metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[(2,4,6-tri­methyl­phen­yl)imino­methyl]pyrrol-1-ido}palladium(II)

aUniversity Koblenz-Landau, Institute for Integrated Natural Sciences, Universitätsstrasse 1, 56070 Koblenz, Germany
*Correspondence e-mail: Imhof@uni-koblenz.de

(Received 30 November 2012; accepted 7 January 2013; online 12 January 2013)

The title compound, [Pd(C14H15N2)2], is a square-planar palladium complex composed of two deprotonated pyrrole-2-carbaldimine ligands coordinating a central PdII atom. In the crystal, three crystallographically independent complex mol­ecules are observed, one of which is located in a general position, whereas the PdII atoms of the other mol­ecules are situated on crystallographic inversion centers. The aromatic substituents at the imine N atoms in the three mol­ecules show dihedral angles of 87.6 (7)/83.64 (7), 74.3 (7) and 88.3 (7)° with respect to the corresponding PdN4 plane.

Related literature

For structural analyses of the related ligand N-((1H-pyrrol-2-yl)methyl­ene)aniline, see: Gomes et al. (2010[Gomes, C. S. B., Suresh, D., Gomes, P. T., Veiros, L. F., Duarte, M. T., Nunes, T. G. & Oliveira, M. C. (2010). Dalton Trans. 39, 736-748.]); Crestani et al. (2011[Crestani, M. G., Manbeck, G. F., Brennessel, W. W., McCormick, T. M. & Eisenberg, R. (2011). Inorg. Chem. 50, 7172-7188.]) and of of the free ligand N-((1H-pyrrol-2-yl)methyl­ene)-2,4,6-trimethyl­aniline, see: Imhof (2013[Imhof, W. (2013). Acta Cryst. E69, o113.]). For the structure of the corresponding nickel complex, see: Anderson et al. (2006[Anderson, C. E., Batsanov, A. S., Dyer, P. W., Fawcett, J. & Howard, J. A. K. (2006). Dalton Trans. pp. 5362-5378.]), the closely related 2,6-dimethyl complex, see: Pérez-Puente et al. (2008[Pérez-Puente, P., de Jesús, E., Flores, J. C. & Gómez-Sal, P. (2008). J. Organomet. Chem. 693, 3902-3906.]), the closely related 2,6-diisopropyl complex, see: Liang et al. (2004[Liang, H., Liu, J., Li, X. & Li, Y. (2004). Polyhedron, 23, 1619-1627.]) and a related nickel complex with only one pyrrole-carbaldimine ligand, see: Bellabarba et al. (2003[Bellabarba, R. M., Gomes, P. T. & Pascu, S. I. (2003). Dalton Trans. pp. 4434-4436.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C14H15N2)2]

  • Mr = 528.96

  • Triclinic, [P \overline 1]

  • a = 13.4342 (2) Å

  • b = 13.7395 (3) Å

  • c = 13.9932 (3) Å

  • α = 89.174 (11)°

  • β = 77.075 (12)°

  • γ = 77.159 (12)°

  • V = 2452.76 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 183 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 18633 measured reflections

  • 11178 independent reflections

  • 9176 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.082

  • S = 1.04

  • 11178 reflections

  • 610 parameters

  • H-atom parameters constrained

  • Δρmax = 1.17 e Å−3

  • Δρmin = −0.80 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT, Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the course of a project related to the supramolecular structures of square planar nickel and palladium complexes of pyrrole-2-carbaldehyde based Schiff base ligands in comparison with the structures of the free ligands the molecular structure of the title compound was determined. The free ligands form centrosymmetric dimers via N—H···N hydrogen bonds between the pyrrole NH function and the imine nitrogen atom of a neighboring molecule (Crestani et al., 2011; Gomes et al., 2010; Imhof, 2013).

In the crystal structure three crystallographically independent complexes are observed of which one is located in a general position, whereas the palladium atoms of the other molecules are situated on crystallographic inversion centers (Figures 1–3). The aromatic substituents at the imine nitrogen atoms show dihedral angles of 87.6 (7)° and 83.64 (7)° (molecule 1), 74.3 (7)° (molecule 2) and 88.3 (7)° (molecule 3) with respect to the corresponding PdN4 plane. As it is expected bond lengths in the NCCN backbone of the ligands change upon coordination to palladium corresponding to a delocalized formally anionic 1,4-diazadienyl subunit coordinating the metal atoms. Highly related nickel and palladium complexes show similar structural features (Anderson et al., 2006; Bellabarba et al., 2003; Liang et al., 2004; Pérez-Puente et al., 2008).

Related literature top

For structural analyses of the related ligand N-((1H-pyrrol-2-yl)methylene)aniline, see: Gomes et al. (2010); Crestani et al. (2011) and of of the free ligand N-((1H-pyrrol-2-yl)methylene)-2,4,6-trimethylaniline, see: Imhof (2013). For the structure of the corresponding nickel complex, see: Anderson et al. (2006), the closely related 2,6-dimethyl complex, see: Pérez-Puente et al. (2008), the closely related 2,6-diisopropyl complex, see: Liang et al. (2004) and a related nickel complex with only one pyrrole-carbaldimine ligand, see: Bellabarba et al. (2003).

Experimental top

N-((1H-Pyrrol-2-yl)methylene)-2,4,6-trimethylaniline (213 mg, 1 mmol) and [Pd(PPh3)4] (580 mg, 0.5 mmol) were dissolved in 20 ml anhydrous toluene under an argon atmosphere. After the solution is stirred at room temperature for 2 h it was filtered through a short bed of celite. Afterwards the solution was concentrated to ca 10 ml in vacuo. Crystalline material of the title compound was obtained from this solution after 1 week at -20°C (yield: 214 mg, 81%).

Refinement top

Hydrogen atoms have been included into the refinement in calculated positions (methyl H atoms allowed to rotate but not to tip) with fixed thermal parameter of Uiso(H) = 1.2 Ueq(C) for aromatic C—H groups and the imine C—H function and a thermal parameter of Uiso(H) = 1.5 Ueq(C) for methyl groups.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the molecule in general positions in the unit cell with thermal ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of the molecule with Pd2 being situated at a inversion center with thermal ellipsoids at the 50% probability level (i = -x, -1 - y, -z).
[Figure 3] Fig. 3. Molecular structure of the molecule with Pd3 being situated at a inversion center with thermal ellipsoids at the 50% probability level (i = 1 - x, -1 - y, -z).
Bis{2-[(2,4,6-trimethylphenyl)iminomethyl]pyrrol-1-ido}palladium(II) top
Crystal data top
[Pd(C14H15N2)2]Z = 4
Mr = 528.96F(000) = 1088
Triclinic, P1Dx = 1.432 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.4342 (2) ÅCell parameters from 18633 reflections
b = 13.7395 (3) Åθ = 1.5–27.5°
c = 13.9932 (3) ŵ = 0.78 mm1
α = 89.174 (11)°T = 183 K
β = 77.075 (12)°Cube, yellow
γ = 77.159 (12)°0.3 × 0.3 × 0.2 mm
V = 2452.76 (19) Å3
Data collection top
Nonius KappaCCD
diffractometer
9176 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 27.5°, θmin = 1.5°
ϕ and ω scansh = 1717
18633 measured reflectionsk = 1716
11178 independent reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.9566P]
where P = (Fo2 + 2Fc2)/3
11178 reflections(Δ/σ)max = 0.013
610 parametersΔρmax = 1.17 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Pd(C14H15N2)2]γ = 77.159 (12)°
Mr = 528.96V = 2452.76 (19) Å3
Triclinic, P1Z = 4
a = 13.4342 (2) ÅMo Kα radiation
b = 13.7395 (3) ŵ = 0.78 mm1
c = 13.9932 (3) ÅT = 183 K
α = 89.174 (11)°0.3 × 0.3 × 0.2 mm
β = 77.075 (12)°
Data collection top
Nonius KappaCCD
diffractometer
9176 reflections with I > 2σ(I)
18633 measured reflectionsRint = 0.025
11178 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.04Δρmax = 1.17 e Å3
11178 reflectionsΔρmin = 0.80 e Å3
610 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.163237 (12)0.246906 (13)0.464295 (12)0.02049 (6)
N10.21166 (14)0.30994 (14)0.33580 (14)0.0215 (4)
C10.29683 (18)0.33558 (18)0.28211 (17)0.0248 (5)
H1A0.36450.31900.29610.030*
C20.27183 (18)0.39051 (17)0.20209 (18)0.0264 (5)
H2A0.31850.41720.15300.032*
C30.16522 (18)0.39838 (17)0.20851 (18)0.0252 (5)
H3A0.12500.43130.16480.030*
C40.12957 (18)0.34839 (17)0.29177 (17)0.0226 (5)
N20.02318 (14)0.28818 (14)0.42391 (14)0.0221 (4)
C50.03045 (18)0.33428 (17)0.34115 (18)0.0241 (5)
H5A0.02960.35770.31490.029*
C60.07864 (17)0.27543 (18)0.47480 (17)0.0236 (5)
C70.14339 (18)0.35159 (18)0.53961 (18)0.0272 (5)
C80.24287 (19)0.33935 (19)0.58602 (19)0.0314 (6)
H8A0.28850.39120.62930.038*
C90.27738 (18)0.2546 (2)0.57123 (18)0.0302 (6)
C100.2091 (2)0.1790 (2)0.50884 (19)0.0325 (6)
H10A0.23120.11970.49890.039*
C110.10875 (19)0.18755 (19)0.46022 (18)0.0286 (5)
C120.1079 (2)0.4439 (2)0.5595 (2)0.0452 (7)
H12A0.03940.42490.57630.068*
H12B0.15890.48310.61420.068*
H12C0.10240.48400.50080.068*
C130.3866 (2)0.2449 (2)0.6208 (2)0.0430 (7)
H13A0.43790.30130.60410.064*
H13B0.39380.24490.69200.064*
H13C0.39880.18230.59830.064*
C140.0364 (2)0.1042 (2)0.3940 (2)0.0490 (8)
H14A0.03080.08660.41350.074*
H14B0.02510.12560.32610.074*
H14C0.06770.04580.39920.074*
N30.11406 (15)0.18656 (15)0.59387 (14)0.0250 (4)
C150.02657 (19)0.17013 (18)0.65332 (18)0.0270 (5)
H15A0.04180.19040.64130.032*
C160.05000 (19)0.11904 (17)0.73526 (18)0.0273 (5)
H16A0.00160.09920.78820.033*
C170.1577 (2)0.10277 (19)0.72446 (18)0.0307 (6)
H17A0.19750.06890.76810.037*
C180.19615 (18)0.14559 (19)0.63729 (18)0.0281 (5)
C190.29609 (19)0.1542 (2)0.58527 (18)0.0311 (6)
H19A0.35660.12570.60910.037*
N40.30427 (15)0.20230 (16)0.50320 (15)0.0267 (4)
C200.40720 (17)0.20400 (18)0.44600 (17)0.0252 (5)
C210.44577 (18)0.29036 (19)0.44667 (18)0.0287 (5)
C220.54514 (19)0.2896 (2)0.39070 (18)0.0302 (5)
H22A0.57230.34760.39150.036*
C230.60637 (18)0.2066 (2)0.33336 (18)0.0286 (5)
C240.56480 (19)0.1234 (2)0.33281 (19)0.0310 (6)
H24A0.60550.06640.29350.037*
C250.46576 (18)0.11966 (19)0.38757 (18)0.0278 (5)
C260.3817 (2)0.3823 (2)0.5075 (2)0.0424 (7)
H26A0.41680.43780.49180.064*
H26B0.37470.36850.57730.064*
H26C0.31200.40020.49300.064*
C270.7144 (2)0.2080 (2)0.2737 (2)0.0406 (7)
H27A0.75640.13950.26150.061*
H27B0.74810.24670.30980.061*
H27C0.70880.23880.21090.061*
C280.4231 (2)0.0275 (2)0.3841 (2)0.0391 (6)
H28A0.46670.01680.32900.059*
H28B0.35100.04680.37550.059*
H28C0.42400.00740.44560.059*
Pd20.00000.50000.00000.02017 (7)
N50.09861 (15)0.51167 (14)0.12940 (15)0.0244 (4)
C290.16114 (18)0.57003 (18)0.17554 (19)0.0285 (5)
H29A0.17250.62770.14690.034*
C300.20707 (19)0.53356 (19)0.27177 (19)0.0303 (6)
H30A0.25440.56130.31920.036*
C310.17046 (19)0.44942 (19)0.28480 (19)0.0302 (6)
H31A0.18730.40850.34290.036*
C320.10407 (18)0.43655 (17)0.19610 (18)0.0255 (5)
C330.04886 (17)0.36287 (17)0.16084 (18)0.0252 (5)
H33A0.05100.30770.20200.030*
N60.00543 (14)0.37176 (14)0.07024 (15)0.0235 (4)
C340.05818 (17)0.29237 (16)0.03709 (17)0.0219 (5)
C350.01881 (18)0.22382 (17)0.02786 (18)0.0247 (5)
C360.06473 (18)0.14246 (17)0.05187 (18)0.0255 (5)
H36A0.03850.09530.09570.031*
C370.14732 (18)0.12827 (17)0.01385 (17)0.0249 (5)
C380.18579 (18)0.19909 (17)0.04811 (18)0.0261 (5)
H38A0.24330.19080.07370.031*
C390.14350 (18)0.28187 (17)0.07435 (18)0.0254 (5)
C400.0703 (2)0.2361 (2)0.0715 (2)0.0368 (6)
H40A0.12660.25130.01970.055*
H40B0.04560.29100.12110.055*
H40C0.09690.17420.10220.055*
C410.1938 (2)0.03800 (19)0.0373 (2)0.0341 (6)
H41A0.14220.01590.05750.051*
H41B0.25650.05560.09080.051*
H41C0.21280.01570.02100.051*
C420.1889 (2)0.3563 (2)0.1422 (2)0.0441 (7)
H42A0.20780.42340.11120.066*
H42B0.13680.35490.20390.066*
H42C0.25150.33890.15550.066*
Pd30.50000.00000.00000.02059 (7)
N70.38702 (15)0.02108 (14)0.11542 (14)0.0245 (4)
C430.35456 (19)0.09420 (18)0.16945 (17)0.0271 (5)
H43A0.39030.16250.16260.033*
C440.26070 (19)0.0556 (2)0.23723 (19)0.0318 (6)
H44A0.22180.09240.28340.038*
C450.23511 (19)0.0468 (2)0.22423 (18)0.0316 (6)
H45A0.17570.09370.25990.038*
C460.31405 (18)0.06689 (18)0.14846 (18)0.0253 (5)
C470.33221 (18)0.15209 (17)0.09806 (18)0.0257 (5)
H47A0.28650.21550.11700.031*
N80.41321 (15)0.14272 (14)0.02451 (14)0.0238 (4)
C480.43127 (17)0.22895 (16)0.02939 (17)0.0240 (5)
C490.49587 (18)0.28507 (17)0.00173 (18)0.0255 (5)
C500.5119 (2)0.36819 (18)0.05528 (19)0.0311 (6)
H50A0.55570.40710.03760.037*
C510.4655 (2)0.39644 (19)0.1345 (2)0.0345 (6)
C520.4029 (2)0.33834 (19)0.1598 (2)0.0329 (6)
H52A0.37030.35720.21290.040*
C530.38611 (18)0.25320 (18)0.10975 (18)0.0271 (5)
C540.5471 (2)0.2539 (2)0.0824 (2)0.0348 (6)
H54A0.60070.29190.08290.052*
H54B0.57990.18240.07490.052*
H54C0.49420.26710.14430.052*
C550.4836 (3)0.4871 (2)0.1916 (2)0.0506 (8)
H55A0.50090.46990.26200.076*
H55B0.54180.50970.17430.076*
H55C0.42000.54050.17560.076*
C560.3241 (2)0.1878 (2)0.1442 (2)0.0394 (6)
H56A0.26890.17640.08920.059*
H56B0.37070.12360.16980.059*
H56C0.29220.22070.19620.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01597 (9)0.02503 (10)0.02050 (10)0.00485 (7)0.00405 (7)0.00239 (7)
N10.0179 (9)0.0202 (9)0.0258 (10)0.0006 (7)0.0073 (8)0.0013 (8)
C10.0224 (11)0.0279 (12)0.0239 (12)0.0055 (10)0.0047 (9)0.0010 (10)
C20.0271 (12)0.0247 (12)0.0266 (13)0.0071 (10)0.0032 (10)0.0022 (10)
C30.0273 (12)0.0208 (11)0.0285 (13)0.0044 (10)0.0094 (10)0.0020 (9)
C40.0236 (11)0.0206 (11)0.0241 (12)0.0043 (9)0.0069 (9)0.0005 (9)
N20.0170 (9)0.0246 (10)0.0256 (11)0.0055 (8)0.0058 (8)0.0010 (8)
C50.0209 (11)0.0230 (11)0.0293 (13)0.0039 (9)0.0087 (10)0.0009 (10)
C60.0167 (10)0.0300 (12)0.0253 (12)0.0059 (9)0.0067 (9)0.0021 (10)
C70.0240 (12)0.0269 (12)0.0295 (13)0.0032 (10)0.0058 (10)0.0004 (10)
C80.0239 (12)0.0324 (13)0.0320 (14)0.0005 (10)0.0003 (10)0.0002 (11)
C90.0202 (11)0.0425 (15)0.0279 (13)0.0083 (11)0.0050 (10)0.0089 (11)
C100.0305 (13)0.0359 (14)0.0356 (15)0.0171 (11)0.0072 (11)0.0009 (11)
C110.0248 (12)0.0347 (14)0.0278 (13)0.0109 (10)0.0048 (10)0.0040 (10)
C120.0390 (15)0.0328 (15)0.059 (2)0.0103 (12)0.0029 (14)0.0136 (13)
C130.0280 (14)0.0587 (19)0.0416 (17)0.0144 (13)0.0027 (12)0.0142 (14)
C140.0412 (16)0.0433 (17)0.059 (2)0.0170 (14)0.0047 (14)0.0226 (15)
N30.0237 (10)0.0282 (10)0.0235 (10)0.0063 (8)0.0058 (8)0.0027 (8)
C150.0246 (12)0.0270 (12)0.0288 (13)0.0099 (10)0.0009 (10)0.0017 (10)
C160.0336 (13)0.0237 (12)0.0242 (13)0.0125 (10)0.0002 (10)0.0017 (10)
C170.0355 (14)0.0314 (13)0.0258 (13)0.0087 (11)0.0074 (11)0.0056 (10)
C180.0250 (12)0.0340 (13)0.0257 (13)0.0068 (10)0.0068 (10)0.0062 (10)
C190.0242 (12)0.0412 (15)0.0293 (14)0.0055 (11)0.0110 (10)0.0074 (11)
N40.0181 (9)0.0361 (11)0.0263 (11)0.0058 (8)0.0068 (8)0.0071 (9)
C200.0165 (11)0.0352 (13)0.0245 (12)0.0046 (10)0.0076 (9)0.0075 (10)
C210.0229 (12)0.0362 (14)0.0263 (13)0.0044 (10)0.0064 (10)0.0010 (11)
C220.0274 (12)0.0362 (14)0.0298 (14)0.0134 (11)0.0060 (10)0.0006 (11)
C230.0232 (12)0.0387 (14)0.0238 (13)0.0069 (11)0.0053 (10)0.0025 (10)
C240.0259 (12)0.0347 (14)0.0293 (14)0.0026 (11)0.0037 (10)0.0023 (11)
C250.0235 (12)0.0331 (13)0.0290 (13)0.0063 (10)0.0107 (10)0.0052 (10)
C260.0331 (14)0.0431 (16)0.0480 (18)0.0103 (13)0.0008 (13)0.0081 (13)
C270.0271 (13)0.0516 (17)0.0391 (16)0.0104 (12)0.0023 (12)0.0009 (13)
C280.0321 (14)0.0371 (15)0.0499 (18)0.0107 (12)0.0097 (13)0.0010 (13)
Pd20.01905 (12)0.01752 (12)0.02423 (14)0.00706 (9)0.00241 (10)0.00192 (9)
N50.0224 (10)0.0228 (10)0.0270 (11)0.0076 (8)0.0012 (8)0.0013 (8)
C290.0246 (12)0.0249 (12)0.0362 (14)0.0088 (10)0.0042 (10)0.0009 (10)
C300.0238 (12)0.0318 (13)0.0327 (14)0.0077 (10)0.0003 (10)0.0059 (11)
C310.0275 (12)0.0304 (13)0.0288 (14)0.0039 (10)0.0003 (10)0.0039 (10)
C320.0230 (11)0.0237 (12)0.0281 (13)0.0050 (9)0.0024 (10)0.0049 (10)
C330.0235 (11)0.0231 (12)0.0283 (13)0.0052 (9)0.0042 (10)0.0063 (10)
N60.0228 (10)0.0204 (9)0.0288 (11)0.0076 (8)0.0055 (8)0.0026 (8)
C340.0229 (11)0.0160 (10)0.0262 (12)0.0058 (9)0.0025 (9)0.0044 (9)
C350.0252 (12)0.0219 (11)0.0268 (13)0.0040 (9)0.0064 (10)0.0049 (9)
C360.0298 (12)0.0199 (11)0.0265 (13)0.0041 (10)0.0076 (10)0.0027 (9)
C370.0288 (12)0.0199 (11)0.0256 (13)0.0078 (10)0.0030 (10)0.0004 (9)
C380.0245 (12)0.0273 (12)0.0296 (13)0.0111 (10)0.0074 (10)0.0003 (10)
C390.0233 (11)0.0247 (12)0.0298 (13)0.0077 (10)0.0070 (10)0.0032 (10)
C400.0367 (14)0.0328 (14)0.0473 (17)0.0091 (12)0.0217 (13)0.0018 (12)
C410.0396 (14)0.0268 (13)0.0386 (15)0.0151 (11)0.0070 (12)0.0052 (11)
C420.0391 (15)0.0451 (17)0.059 (2)0.0195 (13)0.0251 (14)0.0239 (15)
Pd30.01993 (12)0.01823 (12)0.02178 (13)0.00241 (9)0.00277 (10)0.00014 (9)
N70.0244 (10)0.0237 (10)0.0240 (11)0.0041 (8)0.0035 (8)0.0016 (8)
C430.0310 (13)0.0271 (12)0.0243 (13)0.0075 (10)0.0071 (10)0.0023 (10)
C440.0292 (13)0.0385 (14)0.0286 (14)0.0133 (11)0.0031 (11)0.0057 (11)
C450.0236 (12)0.0393 (14)0.0270 (13)0.0026 (11)0.0002 (10)0.0027 (11)
C460.0213 (11)0.0272 (12)0.0259 (13)0.0030 (10)0.0042 (9)0.0029 (10)
C470.0223 (11)0.0230 (12)0.0299 (13)0.0008 (9)0.0063 (10)0.0029 (10)
N80.0237 (10)0.0188 (9)0.0278 (11)0.0021 (8)0.0064 (8)0.0003 (8)
C480.0226 (11)0.0184 (11)0.0277 (13)0.0005 (9)0.0027 (10)0.0009 (9)
C490.0219 (11)0.0233 (12)0.0292 (13)0.0010 (9)0.0054 (10)0.0048 (10)
C500.0303 (13)0.0250 (12)0.0377 (15)0.0094 (10)0.0037 (11)0.0041 (11)
C510.0340 (14)0.0254 (13)0.0398 (16)0.0036 (11)0.0027 (12)0.0013 (11)
C520.0357 (14)0.0300 (13)0.0326 (14)0.0039 (11)0.0106 (11)0.0060 (11)
C530.0264 (12)0.0247 (12)0.0310 (13)0.0058 (10)0.0078 (10)0.0009 (10)
C540.0304 (13)0.0380 (15)0.0366 (15)0.0048 (11)0.0115 (11)0.0021 (12)
C550.062 (2)0.0334 (16)0.057 (2)0.0176 (15)0.0088 (16)0.0127 (14)
C560.0426 (16)0.0416 (16)0.0424 (17)0.0166 (13)0.0199 (13)0.0019 (13)
Geometric parameters (Å, º) top
Pd1—N32.0189 (19)Pd2—N6i2.0530 (19)
Pd1—N12.0220 (19)Pd2—N62.0531 (19)
Pd1—N22.0429 (18)N5—C291.344 (3)
Pd1—N42.0488 (19)N5—C321.380 (3)
N1—C11.336 (3)C29—C301.398 (4)
N1—C41.382 (3)C29—H29A0.9500
C1—C21.403 (3)C30—C311.382 (4)
C1—H1A0.9500C30—H30A0.9500
C2—C31.395 (3)C31—C321.391 (3)
C2—H2A0.9500C31—H31A0.9500
C3—C41.390 (3)C32—C331.405 (3)
C3—H3A0.9500C33—N61.306 (3)
C4—C51.410 (3)C33—H33A0.9500
N2—C51.307 (3)N6—C341.445 (3)
N2—C61.441 (3)C34—C391.396 (3)
C5—H5A0.9500C34—C351.401 (3)
C6—C111.387 (3)C35—C361.395 (3)
C6—C71.394 (3)C35—C401.501 (3)
C7—C81.395 (3)C36—C371.384 (3)
C7—C121.500 (4)C36—H36A0.9500
C8—C91.380 (4)C37—C381.385 (3)
C8—H8A0.9500C37—C411.509 (3)
C9—C101.388 (4)C38—C391.390 (3)
C9—C131.510 (3)C38—H38A0.9500
C10—C111.397 (3)C39—C421.507 (3)
C10—H10A0.9500C40—H40A0.9800
C11—C141.499 (4)C40—H40B0.9800
C12—H12A0.9800C40—H40C0.9800
C12—H12B0.9800C41—H41A0.9800
C12—H12C0.9800C41—H41B0.9800
C13—H13A0.9800C41—H41C0.9800
C13—H13B0.9800C42—H42A0.9800
C13—H13C0.9800C42—H42B0.9800
C14—H14A0.9800C42—H42C0.9800
C14—H14B0.9800Pd3—N72.0202 (19)
C14—H14C0.9800Pd3—N7ii2.0203 (19)
N3—C151.341 (3)Pd3—N82.0363 (18)
N3—C181.384 (3)Pd3—N8ii2.0363 (18)
C15—C161.395 (3)N7—C431.340 (3)
C15—H15A0.9500N7—C461.386 (3)
C16—C171.388 (3)C43—C441.397 (3)
C16—H16A0.9500C43—H43A0.9500
C17—C181.390 (3)C44—C451.392 (4)
C17—H17A0.9500C44—H44A0.9500
C18—C191.406 (3)C45—C461.394 (3)
C19—N41.312 (3)C45—H45A0.9500
C19—H19A0.9500C46—C471.398 (3)
N4—C201.439 (3)C47—N81.304 (3)
C20—C211.397 (4)C47—H47A0.9500
C20—C251.402 (4)N8—C481.432 (3)
C21—C221.386 (3)C48—C531.396 (3)
C21—C261.510 (4)C48—C491.398 (3)
C22—C231.391 (4)C49—C501.387 (3)
C22—H22A0.9500C49—C541.503 (3)
C23—C241.380 (4)C50—C511.399 (4)
C23—C271.508 (3)C50—H50A0.9500
C24—C251.390 (3)C51—C521.382 (4)
C24—H24A0.9500C51—C551.506 (4)
C25—C281.507 (4)C52—C531.390 (3)
C26—H26A0.9800C52—H52A0.9500
C26—H26B0.9800C53—C561.504 (4)
C26—H26C0.9800C54—H54A0.9800
C27—H27A0.9800C54—H54B0.9800
C27—H27B0.9800C54—H54C0.9800
C27—H27C0.9800C55—H55A0.9800
C28—H28A0.9800C55—H55B0.9800
C28—H28B0.9800C55—H55C0.9800
C28—H28C0.9800C56—H56A0.9800
Pd2—N5i2.0180 (19)C56—H56B0.9800
Pd2—N52.0180 (19)C56—H56C0.9800
N3—Pd1—N1178.92 (8)N5i—Pd2—N699.19 (8)
N3—Pd1—N299.02 (8)N5—Pd2—N680.82 (8)
N1—Pd1—N280.86 (7)N6i—Pd2—N6180.0
N3—Pd1—N480.96 (8)C29—N5—C32106.6 (2)
N1—Pd1—N499.19 (7)C29—N5—Pd2141.48 (18)
N2—Pd1—N4178.66 (8)C32—N5—Pd2111.90 (15)
C1—N1—C4107.20 (19)N5—C29—C30110.2 (2)
C1—N1—Pd1140.47 (16)N5—C29—H29A124.9
C4—N1—Pd1111.95 (14)C30—C29—H29A124.9
N1—C1—C2110.1 (2)C31—C30—C29107.0 (2)
N1—C1—H1A124.9C31—C30—H30A126.5
C2—C1—H1A124.9C29—C30—H30A126.5
C3—C2—C1106.8 (2)C30—C31—C32106.5 (2)
C3—C2—H2A126.6C30—C31—H31A126.8
C1—C2—H2A126.6C32—C31—H31A126.8
C4—C3—C2106.2 (2)N5—C32—C31109.8 (2)
C4—C3—H3A126.9N5—C32—C33116.1 (2)
C2—C3—H3A126.9C31—C32—C33134.1 (2)
N1—C4—C3109.68 (19)N6—C33—C32118.6 (2)
N1—C4—C5115.9 (2)N6—C33—H33A120.7
C3—C4—C5134.3 (2)C32—C33—H33A120.7
C5—N2—C6118.08 (19)C33—N6—C34116.21 (19)
C5—N2—Pd1112.88 (15)C33—N6—Pd2112.33 (15)
C6—N2—Pd1129.02 (15)C34—N6—Pd2131.46 (15)
N2—C5—C4118.4 (2)C39—C34—C35121.1 (2)
N2—C5—H5A120.8C39—C34—N6119.7 (2)
C4—C5—H5A120.8C35—C34—N6119.1 (2)
C11—C6—C7121.8 (2)C36—C35—C34118.2 (2)
C11—C6—N2119.6 (2)C36—C35—C40120.0 (2)
C7—C6—N2118.6 (2)C34—C35—C40121.8 (2)
C8—C7—C6117.8 (2)C37—C36—C35122.0 (2)
C8—C7—C12120.7 (2)C37—C36—H36A119.0
C6—C7—C12121.5 (2)C35—C36—H36A119.0
C9—C8—C7122.3 (2)C36—C37—C38118.0 (2)
C9—C8—H8A118.8C36—C37—C41121.6 (2)
C7—C8—H8A118.8C38—C37—C41120.4 (2)
C8—C9—C10118.0 (2)C37—C38—C39122.6 (2)
C8—C9—C13120.9 (2)C37—C38—H38A118.7
C10—C9—C13121.1 (3)C39—C38—H38A118.7
C9—C10—C11122.0 (2)C38—C39—C34118.0 (2)
C9—C10—H10A119.0C38—C39—C42120.0 (2)
C11—C10—H10A119.0C34—C39—C42122.0 (2)
C6—C11—C10118.0 (2)C35—C40—H40A109.5
C6—C11—C14121.3 (2)C35—C40—H40B109.5
C10—C11—C14120.7 (2)H40A—C40—H40B109.5
C7—C12—H12A109.5C35—C40—H40C109.5
C7—C12—H12B109.5H40A—C40—H40C109.5
H12A—C12—H12B109.5H40B—C40—H40C109.5
C7—C12—H12C109.5C37—C41—H41A109.5
H12A—C12—H12C109.5C37—C41—H41B109.5
H12B—C12—H12C109.5H41A—C41—H41B109.5
C9—C13—H13A109.5C37—C41—H41C109.5
C9—C13—H13B109.5H41A—C41—H41C109.5
H13A—C13—H13B109.5H41B—C41—H41C109.5
C9—C13—H13C109.5C39—C42—H42A109.5
H13A—C13—H13C109.5C39—C42—H42B109.5
H13B—C13—H13C109.5H42A—C42—H42B109.5
C11—C14—H14A109.5C39—C42—H42C109.5
C11—C14—H14B109.5H42A—C42—H42C109.5
H14A—C14—H14B109.5H42B—C42—H42C109.5
C11—C14—H14C109.5N7—Pd3—N7ii180.0
H14A—C14—H14C109.5N7—Pd3—N880.54 (8)
H14B—C14—H14C109.5N7ii—Pd3—N899.46 (8)
C15—N3—C18106.8 (2)N7—Pd3—N8ii99.46 (8)
C15—N3—Pd1141.05 (17)N7ii—Pd3—N8ii80.54 (8)
C18—N3—Pd1112.17 (15)N8—Pd3—N8ii180.0
N3—C15—C16110.5 (2)C43—N7—C46106.89 (19)
N3—C15—H15A124.8C43—N7—Pd3140.86 (16)
C16—C15—H15A124.8C46—N7—Pd3112.13 (15)
C17—C16—C15106.7 (2)N7—C43—C44110.3 (2)
C17—C16—H16A126.7N7—C43—H43A124.8
C15—C16—H16A126.7C44—C43—H43A124.8
C16—C17—C18106.7 (2)C45—C44—C43107.0 (2)
C16—C17—H17A126.7C45—C44—H44A126.5
C18—C17—H17A126.7C43—C44—H44A126.5
N3—C18—C17109.4 (2)C44—C45—C46106.3 (2)
N3—C18—C19115.7 (2)C44—C45—H45A126.9
C17—C18—C19134.9 (2)C46—C45—H45A126.9
N4—C19—C18118.8 (2)N7—C46—C45109.5 (2)
N4—C19—H19A120.6N7—C46—C47115.5 (2)
C18—C19—H19A120.6C45—C46—C47134.9 (2)
C19—N4—C20118.7 (2)N8—C47—C46118.6 (2)
C19—N4—Pd1112.22 (16)N8—C47—H47A120.7
C20—N4—Pd1128.30 (15)C46—C47—H47A120.7
C21—C20—C25121.0 (2)C47—N8—C48119.22 (19)
C21—C20—N4119.8 (2)C47—N8—Pd3113.16 (15)
C25—C20—N4119.1 (2)C48—N8—Pd3127.61 (15)
C22—C21—C20118.4 (2)C53—C48—C49121.7 (2)
C22—C21—C26120.5 (2)C53—C48—N8119.1 (2)
C20—C21—C26121.1 (2)C49—C48—N8119.1 (2)
C21—C22—C23122.2 (2)C50—C49—C48117.9 (2)
C21—C22—H22A118.9C50—C49—C54121.9 (2)
C23—C22—H22A118.9C48—C49—C54120.2 (2)
C24—C23—C22117.8 (2)C49—C50—C51122.0 (2)
C24—C23—C27121.3 (2)C49—C50—H50A119.0
C22—C23—C27120.9 (2)C51—C50—H50A119.0
C23—C24—C25122.6 (2)C52—C51—C50118.2 (2)
C23—C24—H24A118.7C52—C51—C55120.6 (3)
C25—C24—H24A118.7C50—C51—C55121.2 (3)
C24—C25—C20118.0 (2)C51—C52—C53122.0 (2)
C24—C25—C28120.8 (2)C51—C52—H52A119.0
C20—C25—C28121.2 (2)C53—C52—H52A119.0
C21—C26—H26A109.5C52—C53—C48118.2 (2)
C21—C26—H26B109.5C52—C53—C56120.3 (2)
H26A—C26—H26B109.5C48—C53—C56121.5 (2)
C21—C26—H26C109.5C49—C54—H54A109.5
H26A—C26—H26C109.5C49—C54—H54B109.5
H26B—C26—H26C109.5H54A—C54—H54B109.5
C23—C27—H27A109.5C49—C54—H54C109.5
C23—C27—H27B109.5H54A—C54—H54C109.5
H27A—C27—H27B109.5H54B—C54—H54C109.5
C23—C27—H27C109.5C51—C55—H55A109.5
H27A—C27—H27C109.5C51—C55—H55B109.5
H27B—C27—H27C109.5H55A—C55—H55B109.5
C25—C28—H28A109.5C51—C55—H55C109.5
C25—C28—H28B109.5H55A—C55—H55C109.5
H28A—C28—H28B109.5H55B—C55—H55C109.5
C25—C28—H28C109.5C53—C56—H56A109.5
H28A—C28—H28C109.5C53—C56—H56B109.5
H28B—C28—H28C109.5H56A—C56—H56B109.5
N5i—Pd2—N5179.999 (2)C53—C56—H56C109.5
N5i—Pd2—N6i80.82 (8)H56A—C56—H56C109.5
N5—Pd2—N6i99.18 (8)H56B—C56—H56C109.5
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Pd(C14H15N2)2]
Mr528.96
Crystal system, space groupTriclinic, P1
Temperature (K)183
a, b, c (Å)13.4342 (2), 13.7395 (3), 13.9932 (3)
α, β, γ (°)89.174 (11), 77.075 (12), 77.159 (12)
V3)2452.76 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18633, 11178, 9176
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.04
No. of reflections11178
No. of parameters610
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.17, 0.80

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), publCIF (Westrip, 2010).

 

References

First citationAnderson, C. E., Batsanov, A. S., Dyer, P. W., Fawcett, J. & Howard, J. A. K. (2006). Dalton Trans. pp. 5362–5378.  Web of Science CSD CrossRef Google Scholar
First citationBellabarba, R. M., Gomes, P. T. & Pascu, S. I. (2003). Dalton Trans. pp. 4434–4436.  Google Scholar
First citationCrestani, M. G., Manbeck, G. F., Brennessel, W. W., McCormick, T. M. & Eisenberg, R. (2011). Inorg. Chem. 50, 7172–7188.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomes, C. S. B., Suresh, D., Gomes, P. T., Veiros, L. F., Duarte, M. T., Nunes, T. G. & Oliveira, M. C. (2010). Dalton Trans. 39, 736–748.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationImhof, W. (2013). Acta Cryst. E69, o113.  CSD CrossRef IUCr Journals Google Scholar
First citationLiang, H., Liu, J., Li, X. & Li, Y. (2004). Polyhedron, 23, 1619–1627.  CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT, Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPérez-Puente, P., de Jesús, E., Flores, J. C. & Gómez-Sal, P. (2008). J. Organomet. Chem. 693, 3902–3906.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds