organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­methyl­phenyl acridine-9-carboxyl­ate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 18 December 2012; accepted 19 December 2012; online 4 January 2013)

In the title compound, C22H17NO2, the acridine ring system and the benzene ring are oriented at a dihedral angle of 37.7 (1)°. The carboxyl group is twisted at an angle of 67.7 (1)° relative to the acridine skeleton. In the crystal, mol­ecules are arranged in stacks along the b axis, with all of the acridine rings involved in multiple ππ inter­actions [centroid–centroid distances in the range 3.632 (2)–4.101 (2) Å]. The acridine moieties are parallel within the stacks, but inclined at an angle of 52.7 (1)° in adjacent stacks.

Related literature

For general background, see: Krzymiński et al. (2011[Krzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Błażejowski, J. (2011). J. Org. Chem. 76, 1072-1085.]); Natrajan et al. (2012[Natrajan, A., Sharpe, D. & Wen, D. (2012). Org. Biomol. Chem. 10, 3432-3447.]). For related structures, see: Sikorski et al. (2005[Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005). Acta Cryst. C61, o50-o52.]); Sikorski et al. (2006[Sikorski, A., Krzymiński, K., Białońska, A., Lis, T. & Błażejowski, J. (2006). Acta Cryst. E62, o555-o558.]). For inter­molecular inter­actions, see: Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]). For the synthesis, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Sikorski et al. (2005[Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005). Acta Cryst. C61, o50-o52.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17NO2

  • Mr = 327.37

  • Monoclinic, P 21 /c

  • a = 12.8617 (10) Å

  • b = 7.5352 (5) Å

  • c = 17.5950 (15) Å

  • β = 103.143 (8)°

  • V = 1660.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.45 × 0.12 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.349, Tmax = 1.000

  • 10387 measured reflections

  • 2913 independent reflections

  • 1908 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.151

  • S = 0.97

  • 2913 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenyl acridine-9-carboxylates are the precursors of 9-(phenoxycarbonyl)-10-methylacridinium salts, whose cations exhibit a chemiluminogenic ability that can be utilized analytically (Natrajan et al., 2012). Here we present the structure of the precursor of one of the chemiluminogens that we have recently investigated (Krzymiński et al., 2011).

The bond lengths and angles characterizing the geometry of the acridine and phenyl moieties of the title compound (Fig. 1) are similar to those found in earlier investigated phenyl acridine-9-carboxylates alkyl-substituted at the benzene ring (Sikorski et al., 2005; Sikorski et al., 2006). With respective average deviations from planarity of 0.0245 (3) Å and 0.0084 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 37.7 (1)° (this angle is equal to 30.0 (2)° in 2-methylphenyl acridine-9-carboxylate (Sikorski et al., 2006) and 35.7 (2)° in 2,5-dimethylphenyl acridine-9-carboxylate (Sikorski et al., 2005)). The carboxyl group is twisted at an angle of 67.7 (1)° relative to the acridine skeleton (this angle is equal to 58.0 (2)° in 2-methylphenyl acridine-9-carboxylate (Sikorski et al., 2006) and 68.1 (2)° in 2,5-dimethylphenyl acridine-9-carboxylate (Sikorski et al., 2005)).

The search for intermolecular interactions in the crystal using PLATON (Spek, 2009) has shown that the inversely related molecules of the title compound (Fig. 2) are arranged in stacks along the b axis (Fig. 3) in which all acridine rings are involved in multiple ππ interactions (Table 1, Fig. 2) of an attractive nature (Hunter et al., 2001). The acridine moieties are parallel in stacks but inclined at an angle of 52.7 (1)° in adjacent stacks. The crystal structure is stabilized by dispersive interactions between neighboring stacks. This interesting crystal architecture is unique among the structures of phenyl acridine-9-carboxylates determined to date.

Related literature top

For a general background, see: Krzymiński et al. (2011); Natrajan et al. (2012). For related structures, see: Sikorski et al. (2005); Sikorski et al. (2006). For intermolecular interactions, see: Hunter et al. (2001). For the synthesis, see: Sato (1996); Sikorski et al. (2005).

Experimental top

2,6-Dimethylphenyl acridine-9-carboxylate was synthesized by the esterification of 9-(chlorocarbonyl)acridine (obtained in the reaction of acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with 2,6-dimethylphenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (308–313 K, 25 h) (Sato, 1996; Sikorski et al., 2005). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v). Light-yellow crystals suitable for X-ray investigations were grown from cyclohexane (m.p. 434.5–435.5 K).

Refinement top

H atoms were positioned geometrically, with C–H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2 and Cg3 denote the ring centroids.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure. The ππ contacts are represented by dotted lines. H atoms have been omitted. [Symmetry codes: (i) –x + 1, –y + 2, –z; (ii) –x + 1, –y + 1, –z.]
[Figure 3] Fig. 3. Molecular stacks in the crystal structure, viewed along the b axis. H atoms have been omitted.
2,6-Dimethylphenyl acridine-9-carboxylate top
Crystal data top
C22H17NO2F(000) = 688
Mr = 327.37Dx = 1.313 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2738 reflections
a = 12.8617 (10) Åθ = 3.5–29.2°
b = 7.5352 (5) ŵ = 0.08 mm1
c = 17.5950 (15) ÅT = 295 K
β = 103.143 (8)°Needle, light-yellow
V = 1660.6 (2) Å30.45 × 0.12 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2913 independent reflections
Radiation source: Enhanced (Mo) X-ray Source1908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 10.4002 pixels mm-1θmax = 25.0°, θmin = 3.5°
ω scansh = 1513
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 88
Tmin = 0.349, Tmax = 1.000l = 1820
10387 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0773P)2]
where P = (Fo2 + 2Fc2)/3
2913 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C22H17NO2V = 1660.6 (2) Å3
Mr = 327.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8617 (10) ŵ = 0.08 mm1
b = 7.5352 (5) ÅT = 295 K
c = 17.5950 (15) Å0.45 × 0.12 × 0.05 mm
β = 103.143 (8)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2913 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1908 reflections with I > 2σ(I)
Tmin = 0.349, Tmax = 1.000Rint = 0.064
10387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 0.97Δρmax = 0.18 e Å3
2913 reflectionsΔρmin = 0.24 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48802 (17)0.9058 (3)0.16670 (14)0.0453 (6)
H10.43470.91420.19440.054*
C20.58693 (18)0.9693 (3)0.19883 (15)0.0528 (6)
H20.60071.02100.24810.063*
C30.66912 (19)0.9573 (3)0.15763 (17)0.0551 (7)
H30.73651.00210.18000.066*
C40.65119 (18)0.8819 (3)0.08637 (16)0.0516 (6)
H40.70640.87490.06030.062*
C50.4238 (2)0.5983 (3)0.12990 (15)0.0544 (6)
H50.48200.58800.15280.065*
C60.3282 (2)0.5381 (3)0.16823 (15)0.0611 (7)
H60.32090.48670.21720.073*
C70.2385 (2)0.5519 (3)0.13491 (15)0.0589 (7)
H70.17240.51060.16240.071*
C80.24756 (19)0.6245 (3)0.06369 (15)0.0512 (6)
H80.18780.63140.04240.061*
C90.36337 (16)0.7668 (3)0.05347 (12)0.0373 (5)
N100.53517 (15)0.7388 (2)0.02047 (12)0.0463 (5)
C110.46450 (16)0.8267 (3)0.09145 (13)0.0376 (5)
C120.54857 (17)0.8128 (3)0.05037 (14)0.0418 (6)
C130.34688 (17)0.6905 (3)0.02074 (13)0.0396 (5)
C140.43823 (19)0.6776 (3)0.05490 (13)0.0428 (6)
C150.27353 (16)0.7908 (3)0.09379 (14)0.0385 (5)
O160.20166 (11)0.91069 (18)0.05648 (8)0.0418 (4)
O170.26699 (12)0.7193 (2)0.15308 (10)0.0545 (5)
C180.12755 (16)0.9763 (3)0.09855 (13)0.0404 (5)
C190.03752 (17)0.8771 (3)0.10077 (14)0.0496 (6)
C200.03222 (19)0.9513 (4)0.14183 (16)0.0664 (8)
H200.09370.88970.14500.080*
C210.0124 (2)1.1126 (4)0.17756 (17)0.0708 (8)
H21A0.05951.15810.20560.085*
C220.0764 (2)1.2077 (3)0.17229 (16)0.0637 (7)
H220.08831.31830.19610.076*
C230.14931 (17)1.1414 (3)0.13174 (14)0.0478 (6)
C240.0152 (2)0.7020 (3)0.06043 (18)0.0698 (8)
H24A0.05500.66250.06290.105*
H24B0.06710.61660.08570.105*
H24C0.01900.71430.00680.105*
C250.2463 (2)1.2462 (3)0.12474 (17)0.0655 (8)
H25A0.24711.35730.15160.098*
H25B0.24421.26800.07060.098*
H25C0.30961.18020.14750.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0440 (13)0.0553 (13)0.0372 (14)0.0005 (11)0.0104 (11)0.0009 (11)
C20.0547 (15)0.0593 (14)0.0411 (15)0.0042 (12)0.0038 (13)0.0002 (12)
C30.0416 (13)0.0585 (15)0.0618 (19)0.0061 (11)0.0048 (13)0.0081 (13)
C40.0423 (13)0.0536 (14)0.0609 (18)0.0029 (11)0.0161 (13)0.0124 (13)
C50.0751 (18)0.0502 (13)0.0443 (16)0.0070 (13)0.0270 (14)0.0008 (12)
C60.094 (2)0.0537 (15)0.0386 (16)0.0000 (14)0.0217 (16)0.0054 (12)
C70.0680 (17)0.0592 (15)0.0452 (17)0.0065 (12)0.0039 (14)0.0080 (13)
C80.0550 (14)0.0552 (14)0.0435 (16)0.0017 (12)0.0114 (12)0.0056 (12)
C90.0416 (13)0.0384 (11)0.0332 (13)0.0032 (9)0.0113 (10)0.0033 (10)
N100.0515 (12)0.0487 (11)0.0426 (13)0.0089 (9)0.0189 (10)0.0079 (9)
C110.0399 (12)0.0414 (11)0.0313 (13)0.0025 (10)0.0079 (10)0.0058 (10)
C120.0441 (13)0.0428 (12)0.0401 (15)0.0065 (10)0.0130 (11)0.0117 (11)
C130.0471 (13)0.0381 (11)0.0340 (13)0.0042 (10)0.0100 (11)0.0035 (10)
C140.0548 (14)0.0415 (12)0.0346 (14)0.0086 (11)0.0154 (11)0.0057 (10)
C150.0395 (12)0.0421 (12)0.0336 (14)0.0000 (10)0.0073 (10)0.0014 (10)
O160.0417 (8)0.0498 (8)0.0358 (9)0.0086 (7)0.0126 (7)0.0059 (7)
O170.0548 (10)0.0681 (10)0.0449 (11)0.0129 (8)0.0204 (8)0.0177 (9)
C180.0384 (12)0.0497 (13)0.0331 (13)0.0104 (10)0.0083 (10)0.0045 (10)
C190.0388 (13)0.0628 (15)0.0465 (16)0.0048 (11)0.0078 (11)0.0052 (12)
C200.0425 (15)0.094 (2)0.066 (2)0.0067 (14)0.0189 (14)0.0087 (17)
C210.0607 (17)0.096 (2)0.063 (2)0.0278 (17)0.0275 (15)0.0028 (17)
C220.0748 (18)0.0632 (16)0.0539 (18)0.0194 (14)0.0165 (15)0.0042 (13)
C230.0513 (14)0.0520 (14)0.0402 (15)0.0098 (11)0.0104 (12)0.0049 (11)
C240.0542 (16)0.0745 (17)0.079 (2)0.0130 (14)0.0115 (15)0.0051 (16)
C250.0749 (18)0.0547 (14)0.0677 (19)0.0089 (13)0.0177 (16)0.0063 (14)
Geometric parameters (Å, º) top
C1—C21.356 (3)C11—C121.435 (3)
C1—C111.420 (3)C13—C141.440 (3)
C1—H10.9300C15—O171.194 (2)
C2—C31.414 (3)C15—O161.351 (2)
C2—H20.9300O16—C181.422 (2)
C3—C41.348 (3)C18—C231.376 (3)
C3—H30.9300C18—C191.386 (3)
C4—C121.426 (3)C19—C201.391 (3)
C4—H40.9300C19—C241.495 (3)
C5—C61.340 (3)C20—C211.366 (4)
C5—C141.422 (3)C20—H200.9300
C5—H50.9300C21—C221.370 (4)
C6—C71.412 (4)C21—H21A0.9300
C6—H60.9300C22—C231.394 (3)
C7—C81.348 (3)C22—H220.9300
C7—H70.9300C23—C251.505 (3)
C8—C131.418 (3)C24—H24A0.9600
C8—H80.9300C24—H24B0.9600
C9—C111.395 (3)C24—H24C0.9600
C9—C131.398 (3)C25—H25A0.9600
C9—C151.498 (3)C25—H25B0.9600
N10—C141.338 (3)C25—H25C0.9600
N10—C121.340 (3)
C2—C1—C11121.2 (2)N10—C14—C5118.4 (2)
C2—C1—H1119.4N10—C14—C13123.6 (2)
C11—C1—H1119.4C5—C14—C13118.0 (2)
C1—C2—C3120.2 (2)O17—C15—O16123.36 (19)
C1—C2—H2119.9O17—C15—C9125.1 (2)
C3—C2—H2119.9O16—C15—C9111.52 (18)
C4—C3—C2120.9 (2)C15—O16—C18116.42 (16)
C4—C3—H3119.5C23—C18—C19124.5 (2)
C2—C3—H3119.5C23—C18—O16116.07 (19)
C3—C4—C12120.8 (2)C19—C18—O16119.39 (19)
C3—C4—H4119.6C18—C19—C20116.1 (2)
C12—C4—H4119.6C18—C19—C24122.3 (2)
C6—C5—C14121.3 (2)C20—C19—C24121.6 (2)
C6—C5—H5119.3C21—C20—C19121.5 (2)
C14—C5—H5119.3C21—C20—H20119.3
C5—C6—C7120.6 (2)C19—C20—H20119.3
C5—C6—H6119.7C20—C21—C22120.4 (2)
C7—C6—H6119.7C20—C21—H21A119.8
C8—C7—C6120.6 (2)C22—C21—H21A119.8
C8—C7—H7119.7C21—C22—C23121.1 (2)
C6—C7—H7119.7C21—C22—H22119.5
C7—C8—C13121.0 (2)C23—C22—H22119.5
C7—C8—H8119.5C18—C23—C22116.5 (2)
C13—C8—H8119.5C18—C23—C25122.1 (2)
C11—C9—C13120.48 (19)C22—C23—C25121.4 (2)
C11—C9—C15118.01 (19)C19—C24—H24A109.5
C13—C9—C15121.49 (19)C19—C24—H24B109.5
C14—N10—C12118.28 (18)H24A—C24—H24B109.5
C9—C11—C1124.1 (2)C19—C24—H24C109.5
C9—C11—C12117.5 (2)H24A—C24—H24C109.5
C1—C11—C12118.37 (19)H24B—C24—H24C109.5
N10—C12—C4118.4 (2)C23—C25—H25A109.5
N10—C12—C11123.1 (2)C23—C25—H25B109.5
C4—C12—C11118.5 (2)H25A—C25—H25B109.5
C9—C13—C8124.7 (2)C23—C25—H25C109.5
C9—C13—C14116.9 (2)H25A—C25—H25C109.5
C8—C13—C14118.4 (2)H25B—C25—H25C109.5
C11—C1—C2—C30.2 (3)C6—C5—C14—N10178.5 (2)
C1—C2—C3—C40.5 (3)C6—C5—C14—C130.4 (3)
C2—C3—C4—C120.3 (3)C9—C13—C14—N102.0 (3)
C14—C5—C6—C70.0 (4)C8—C13—C14—N10178.56 (19)
C5—C6—C7—C80.6 (4)C9—C13—C14—C5179.15 (18)
C6—C7—C8—C130.7 (4)C8—C13—C14—C50.3 (3)
C13—C9—C11—C1179.93 (19)C11—C9—C15—O1765.5 (3)
C15—C9—C11—C11.3 (3)C13—C9—C15—O17115.9 (2)
C13—C9—C11—C122.3 (3)C11—C9—C15—O16111.8 (2)
C15—C9—C11—C12176.36 (18)C13—C9—C15—O1666.8 (2)
C2—C1—C11—C9176.7 (2)O17—C15—O16—C1812.0 (3)
C2—C1—C11—C121.0 (3)C9—C15—O16—C18165.32 (17)
C14—N10—C12—C4178.49 (18)C15—O16—C18—C23100.9 (2)
C14—N10—C12—C111.1 (3)C15—O16—C18—C1982.0 (2)
C3—C4—C12—N10179.8 (2)C23—C18—C19—C202.0 (3)
C3—C4—C12—C110.6 (3)O16—C18—C19—C20178.9 (2)
C9—C11—C12—N102.9 (3)C23—C18—C19—C24177.0 (2)
C1—C11—C12—N10179.25 (18)O16—C18—C19—C240.1 (3)
C9—C11—C12—C4176.66 (18)C18—C19—C20—C210.1 (4)
C1—C11—C12—C41.2 (3)C24—C19—C20—C21178.9 (3)
C11—C9—C13—C8179.43 (19)C19—C20—C21—C221.4 (4)
C15—C9—C13—C82.0 (3)C20—C21—C22—C231.1 (4)
C11—C9—C13—C140.0 (3)C19—C18—C23—C222.3 (3)
C15—C9—C13—C14178.56 (18)O16—C18—C23—C22179.24 (19)
C7—C8—C13—C9179.7 (2)C19—C18—C23—C25177.5 (2)
C7—C8—C13—C140.2 (3)O16—C18—C23—C250.6 (3)
C12—N10—C14—C5179.71 (18)C21—C22—C23—C180.7 (4)
C12—N10—C14—C131.4 (3)C21—C22—C23—C25179.2 (2)

Experimental details

Crystal data
Chemical formulaC22H17NO2
Mr327.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)12.8617 (10), 7.5352 (5), 17.5950 (15)
β (°) 103.143 (8)
V3)1660.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.12 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.349, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10387, 2913, 1908
Rint0.064
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.151, 0.97
No. of reflections2913
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

ππ interactions (Å, °). top
Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
11i4.040 (2)0.0 (2)3.396 (1)2.188 (2)
11ii4.101 (2)0.0 (2)3.375 (1)2.330 (2)
12i3.632 (2)2.0 (2)3.348 (1)1.408 (2)
13ii3.914 (2)1.1 (2)3.338 (1)2.044 (2)
21i3.632 (2)2.0 (2)3.373 (1)1.347 (2)
23i3.990 (2)3.0 (2)3.400 (1)2.088 (2)
23ii4.071 (2)3.0 (2)3.365 (1)2.291 (2)
31ii3.914 (2)1.1 (2)3.371 (1)1.989 (2)
32i3.990 (2)3.0 (2)3.306 (1)2.234 (2)
32ii4.071 (2)3.0 (2)3.413 (1)2.219 (2)
Symmetry codes: (i) –x + 1, –y + 2, –z; (ii) –x + 1, –y + 1, –z.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research through National Center for Science grant No. N N204 375 740 (contract No. 3757/B/H03/2011/40).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationKrzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Błażejowski, J. (2011). J. Org. Chem. 76, 1072–1085.  Web of Science PubMed Google Scholar
First citationNatrajan, A., Sharpe, D. & Wen, D. (2012). Org. Biomol. Chem. 10, 3432–3447.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikorski, A., Krzymiński, K., Białońska, A., Lis, T. & Błażejowski, J. (2006). Acta Cryst. E62, o555–o558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005). Acta Cryst. C61, o50–o52.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds