502 (10)0.0387 (9)0.0521 (10)0.0008 (7)0.0121 (8)0.0043 (8)
C90.0714 (12)0.0467 (10)0.0434 (10)0.0045 (9)0.0164 (9)0.0074 (8)
C100.0735 (12)0.0481 (10)0.0468 (10)0.0071 (9)0.0308 (9)0.0015 (8)
C110.0523 (10)0.0399 (8)0.0421 (9)0.0067 (7)0.0231 (8)0.0047 (7)
C120.0379 (8)0.0331 (7)0.0397 (8)0.0048 (6)0.0148 (7)0.0037 (6)
C130.0362 (8)0.0369 (8)0.0411 (8)0.0011 (6)0.0176 (7)0.0010 (7)
C140.0439 (9)0.0511 (9)0.0485 (9)0.0084 (7)0.0219 (8)0.0058 (8)
C150.0484 (10)0.0592 (11)0.0664 (12)0.0132 (8)0.0332 (9)0.0058 (9)
C160.0595 (11)0.0573 (11)0.0617 (11)0.0001 (9)0.0402 (10)0.0039 (9)
C170.0493 (9)0.0376 (8)0.0502 (9)0.0058 (7)0.0290 (8)0.0091 (7)
C180.0411 (8)0.0375 (8)0.0454 (9)0.0009 (6)0.0241 (7)0.0023 (7)
C190.0502 (9)0.0367 (8)0.0483 (9)0.0029 (7)0.0273 (8)0.0026 (7)
C200.0653 (12)0.0455 (10)0.0572 (11)0.0148 (9)0.0274 (10)0.0066 (8)
C210.0496 (10)0.0622 (12)0.0623 (12)0.0147 (9)0.0177 (9)0.0045 (10)
C220.0416 (10)0.0616 (11)0.0709 (12)0.0012 (8)0.0230 (9)0.0092 (10)
C230.0457 (9)0.0454 (9)0.0608 (11)0.0004 (7)0.0277 (8)0.0006 (8)
C240.0924 (16)0.0405 (10)0.0951 (16)0.0103 (10)0.0438 (13)0.0119 (10)
C250.0649 (11)0.0489 (10)0.0522 (10)0.0087 (8)0.0371 (9)0.0056 (8)
C260.0934 (17)0.0816 (16)0.127 (2)0.0184 (13)0.0803 (17)0.0055 (14)
Geometric parameters (Å, º) top
O1—C61.2135 (18)C9—C101.369 (3)
O2—C171.2178 (19)C9—H90.9300
O3—C251.198 (2)C10—C111.408 (2)
O4—C251.328 (2)C10—H100.9300
O4—C261.436 (2)C11—C121.402 (2)
N1—C21.453 (2)C11—C161.408 (2)
N1—C11.459 (2)C12—C131.407 (2)
N1—C51.4622 (19)C13—C141.367 (2)
N2—C171.354 (2)C14—C151.410 (2)
N2—C191.403 (2)C14—H140.9300
N2—C241.455 (2)C15—C161.360 (3)
C1—H1A0.9600C15—H150.9300
C1—H1B0.9600C16—H160.9300
C1—H1C0.9600C18—C231.379 (2)
C2—C31.513 (2)C18—C191.389 (2)
C2—H2A0.9700C19—C201.374 (2)
C2—H2B0.9700C20—C211.379 (3)
C3—C251.494 (2)C20—H200.9300
C3—C41.564 (2)C21—C221.376 (3)
C3—H30.9800C21—H210.9300
C4—C181.514 (2)C22—C231.387 (2)
C4—C171.539 (2)C22—H220.9300
C4—C51.590 (2)C23—H230.9300
C5—C131.520 (2)C24—H24A0.9600
C5—C61.572 (2)C24—H24B0.9600
C6—C71.471 (2)C24—H24C0.9600
C7—C81.371 (2)C26—H26A0.9600
C7—C121.400 (2)C26—H26B0.9600
C8—C91.403 (2)C26—H26C0.9600
C8—H80.9300
C25—O4—C26117.20 (15)C12—C11—C16116.49 (15)
C2—N1—C1115.01 (14)C10—C11—C16127.37 (16)
C2—N1—C5107.70 (12)C7—C12—C11122.73 (14)
C1—N1—C5115.53 (13)C7—C12—C13113.46 (13)
C17—N2—C19111.21 (13)C11—C12—C13123.65 (14)
C17—N2—C24123.77 (15)C14—C13—C12118.01 (14)
C19—N2—C24124.40 (15)C14—C13—C5132.55 (14)
N1—C1—H1A109.5C12—C13—C5109.14 (12)
N1—C1—H1B109.5C13—C14—C15119.08 (15)
H1A—C1—H1B109.5C13—C14—H14120.5
N1—C1—H1C109.5C15—C14—H14120.5
H1A—C1—H1C109.5C16—C15—C14122.79 (16)
H1B—C1—H1C109.5C16—C15—H15118.6
N1—C2—C3102.59 (13)C14—C15—H15118.6
N1—C2—H2A111.2C15—C16—C11119.94 (15)
C3—C2—H2A111.2C15—C16—H16120.0
N1—C2—H2B111.2C11—C16—H16120.0
C3—C2—H2B111.2O2—C17—N2125.31 (15)
H2A—C2—H2B109.2O2—C17—C4126.49 (15)
C25—C3—C2114.31 (14)N2—C17—C4108.19 (13)
C25—C3—C4114.51 (14)C23—C18—C19118.95 (15)
C2—C3—C4105.51 (13)C23—C18—C4132.22 (14)
C25—C3—H3107.4C19—C18—C4108.63 (13)
C2—C3—H3107.4C20—C19—C18122.52 (16)
C4—C3—H3107.4C20—C19—N2127.77 (16)
C18—C4—C17101.45 (12)C18—C19—N2109.61 (14)
C18—C4—C3117.85 (12)C19—C20—C21117.63 (17)
C17—C4—C3108.74 (12)C19—C20—H20121.2
C18—C4—C5115.01 (12)C21—C20—H20121.2
C17—C4—C5110.31 (12)C22—C21—C20121.07 (17)
C3—C4—C5103.43 (12)C22—C21—H21119.5
N1—C5—C13111.32 (12)C20—C21—H21119.5
N1—C5—C6112.02 (12)C21—C22—C23120.68 (17)
C13—C5—C6101.67 (12)C21—C22—H22119.7
N1—C5—C4102.87 (11)C23—C22—H22119.7
C13—C5—C4117.40 (12)C18—C23—C22119.14 (16)
C6—C5—C4111.90 (11)C18—C23—H23120.4
O1—C6—C7126.75 (15)C22—C23—H23120.4
O1—C6—C5124.52 (14)N2—C24—H24A109.5
C7—C6—C5108.34 (12)N2—C24—H24B109.5
C8—C7—C12119.87 (15)H24A—C24—H24B109.5
C8—C7—C6132.72 (15)N2—C24—H24C109.5
C12—C7—C6107.13 (13)H24A—C24—H24C109.5
C7—C8—C9118.06 (16)H24B—C24—H24C109.5
C7—C8—H8121.0O3—C25—O4123.53 (17)
C9—C8—H8121.0O3—C25—C3125.34 (17)
C10—C9—C8122.29 (16)O4—C25—C3111.12 (14)
C10—C9—H9118.9O4—C26—H26A109.5
C8—C9—H9118.9O4—C26—H26B109.5
C9—C10—C11120.90 (16)H26A—C26—H26B109.5
C9—C10—H10119.5O4—C26—H26C109.5
C11—C10—H10119.5H26A—C26—H26C109.5
C12—C11—C10116.09 (15)H26B—C26—H26C109.5
C1—N1—C2—C3174.54 (14)C7—C12—C13—C50.36 (17)
C5—N1—C2—C344.14 (16)C11—C12—C13—C5175.79 (13)
N1—C2—C3—C25158.48 (14)N1—C5—C13—C1450.7 (2)
N1—C2—C3—C431.78 (17)C6—C5—C13—C14170.18 (17)
C25—C3—C4—C188.3 (2)C4—C5—C13—C1467.4 (2)
C2—C3—C4—C18118.29 (15)N1—C5—C13—C12122.71 (13)
C25—C3—C4—C17106.29 (16)C6—C5—C13—C123.27 (15)
C2—C3—C4—C17127.12 (14)C4—C5—C13—C12119.15 (14)
C25—C3—C4—C5136.46 (14)C12—C13—C14—C152.0 (2)
C2—C3—C4—C59.87 (16)C5—C13—C14—C15174.98 (16)
C2—N1—C5—C13163.81 (13)C13—C14—C15—C161.2 (3)
C1—N1—C5—C1366.09 (17)C14—C15—C16—C110.5 (3)
C2—N1—C5—C683.11 (15)C12—C11—C16—C151.3 (2)
C1—N1—C5—C647.00 (18)C10—C11—C16—C15176.25 (17)
C2—N1—C5—C437.23 (15)C19—N2—C17—O2169.50 (15)
C1—N1—C5—C4167.34 (13)C24—N2—C17—O21.8 (3)
C18—C4—C5—N1145.28 (12)C19—N2—C17—C49.62 (17)
C17—C4—C5—N1100.76 (14)C24—N2—C17—C4179.04 (16)
C3—C4—C5—N115.38 (14)C18—C4—C17—O2169.98 (15)
C18—C4—C5—C1392.14 (15)C3—C4—C17—O245.1 (2)
C17—C4—C5—C1321.82 (18)C5—C4—C17—O267.68 (19)
C3—C4—C5—C13137.96 (13)C18—C4—C17—N29.13 (15)
C18—C4—C5—C624.86 (17)C3—C4—C17—N2134.01 (13)
C17—C4—C5—C6138.82 (13)C5—C4—C17—N2113.21 (14)
C3—C4—C5—C6105.04 (14)C17—C4—C18—C23169.12 (16)
N1—C5—C6—O149.29 (19)C3—C4—C18—C2350.6 (2)
C13—C5—C6—O1168.23 (14)C5—C4—C18—C2371.8 (2)
C4—C5—C6—O165.65 (19)C17—C4—C18—C195.61 (15)
N1—C5—C6—C7123.94 (13)C3—C4—C18—C19124.14 (14)
C13—C5—C6—C75.00 (15)C5—C4—C18—C19113.43 (14)
C4—C5—C6—C7121.13 (13)C23—C18—C19—C201.4 (2)
O1—C6—C7—C85.6 (3)C4—C18—C19—C20176.94 (15)
C5—C6—C7—C8178.65 (16)C23—C18—C19—N2175.13 (14)
O1—C6—C7—C12168.02 (15)C4—C18—C19—N20.41 (17)
C5—C6—C7—C125.01 (16)C17—N2—C19—C20170.31 (16)
C12—C7—C8—C90.0 (2)C24—N2—C19—C201.0 (3)
C6—C7—C8—C9172.97 (16)C17—N2—C19—C185.99 (18)
C7—C8—C9—C101.7 (3)C24—N2—C19—C18177.26 (16)
C8—C9—C10—C111.4 (3)C18—C19—C20—C211.0 (2)
C9—C10—C11—C120.6 (2)N2—C19—C20—C21174.81 (16)
C9—C10—C11—C16176.92 (17)C19—C20—C21—C220.1 (3)
C8—C7—C12—C112.1 (2)C20—C21—C22—C230.8 (3)
C6—C7—C12—C11172.48 (13)C19—C18—C23—C220.6 (2)
C8—C7—C12—C13177.61 (13)C4—C18—C23—C22174.91 (16)
C6—C7—C12—C133.00 (17)C21—C22—C23—C180.4 (3)
C10—C11—C12—C72.4 (2)C26—O4—C25—O33.1 (3)
C16—C11—C12—C7175.42 (14)C26—O4—C25—C3176.22 (17)
C10—C11—C12—C13177.41 (14)C2—C3—C25—O37.5 (3)
C16—C11—C12—C130.4 (2)C4—C3—C25—O3114.4 (2)
C7—C12—C13—C14174.18 (14)C2—C3—C25—O4173.17 (15)
C11—C12—C13—C141.3 (2)C4—C3—C25—O464.93 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.603.268 (2)130
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H22N2O4
Mr426.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.4839 (4), 9.5832 (2), 15.6375 (4)
β (°) 115.184 (1)
V3)2099.81 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.977, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
19264, 4057, 3017
Rint0.031
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.03
No. of reflections4057
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.603.268 (2)129.6
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

ASP thanks the University Grants Commission, India, for a Minor Research Project.

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarma, A., Kolli, B. K., Paul, J., Saxena, S. & Konig, H. (1994). FEMS Microbiol. Rev. 15, 9–28.  CAS Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o1340–o1341.  CSD CrossRef IUCr Journals Google Scholar
First citationWiltz, B. A., Henderson, G. & Chen, J. (1998). Environ. Entomol. 27, 936–940.  CAS Google Scholar
First citationWright, M. S., Lax, A. R., Henderson, G. & Chen, J. A. (2000). Mycologia, 92, 42–45.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds