organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-methyl-N-[2-(methyl­amino)­phen­yl]acetamide

aCollege of Science, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China
*Correspondence e-mail: jinminggao@nwsuaf.edu.cn

(Received 17 December 2012; accepted 6 January 2013; online 12 January 2013)

The title compound, C10H13ClN2O, was obtained as a by-product in the reaction of 2-chloro­methyl-1H-benzimidazole, dimethyl sulfate and toluene to synthesise 2-chloro­methyl-1-methyl­benzimidazole. The dihedral angle between the benzene ring and the acetamide group is 89.72  (6)° while that between the aromatic ring and the chloracetyl group is 84.40 (4)°. In the crystal, adjacent mol­ecules are linked by pairs of N—H⋯O hydrogen bonds into inversion dimers.

Related literature

For the synthesis of similar compounds, see: Turner & Wood (1965[Turner, A. B. & Wood, H. C. S. (1965). J. Chem. Soc. pp. 5270-5275.]); Bai et al. (2008[Bai, Y., Li, C., Sun, W., Zhao, G. & Shi, Z. (2008). Hua Xue Shiji, 30, 409-411.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13ClN2O

  • Mr = 212.67

  • Monoclinic, P 21 /n

  • a = 9.2483 (18) Å

  • b = 6.6630 (13) Å

  • c = 17.622 (3) Å

  • β = 94.377 (2)°

  • V = 1082.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.50 × 0.35 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.855, Tmax = 0.935

  • 7714 measured reflections

  • 2011 independent reflections

  • 1487 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.140

  • S = 1.01

  • 2011 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.23 2.926 (2) 138
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For the synthesis of similar compounds, see: Turner & Wood (1965); Bai et al. (2008).

Experimental top

2-chloromethyl-1H-benzimidazole (1.01 g, 6.07 mmol), toluene (10 ml),dimethyl sulfate (0.63 ml, 6.67 mmol) were refluxed for 3 h and the reaction was followed by TLC monitoring). After cooling 10 mL of water and an excess of ammonia were added. After filtration, the solution was extracted with chloroform (3 x 20 ml). The organic layer was dried over anhydrous sodium sulfate, concentrated and purified by columnchromatography on silica gel eluting with 4:1–3:1 petroleum ether-acetone. Crystals of the title compound were grown by slow evaporation of the solvent.

Refinement top

All H atoms were positioned with idealized geometry and refined isotropic with Uiso(H) = 1.2 Ueq(C,N) using a riding model.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labeling and isplacement ellipsoids drawn at the 30% probability level.
2-Chloro-N-methyl-N-[2-(methylamino)phenyl]acetamide top
Crystal data top
C10H13ClN2OF(000) = 448
Mr = 212.67Dx = 1.305 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2483 (18) ÅCell parameters from 2090 reflections
b = 6.6630 (13) Åθ = 2.6–25.0°
c = 17.622 (3) ŵ = 0.32 mm1
β = 94.377 (2)°T = 296 K
V = 1082.8 (4) Å3Block, colourless
Z = 40.50 × 0.35 × 0.21 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2011 independent reflections
Radiation source: fine-focus sealed tube1487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.855, Tmax = 0.935k = 88
7714 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.4335P]
where P = (Fo2 + 2Fc2)/3
2011 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C10H13ClN2OV = 1082.8 (4) Å3
Mr = 212.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2483 (18) ŵ = 0.32 mm1
b = 6.6630 (13) ÅT = 296 K
c = 17.622 (3) Å0.50 × 0.35 × 0.21 mm
β = 94.377 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2011 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1487 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.935Rint = 0.023
7714 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
2011 reflectionsΔρmin = 0.24 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0326 (2)0.5640 (3)0.20070 (11)0.0443 (5)
C20.9122 (2)0.6930 (3)0.19791 (11)0.0443 (5)
C30.8956 (3)0.8109 (3)0.26283 (13)0.0526 (6)
H30.81810.89980.26330.063*
C40.9928 (3)0.7961 (4)0.32578 (13)0.0594 (7)
H40.97930.87550.36810.071*
C51.1092 (3)0.6675 (4)0.32793 (13)0.0594 (7)
H51.17330.65840.37110.071*
C61.1285 (2)0.5519 (4)0.26424 (12)0.0526 (6)
H61.20720.46500.26440.063*
C70.6897 (3)0.8227 (4)0.12831 (16)0.0648 (7)
H7A0.62620.78880.16700.097*
H7B0.63980.80340.07910.097*
H7C0.71880.96050.13400.097*
C80.9806 (3)0.2351 (4)0.14078 (16)0.0655 (7)
H8A0.98820.16610.09340.098*
H8B0.88020.25180.14970.098*
H8C1.02810.15800.18140.098*
C91.1273 (2)0.4748 (4)0.07858 (11)0.0487 (5)
C101.1969 (3)0.6811 (4)0.08199 (16)0.0740 (8)
H10A1.24690.70030.13190.089*
H10B1.12170.78230.07530.089*
Cl11.31970 (9)0.71410 (17)0.01279 (4)0.0981 (4)
N10.8153 (2)0.6964 (3)0.13566 (11)0.0612 (6)
H10.83050.61770.09840.073*
N21.04930 (19)0.4308 (3)0.13748 (9)0.0453 (4)
O11.14232 (19)0.3589 (3)0.02587 (9)0.0643 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0489 (11)0.0492 (12)0.0357 (10)0.0029 (10)0.0084 (9)0.0016 (9)
C20.0519 (12)0.0455 (12)0.0369 (11)0.0002 (9)0.0128 (9)0.0001 (9)
C30.0641 (14)0.0470 (13)0.0496 (13)0.0030 (10)0.0228 (11)0.0044 (10)
C40.0806 (17)0.0599 (15)0.0400 (12)0.0238 (13)0.0205 (12)0.0133 (11)
C50.0654 (15)0.0733 (17)0.0390 (12)0.0196 (13)0.0006 (10)0.0026 (11)
C60.0528 (13)0.0604 (14)0.0444 (12)0.0039 (11)0.0028 (10)0.0001 (11)
C70.0593 (15)0.0652 (16)0.0700 (16)0.0143 (12)0.0053 (12)0.0009 (13)
C80.0724 (17)0.0552 (15)0.0696 (17)0.0062 (12)0.0108 (13)0.0129 (12)
C90.0470 (12)0.0606 (14)0.0380 (11)0.0130 (10)0.0011 (9)0.0007 (10)
C100.0861 (19)0.0806 (19)0.0593 (16)0.0093 (15)0.0314 (14)0.0046 (13)
Cl10.0836 (6)0.1459 (9)0.0684 (5)0.0247 (5)0.0304 (4)0.0038 (5)
N10.0624 (12)0.0763 (14)0.0449 (11)0.0249 (10)0.0041 (9)0.0101 (10)
N20.0484 (10)0.0480 (10)0.0398 (9)0.0030 (8)0.0054 (7)0.0055 (8)
O10.0742 (11)0.0775 (12)0.0417 (9)0.0169 (9)0.0064 (8)0.0138 (8)
Geometric parameters (Å, º) top
C1—C61.377 (3)C7—H7B0.9600
C1—C21.405 (3)C7—H7C0.9600
C1—N21.442 (3)C8—N21.454 (3)
C2—N11.363 (3)C8—H8A0.9600
C2—C31.406 (3)C8—H8B0.9600
C3—C41.377 (4)C8—H8C0.9600
C3—H30.9300C9—O11.224 (3)
C4—C51.374 (4)C9—N21.341 (3)
C4—H40.9300C9—C101.517 (4)
C5—C61.384 (3)C10—Cl11.742 (3)
C5—H50.9300C10—H10A0.9700
C6—H60.9300C10—H10B0.9700
C7—N11.432 (3)N1—H10.8600
C7—H7A0.9600
C6—C1—C2121.60 (19)H7B—C7—H7C109.5
C6—C1—N2119.48 (19)N2—C8—H8A109.5
C2—C1—N2118.76 (18)N2—C8—H8B109.5
N1—C2—C3122.7 (2)H8A—C8—H8B109.5
N1—C2—C1120.60 (19)N2—C8—H8C109.5
C3—C2—C1116.7 (2)H8A—C8—H8C109.5
C4—C3—C2120.7 (2)H8B—C8—H8C109.5
C4—C3—H3119.6O1—C9—N2123.3 (2)
C2—C3—H3119.6O1—C9—C10122.0 (2)
C5—C4—C3121.9 (2)N2—C9—C10114.78 (19)
C5—C4—H4119.0C9—C10—Cl1112.58 (19)
C3—C4—H4119.0C9—C10—H10A109.1
C4—C5—C6118.3 (2)Cl1—C10—H10A109.1
C4—C5—H5120.8C9—C10—H10B109.1
C6—C5—H5120.8Cl1—C10—H10B109.1
C1—C6—C5120.8 (2)H10A—C10—H10B107.8
C1—C6—H6119.6C2—N1—C7124.2 (2)
C5—C6—H6119.6C2—N1—H1117.9
N1—C7—H7A109.5C7—N1—H1117.9
N1—C7—H7B109.5C9—N2—C1124.03 (19)
H7A—C7—H7B109.5C9—N2—C8119.30 (19)
N1—C7—H7C109.5C1—N2—C8116.63 (18)
H7A—C7—H7C109.5
C6—C1—C2—N1177.2 (2)N2—C9—C10—Cl1170.27 (17)
N2—C1—C2—N11.9 (3)C3—C2—N1—C71.9 (4)
C6—C1—C2—C30.8 (3)C1—C2—N1—C7179.8 (2)
N2—C1—C2—C3176.12 (18)O1—C9—N2—C1178.84 (19)
N1—C2—C3—C4177.1 (2)C10—C9—N2—C11.0 (3)
C1—C2—C3—C40.8 (3)O1—C9—N2—C81.3 (3)
C2—C3—C4—C50.2 (3)C10—C9—N2—C8178.6 (2)
C3—C4—C5—C60.6 (4)C6—C1—N2—C991.2 (3)
C2—C1—C6—C50.0 (3)C2—C1—N2—C993.3 (3)
N2—C1—C6—C5175.32 (19)C6—C1—N2—C886.4 (3)
C4—C5—C6—C10.7 (3)C2—C1—N2—C889.1 (2)
O1—C9—C10—Cl19.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.232.926 (2)138
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H13ClN2O
Mr212.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.2483 (18), 6.6630 (13), 17.622 (3)
β (°) 94.377 (2)
V3)1082.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.50 × 0.35 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.855, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
7714, 2011, 1487
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.140, 1.01
No. of reflections2011
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.232.926 (2)138.1
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

This work was supported financially by grants from the National Natural Science Foundation of China (No. 30971882), the Program of Natural Science Basis Research in Shaanxi (No. 2009JM3010) and Shaanxi Province Science and Technology (No. 2011k02–07).

References

First citationBai, Y., Li, C., Sun, W., Zhao, G. & Shi, Z. (2008). Hua Xue Shiji, 30, 409–411.  CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, A. B. & Wood, H. C. S. (1965). J. Chem. Soc. pp. 5270–5275.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds