organic compounds
2,6-Dimethylphenyl acridine-9-carboxylate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the title compound, C22H17NO2, the acridine ring system and the benzene ring are oriented at a dihedral angle of 37.7 (1)°. The carboxyl group is twisted at an angle of 67.7 (1)° relative to the acridine skeleton. In the crystal, molecules are arranged in stacks along the b axis, with all of the acridine rings involved in multiple π–π interactions [centroid–centroid distances in the range 3.632 (2)–4.101 (2) Å]. The acridine moieties are parallel within the stacks, but inclined at an angle of 52.7 (1)° in adjacent stacks.
Related literature
For general background, see: Krzymiński et al. (2011); Natrajan et al. (2012). For related structures, see: Sikorski et al. (2005); Sikorski et al. (2006). For intermolecular interactions, see: Hunter et al. (2001). For the synthesis, see: Sato (1996); Sikorski et al. (2005).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S160053681205129X/ng5313sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681205129X/ng5313Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681205129X/ng5313Isup3.cml
2,6-Dimethylphenyl acridine-9-carboxylate was synthesized by the esterification of 9-(chlorocarbonyl)acridine (obtained in the reaction of acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with 2,6-dimethylphenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (308–313 K, 25 h) (Sato, 1996; Sikorski et al., 2005). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v). Light-yellow crystals suitable for X-ray investigations were grown from cyclohexane (m.p. 434.5–435.5 K).
H atoms were positioned geometrically, with C–H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C22H17NO2 | F(000) = 688 |
Mr = 327.37 | Dx = 1.313 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2738 reflections |
a = 12.8617 (10) Å | θ = 3.5–29.2° |
b = 7.5352 (5) Å | µ = 0.08 mm−1 |
c = 17.5950 (15) Å | T = 295 K |
β = 103.143 (8)° | Needle, light-yellow |
V = 1660.6 (2) Å3 | 0.45 × 0.12 × 0.05 mm |
Z = 4 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 2913 independent reflections |
Radiation source: Enhanced (Mo) X-ray Source | 1908 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.0°, θmin = 3.5° |
ω scans | h = −15→13 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −8→8 |
Tmin = 0.349, Tmax = 1.000 | l = −18→20 |
10387 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0773P)2] where P = (Fo2 + 2Fc2)/3 |
2913 reflections | (Δ/σ)max < 0.001 |
228 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C22H17NO2 | V = 1660.6 (2) Å3 |
Mr = 327.37 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.8617 (10) Å | µ = 0.08 mm−1 |
b = 7.5352 (5) Å | T = 295 K |
c = 17.5950 (15) Å | 0.45 × 0.12 × 0.05 mm |
β = 103.143 (8)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 2913 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 1908 reflections with I > 2σ(I) |
Tmin = 0.349, Tmax = 1.000 | Rint = 0.064 |
10387 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.18 e Å−3 |
2913 reflections | Δρmin = −0.24 e Å−3 |
228 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.48802 (17) | 0.9058 (3) | 0.16670 (14) | 0.0453 (6) | |
H1 | 0.4347 | 0.9142 | 0.1944 | 0.054* | |
C2 | 0.58693 (18) | 0.9693 (3) | 0.19883 (15) | 0.0528 (6) | |
H2 | 0.6007 | 1.0210 | 0.2481 | 0.063* | |
C3 | 0.66912 (19) | 0.9573 (3) | 0.15763 (17) | 0.0551 (7) | |
H3 | 0.7365 | 1.0021 | 0.1800 | 0.066* | |
C4 | 0.65119 (18) | 0.8819 (3) | 0.08637 (16) | 0.0516 (6) | |
H4 | 0.7064 | 0.8749 | 0.0603 | 0.062* | |
C5 | 0.4238 (2) | 0.5983 (3) | −0.12990 (15) | 0.0544 (6) | |
H5 | 0.4820 | 0.5880 | −0.1528 | 0.065* | |
C6 | 0.3282 (2) | 0.5381 (3) | −0.16823 (15) | 0.0611 (7) | |
H6 | 0.3209 | 0.4867 | −0.2172 | 0.073* | |
C7 | 0.2385 (2) | 0.5519 (3) | −0.13491 (15) | 0.0589 (7) | |
H7 | 0.1724 | 0.5106 | −0.1624 | 0.071* | |
C8 | 0.24756 (19) | 0.6245 (3) | −0.06369 (15) | 0.0512 (6) | |
H8 | 0.1878 | 0.6314 | −0.0424 | 0.061* | |
C9 | 0.36337 (16) | 0.7668 (3) | 0.05347 (12) | 0.0373 (5) | |
N10 | 0.53517 (15) | 0.7388 (2) | −0.02047 (12) | 0.0463 (5) | |
C11 | 0.46450 (16) | 0.8267 (3) | 0.09145 (13) | 0.0376 (5) | |
C12 | 0.54857 (17) | 0.8128 (3) | 0.05037 (14) | 0.0418 (6) | |
C13 | 0.34688 (17) | 0.6905 (3) | −0.02074 (13) | 0.0396 (5) | |
C14 | 0.43823 (19) | 0.6776 (3) | −0.05490 (13) | 0.0428 (6) | |
C15 | 0.27353 (16) | 0.7908 (3) | 0.09379 (14) | 0.0385 (5) | |
O16 | 0.20166 (11) | 0.91069 (18) | 0.05648 (8) | 0.0418 (4) | |
O17 | 0.26699 (12) | 0.7193 (2) | 0.15308 (10) | 0.0545 (5) | |
C18 | 0.12755 (16) | 0.9763 (3) | 0.09855 (13) | 0.0404 (5) | |
C19 | 0.03752 (17) | 0.8771 (3) | 0.10077 (14) | 0.0496 (6) | |
C20 | −0.03222 (19) | 0.9513 (4) | 0.14183 (16) | 0.0664 (8) | |
H20 | −0.0937 | 0.8897 | 0.1450 | 0.080* | |
C21 | −0.0124 (2) | 1.1126 (4) | 0.17756 (17) | 0.0708 (8) | |
H21A | −0.0595 | 1.1581 | 0.2056 | 0.085* | |
C22 | 0.0764 (2) | 1.2077 (3) | 0.17229 (16) | 0.0637 (7) | |
H22 | 0.0883 | 1.3183 | 0.1961 | 0.076* | |
C23 | 0.14931 (17) | 1.1414 (3) | 0.13174 (14) | 0.0478 (6) | |
C24 | 0.0152 (2) | 0.7020 (3) | 0.06043 (18) | 0.0698 (8) | |
H24A | −0.0550 | 0.6625 | 0.0629 | 0.105* | |
H24B | 0.0671 | 0.6166 | 0.0857 | 0.105* | |
H24C | 0.0190 | 0.7143 | 0.0068 | 0.105* | |
C25 | 0.2463 (2) | 1.2462 (3) | 0.12474 (17) | 0.0655 (8) | |
H25A | 0.2471 | 1.3573 | 0.1516 | 0.098* | |
H25B | 0.2442 | 1.2680 | 0.0706 | 0.098* | |
H25C | 0.3096 | 1.1802 | 0.1475 | 0.098* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0440 (13) | 0.0553 (13) | 0.0372 (14) | −0.0005 (11) | 0.0104 (11) | −0.0009 (11) |
C2 | 0.0547 (15) | 0.0593 (14) | 0.0411 (15) | −0.0042 (12) | 0.0038 (13) | −0.0002 (12) |
C3 | 0.0416 (13) | 0.0585 (15) | 0.0618 (19) | −0.0061 (11) | 0.0048 (13) | 0.0081 (13) |
C4 | 0.0423 (13) | 0.0536 (14) | 0.0609 (18) | 0.0029 (11) | 0.0161 (13) | 0.0124 (13) |
C5 | 0.0751 (18) | 0.0502 (13) | 0.0443 (16) | 0.0070 (13) | 0.0270 (14) | −0.0008 (12) |
C6 | 0.094 (2) | 0.0537 (15) | 0.0386 (16) | 0.0000 (14) | 0.0217 (16) | −0.0054 (12) |
C7 | 0.0680 (17) | 0.0592 (15) | 0.0452 (17) | −0.0065 (12) | 0.0039 (14) | −0.0080 (13) |
C8 | 0.0550 (14) | 0.0552 (14) | 0.0435 (16) | −0.0017 (12) | 0.0114 (12) | −0.0056 (12) |
C9 | 0.0416 (13) | 0.0384 (11) | 0.0332 (13) | 0.0032 (9) | 0.0113 (10) | 0.0033 (10) |
N10 | 0.0515 (12) | 0.0487 (11) | 0.0426 (13) | 0.0089 (9) | 0.0189 (10) | 0.0079 (9) |
C11 | 0.0399 (12) | 0.0414 (11) | 0.0313 (13) | 0.0025 (10) | 0.0079 (10) | 0.0058 (10) |
C12 | 0.0441 (13) | 0.0428 (12) | 0.0401 (15) | 0.0065 (10) | 0.0130 (11) | 0.0117 (11) |
C13 | 0.0471 (13) | 0.0381 (11) | 0.0340 (13) | 0.0042 (10) | 0.0100 (11) | 0.0035 (10) |
C14 | 0.0548 (14) | 0.0415 (12) | 0.0346 (14) | 0.0086 (11) | 0.0154 (11) | 0.0057 (10) |
C15 | 0.0395 (12) | 0.0421 (12) | 0.0336 (14) | 0.0000 (10) | 0.0073 (10) | 0.0014 (10) |
O16 | 0.0417 (8) | 0.0498 (8) | 0.0358 (9) | 0.0086 (7) | 0.0126 (7) | 0.0059 (7) |
O17 | 0.0548 (10) | 0.0681 (10) | 0.0449 (11) | 0.0129 (8) | 0.0204 (8) | 0.0177 (9) |
C18 | 0.0384 (12) | 0.0497 (13) | 0.0331 (13) | 0.0104 (10) | 0.0083 (10) | 0.0045 (10) |
C19 | 0.0388 (13) | 0.0628 (15) | 0.0465 (16) | 0.0048 (11) | 0.0078 (11) | 0.0052 (12) |
C20 | 0.0425 (15) | 0.094 (2) | 0.066 (2) | 0.0067 (14) | 0.0189 (14) | 0.0087 (17) |
C21 | 0.0607 (17) | 0.096 (2) | 0.063 (2) | 0.0278 (17) | 0.0275 (15) | 0.0028 (17) |
C22 | 0.0748 (18) | 0.0632 (16) | 0.0539 (18) | 0.0194 (14) | 0.0165 (15) | −0.0042 (13) |
C23 | 0.0513 (14) | 0.0520 (14) | 0.0402 (15) | 0.0098 (11) | 0.0104 (12) | 0.0049 (11) |
C24 | 0.0542 (16) | 0.0745 (17) | 0.079 (2) | −0.0130 (14) | 0.0115 (15) | −0.0051 (16) |
C25 | 0.0749 (18) | 0.0547 (14) | 0.0677 (19) | −0.0089 (13) | 0.0177 (16) | −0.0063 (14) |
C1—C2 | 1.356 (3) | C11—C12 | 1.435 (3) |
C1—C11 | 1.420 (3) | C13—C14 | 1.440 (3) |
C1—H1 | 0.9300 | C15—O17 | 1.194 (2) |
C2—C3 | 1.414 (3) | C15—O16 | 1.351 (2) |
C2—H2 | 0.9300 | O16—C18 | 1.422 (2) |
C3—C4 | 1.348 (3) | C18—C23 | 1.376 (3) |
C3—H3 | 0.9300 | C18—C19 | 1.386 (3) |
C4—C12 | 1.426 (3) | C19—C20 | 1.391 (3) |
C4—H4 | 0.9300 | C19—C24 | 1.495 (3) |
C5—C6 | 1.340 (3) | C20—C21 | 1.366 (4) |
C5—C14 | 1.422 (3) | C20—H20 | 0.9300 |
C5—H5 | 0.9300 | C21—C22 | 1.370 (4) |
C6—C7 | 1.412 (4) | C21—H21A | 0.9300 |
C6—H6 | 0.9300 | C22—C23 | 1.394 (3) |
C7—C8 | 1.348 (3) | C22—H22 | 0.9300 |
C7—H7 | 0.9300 | C23—C25 | 1.505 (3) |
C8—C13 | 1.418 (3) | C24—H24A | 0.9600 |
C8—H8 | 0.9300 | C24—H24B | 0.9600 |
C9—C11 | 1.395 (3) | C24—H24C | 0.9600 |
C9—C13 | 1.398 (3) | C25—H25A | 0.9600 |
C9—C15 | 1.498 (3) | C25—H25B | 0.9600 |
N10—C14 | 1.338 (3) | C25—H25C | 0.9600 |
N10—C12 | 1.340 (3) | ||
C2—C1—C11 | 121.2 (2) | N10—C14—C5 | 118.4 (2) |
C2—C1—H1 | 119.4 | N10—C14—C13 | 123.6 (2) |
C11—C1—H1 | 119.4 | C5—C14—C13 | 118.0 (2) |
C1—C2—C3 | 120.2 (2) | O17—C15—O16 | 123.36 (19) |
C1—C2—H2 | 119.9 | O17—C15—C9 | 125.1 (2) |
C3—C2—H2 | 119.9 | O16—C15—C9 | 111.52 (18) |
C4—C3—C2 | 120.9 (2) | C15—O16—C18 | 116.42 (16) |
C4—C3—H3 | 119.5 | C23—C18—C19 | 124.5 (2) |
C2—C3—H3 | 119.5 | C23—C18—O16 | 116.07 (19) |
C3—C4—C12 | 120.8 (2) | C19—C18—O16 | 119.39 (19) |
C3—C4—H4 | 119.6 | C18—C19—C20 | 116.1 (2) |
C12—C4—H4 | 119.6 | C18—C19—C24 | 122.3 (2) |
C6—C5—C14 | 121.3 (2) | C20—C19—C24 | 121.6 (2) |
C6—C5—H5 | 119.3 | C21—C20—C19 | 121.5 (2) |
C14—C5—H5 | 119.3 | C21—C20—H20 | 119.3 |
C5—C6—C7 | 120.6 (2) | C19—C20—H20 | 119.3 |
C5—C6—H6 | 119.7 | C20—C21—C22 | 120.4 (2) |
C7—C6—H6 | 119.7 | C20—C21—H21A | 119.8 |
C8—C7—C6 | 120.6 (2) | C22—C21—H21A | 119.8 |
C8—C7—H7 | 119.7 | C21—C22—C23 | 121.1 (2) |
C6—C7—H7 | 119.7 | C21—C22—H22 | 119.5 |
C7—C8—C13 | 121.0 (2) | C23—C22—H22 | 119.5 |
C7—C8—H8 | 119.5 | C18—C23—C22 | 116.5 (2) |
C13—C8—H8 | 119.5 | C18—C23—C25 | 122.1 (2) |
C11—C9—C13 | 120.48 (19) | C22—C23—C25 | 121.4 (2) |
C11—C9—C15 | 118.01 (19) | C19—C24—H24A | 109.5 |
C13—C9—C15 | 121.49 (19) | C19—C24—H24B | 109.5 |
C14—N10—C12 | 118.28 (18) | H24A—C24—H24B | 109.5 |
C9—C11—C1 | 124.1 (2) | C19—C24—H24C | 109.5 |
C9—C11—C12 | 117.5 (2) | H24A—C24—H24C | 109.5 |
C1—C11—C12 | 118.37 (19) | H24B—C24—H24C | 109.5 |
N10—C12—C4 | 118.4 (2) | C23—C25—H25A | 109.5 |
N10—C12—C11 | 123.1 (2) | C23—C25—H25B | 109.5 |
C4—C12—C11 | 118.5 (2) | H25A—C25—H25B | 109.5 |
C9—C13—C8 | 124.7 (2) | C23—C25—H25C | 109.5 |
C9—C13—C14 | 116.9 (2) | H25A—C25—H25C | 109.5 |
C8—C13—C14 | 118.4 (2) | H25B—C25—H25C | 109.5 |
C11—C1—C2—C3 | −0.2 (3) | C6—C5—C14—N10 | −178.5 (2) |
C1—C2—C3—C4 | −0.5 (3) | C6—C5—C14—C13 | 0.4 (3) |
C2—C3—C4—C12 | 0.3 (3) | C9—C13—C14—N10 | −2.0 (3) |
C14—C5—C6—C7 | 0.0 (4) | C8—C13—C14—N10 | 178.56 (19) |
C5—C6—C7—C8 | −0.6 (4) | C9—C13—C14—C5 | 179.15 (18) |
C6—C7—C8—C13 | 0.7 (4) | C8—C13—C14—C5 | −0.3 (3) |
C13—C9—C11—C1 | 179.93 (19) | C11—C9—C15—O17 | −65.5 (3) |
C15—C9—C11—C1 | 1.3 (3) | C13—C9—C15—O17 | 115.9 (2) |
C13—C9—C11—C12 | 2.3 (3) | C11—C9—C15—O16 | 111.8 (2) |
C15—C9—C11—C12 | −176.36 (18) | C13—C9—C15—O16 | −66.8 (2) |
C2—C1—C11—C9 | −176.7 (2) | O17—C15—O16—C18 | 12.0 (3) |
C2—C1—C11—C12 | 1.0 (3) | C9—C15—O16—C18 | −165.32 (17) |
C14—N10—C12—C4 | −178.49 (18) | C15—O16—C18—C23 | 100.9 (2) |
C14—N10—C12—C11 | 1.1 (3) | C15—O16—C18—C19 | −82.0 (2) |
C3—C4—C12—N10 | −179.8 (2) | C23—C18—C19—C20 | −2.0 (3) |
C3—C4—C12—C11 | 0.6 (3) | O16—C18—C19—C20 | −178.9 (2) |
C9—C11—C12—N10 | −2.9 (3) | C23—C18—C19—C24 | 177.0 (2) |
C1—C11—C12—N10 | 179.25 (18) | O16—C18—C19—C24 | 0.1 (3) |
C9—C11—C12—C4 | 176.66 (18) | C18—C19—C20—C21 | 0.1 (4) |
C1—C11—C12—C4 | −1.2 (3) | C24—C19—C20—C21 | −178.9 (3) |
C11—C9—C13—C8 | 179.43 (19) | C19—C20—C21—C22 | 1.4 (4) |
C15—C9—C13—C8 | −2.0 (3) | C20—C21—C22—C23 | −1.1 (4) |
C11—C9—C13—C14 | 0.0 (3) | C19—C18—C23—C22 | 2.3 (3) |
C15—C9—C13—C14 | 178.56 (18) | O16—C18—C23—C22 | 179.24 (19) |
C7—C8—C13—C9 | −179.7 (2) | C19—C18—C23—C25 | −177.5 (2) |
C7—C8—C13—C14 | −0.2 (3) | O16—C18—C23—C25 | −0.6 (3) |
C12—N10—C14—C5 | −179.71 (18) | C21—C22—C23—C18 | −0.7 (4) |
C12—N10—C14—C13 | 1.4 (3) | C21—C22—C23—C25 | 179.2 (2) |
Experimental details
Crystal data | |
Chemical formula | C22H17NO2 |
Mr | 327.37 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 12.8617 (10), 7.5352 (5), 17.5950 (15) |
β (°) | 103.143 (8) |
V (Å3) | 1660.6 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.45 × 0.12 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.349, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10387, 2913, 1908 |
Rint | 0.064 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.151, 0.97 |
No. of reflections | 2913 |
No. of parameters | 228 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.24 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I. |
I | J | CgI···CgJ | Dihedral angle | CgI_Perp | CgI_Offset |
1 | 1i | 4.040 (2) | 0.0 (2) | 3.396 (1) | 2.188 (2) |
1 | 1ii | 4.101 (2) | 0.0 (2) | 3.375 (1) | 2.330 (2) |
1 | 2i | 3.632 (2) | 2.0 (2) | 3.348 (1) | 1.408 (2) |
1 | 3ii | 3.914 (2) | 1.1 (2) | 3.338 (1) | 2.044 (2) |
2 | 1i | 3.632 (2) | 2.0 (2) | 3.373 (1) | 1.347 (2) |
2 | 3i | 3.990 (2) | 3.0 (2) | 3.400 (1) | 2.088 (2) |
2 | 3ii | 4.071 (2) | 3.0 (2) | 3.365 (1) | 2.291 (2) |
3 | 1ii | 3.914 (2) | 1.1 (2) | 3.371 (1) | 1.989 (2) |
3 | 2i | 3.990 (2) | 3.0 (2) | 3.306 (1) | 2.234 (2) |
3 | 2ii | 4.071 (2) | 3.0 (2) | 3.413 (1) | 2.219 (2) |
Symmetry codes: (i) –x + 1, –y + 2, –z; (ii) –x + 1, –y + 1, –z. |
Acknowledgements
This study was financed by the State Funds for Scientific Research through National Center for Science grant No. N N204 375 740 (contract No. 3757/B/H03/2011/40).
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
Krzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Błażejowski, J. (2011). J. Org. Chem. 76, 1072–1085. Web of Science PubMed Google Scholar
Natrajan, A., Sharpe, D. & Wen, D. (2012). Org. Biomol. Chem. 10, 3432–3447. Web of Science CrossRef CAS PubMed Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Białońska, A., Lis, T. & Błażejowski, J. (2006). Acta Cryst. E62, o555–o558. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005). Acta Cryst. C61, o50–o52. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phenyl acridine-9-carboxylates are the precursors of 9-(phenoxycarbonyl)-10-methylacridinium salts, whose cations exhibit a chemiluminogenic ability that can be utilized analytically (Natrajan et al., 2012). Here we present the structure of the precursor of one of the chemiluminogens that we have recently investigated (Krzymiński et al., 2011).
The bond lengths and angles characterizing the geometry of the acridine and phenyl moieties of the title compound (Fig. 1) are similar to those found in earlier investigated phenyl acridine-9-carboxylates alkyl-substituted at the benzene ring (Sikorski et al., 2005; Sikorski et al., 2006). With respective average deviations from planarity of 0.0245 (3) Å and 0.0084 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 37.7 (1)° (this angle is equal to 30.0 (2)° in 2-methylphenyl acridine-9-carboxylate (Sikorski et al., 2006) and 35.7 (2)° in 2,5-dimethylphenyl acridine-9-carboxylate (Sikorski et al., 2005)). The carboxyl group is twisted at an angle of 67.7 (1)° relative to the acridine skeleton (this angle is equal to 58.0 (2)° in 2-methylphenyl acridine-9-carboxylate (Sikorski et al., 2006) and 68.1 (2)° in 2,5-dimethylphenyl acridine-9-carboxylate (Sikorski et al., 2005)).
The search for intermolecular interactions in the crystal using PLATON (Spek, 2009) has shown that the inversely related molecules of the title compound (Fig. 2) are arranged in stacks along the b axis (Fig. 3) in which all acridine rings are involved in multiple π–π interactions (Table 1, Fig. 2) of an attractive nature (Hunter et al., 2001). The acridine moieties are parallel in stacks but inclined at an angle of 52.7 (1)° in adjacent stacks. The crystal structure is stabilized by dispersive interactions between neighboring stacks. This interesting crystal architecture is unique among the structures of phenyl acridine-9-carboxylates determined to date.