organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-1-methyl-4-[2-(1-phenyl­ethyl­­idene)hydrazinyl­­idene]-3,4-di­hydro-1H-2λ6,1-benzo­thia­zine-2,2-dione

aDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and dMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: hafizshafique@hotmail.com

(Received 19 December 2012; accepted 20 December 2012; online 4 January 2013)

In the title compound, C17H16BrN3O2S, the dihedral angle between the aromatic rings is 1.24 (15)° and the C=N—N=C torsion angle is 167.7 (3)°. The conformation of the thia­zine ring is an envelope, with the S atom displaced by 0.805 (3) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.027 Å). In the crystal, C—H⋯O inter­actions link the mol­ecules into C(10) [010] chains. A weak C—H⋯π inter­action is also observed.

Related literature

For the synthesis and biological activity of the title compound and related materials, see: Shafiq, Zia-Ur-Rehman et al. (2011[Shafiq, M., Zia-Ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chil. Chem. Soc. 56, 527-531.]). For further synthetic details, see: Shafiq, Khan et al. (2011[Shafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011). Asian J. Chem. 23, 2101-2106.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16BrN3O2S

  • Mr = 406.30

  • Monoclinic, P 21 /c

  • a = 16.4369 (13) Å

  • b = 6.5400 (5) Å

  • c = 16.5025 (17) Å

  • β = 104.312 (4)°

  • V = 1718.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.53 mm−1

  • T = 296 K

  • 0.34 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.518, Tmax = 0.603

  • 7358 measured reflections

  • 3213 independent reflections

  • 2256 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.082

  • S = 1.02

  • 3213 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.49 3.280 (4) 143
C13—H13⋯Cg2ii 0.93 2.65 3.445 (3) 143
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing studies of benzothiazine derivatives (Shafiq, Zia-Ur-Rehman et al., 2011), we now describe the synthesis and structure of the title compound, (I).

The dihedral angle between the C1–C6 and C10–C15 aromatic rings is 1.24 (15)° and the C7=N1—N2=C9 torsion angle is 167.7 (3)°. The conformation of the C9/C10/C15/C17/N3/S1 thiazine ring is an envelope, with the S atom displaced by -0.805 (3) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.027 Å). Atom C16 is displaced from the mean plane by 0.081 (6) Å

In the crystal, C—H···O interactions (Table 1) link the molecules into C(10) chains propagating in [010]. A weak C—H···π interaction is also observed.

Related literature top

For the synthesis and biological activity of the title compound and related materials, see: Shafiq, Zia-Ur-Rehman et al. (2011). For further synthetic details, see: Shafiq, Khan et al. (2011).

Experimental top

In the synthesis of title compound, 4-hydrazinylidene 6-bromo-1-methyl-3H-2?6,1-benzothiazine-2,2-dione (Shafiq, Khan et al., 2011) was subjected to react with acetophenone according to literature procedure (Shafiq, Zia-Ur-Rehman et al., 2011). The product obtained was then recrystallized in ethyl acetate under slow evaporation to obtain single crystals suitable for X-ray diffraction.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding. The methyl group was allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) was applied.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
6-Bromo-1-methyl-4-[2-(1-phenylethylidene)hydrazinylidene]- 3,4-dihydro-1H-2λ6,1-benzothiazine-2,2-dione top
Crystal data top
C17H16BrN3O2SF(000) = 824
Mr = 406.30Dx = 1.570 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 305 reflections
a = 16.4369 (13) Åθ = 3.2–23.6°
b = 6.5400 (5) ŵ = 2.53 mm1
c = 16.5025 (17) ÅT = 296 K
β = 104.312 (4)°Block, yellow
V = 1718.9 (3) Å30.34 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3213 independent reflections
Radiation source: fine-focus sealed tube2256 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2017
Tmin = 0.518, Tmax = 0.603k = 86
7358 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0286P)2 + 0.9478P]
where P = (Fo2 + 2Fc2)/3
3213 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C17H16BrN3O2SV = 1718.9 (3) Å3
Mr = 406.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.4369 (13) ŵ = 2.53 mm1
b = 6.5400 (5) ÅT = 296 K
c = 16.5025 (17) Å0.34 × 0.22 × 0.20 mm
β = 104.312 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3213 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2256 reflections with I > 2σ(I)
Tmin = 0.518, Tmax = 0.603Rint = 0.026
7358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.02Δρmax = 0.56 e Å3
3213 reflectionsΔρmin = 0.51 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.04673 (2)1.15885 (6)0.08154 (2)0.06740 (16)
S10.43842 (5)0.75192 (12)0.12674 (5)0.0441 (2)
O10.42875 (15)0.6385 (3)0.05136 (16)0.0603 (6)
O20.51929 (13)0.7562 (4)0.18377 (16)0.0698 (7)
N10.23859 (15)0.4159 (4)0.17978 (15)0.0421 (6)
N20.21392 (15)0.5841 (4)0.12622 (15)0.0421 (6)
N30.40793 (14)0.9893 (3)0.10698 (16)0.0424 (6)
C10.20276 (18)0.1325 (4)0.25032 (17)0.0363 (7)
C20.28613 (19)0.1040 (5)0.29276 (19)0.0460 (8)
H20.32630.19850.28610.055*
C30.3104 (2)0.0622 (5)0.3447 (2)0.0553 (9)
H30.36630.07740.37350.066*
C40.2522 (3)0.2049 (5)0.3539 (2)0.0603 (10)
H40.26900.31850.38780.072*
C50.1696 (3)0.1800 (5)0.3132 (2)0.0636 (10)
H50.13010.27610.32010.076*
C60.1443 (2)0.0116 (5)0.2617 (2)0.0515 (9)
H60.08800.00470.23450.062*
C70.17779 (18)0.3127 (4)0.19519 (18)0.0373 (7)
C80.08710 (19)0.3642 (5)0.1633 (2)0.0640 (10)
H8A0.08170.48950.13210.096*
H8B0.06200.38020.20960.096*
H8C0.05930.25610.12770.096*
C90.27553 (17)0.7046 (4)0.12489 (17)0.0345 (7)
C100.25885 (17)0.8882 (4)0.07144 (16)0.0325 (7)
C110.17668 (17)0.9302 (4)0.02748 (17)0.0386 (7)
H110.13380.84060.03100.046*
C120.15853 (17)1.1031 (5)0.02113 (18)0.0396 (7)
C130.22109 (19)1.2375 (5)0.02726 (18)0.0429 (7)
H130.20821.35520.05950.051*
C140.30252 (19)1.1972 (4)0.01430 (19)0.0426 (7)
H140.34481.28740.00930.051*
C150.32298 (17)1.0237 (4)0.06383 (17)0.0338 (7)
C160.4731 (2)1.1389 (5)0.1033 (3)0.0671 (11)
H16A0.47451.16020.04600.101*
H16B0.52671.08880.13430.101*
H16C0.46101.26590.12700.101*
C170.36293 (17)0.6705 (5)0.17760 (19)0.0445 (8)
H17A0.37090.52610.19060.053*
H17B0.37020.74440.22990.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0446 (2)0.0784 (3)0.0729 (3)0.01094 (18)0.00247 (17)0.0328 (2)
S10.0363 (4)0.0360 (5)0.0626 (5)0.0044 (3)0.0170 (4)0.0088 (4)
O10.0730 (16)0.0413 (15)0.0809 (17)0.0003 (11)0.0461 (13)0.0069 (12)
O20.0325 (13)0.0724 (18)0.0970 (19)0.0044 (11)0.0016 (13)0.0260 (15)
N10.0462 (15)0.0345 (15)0.0462 (15)0.0026 (12)0.0127 (12)0.0127 (12)
N20.0451 (15)0.0345 (15)0.0457 (15)0.0039 (12)0.0091 (12)0.0148 (12)
N30.0374 (14)0.0298 (15)0.0572 (16)0.0033 (11)0.0062 (12)0.0031 (12)
C10.0480 (19)0.0295 (18)0.0336 (16)0.0005 (13)0.0145 (14)0.0012 (12)
C20.049 (2)0.041 (2)0.052 (2)0.0096 (15)0.0204 (16)0.0132 (15)
C30.057 (2)0.059 (2)0.053 (2)0.0190 (18)0.0203 (18)0.0145 (18)
C40.102 (3)0.037 (2)0.049 (2)0.017 (2)0.030 (2)0.0117 (16)
C50.097 (3)0.042 (2)0.053 (2)0.021 (2)0.021 (2)0.0062 (17)
C60.056 (2)0.047 (2)0.046 (2)0.0148 (16)0.0038 (16)0.0029 (16)
C70.0430 (18)0.0295 (17)0.0390 (17)0.0006 (13)0.0094 (14)0.0023 (13)
C80.043 (2)0.058 (2)0.087 (3)0.0007 (16)0.0081 (19)0.025 (2)
C90.0372 (17)0.0308 (18)0.0380 (16)0.0051 (13)0.0142 (13)0.0034 (12)
C100.0373 (17)0.0290 (17)0.0315 (15)0.0044 (12)0.0092 (13)0.0028 (12)
C110.0382 (17)0.0370 (18)0.0421 (17)0.0001 (13)0.0126 (14)0.0072 (14)
C120.0361 (17)0.043 (2)0.0384 (17)0.0062 (14)0.0071 (13)0.0057 (14)
C130.053 (2)0.0322 (18)0.0419 (18)0.0047 (15)0.0085 (15)0.0085 (14)
C140.0467 (19)0.0301 (18)0.0496 (19)0.0046 (13)0.0091 (15)0.0069 (14)
C150.0379 (17)0.0296 (17)0.0335 (16)0.0004 (12)0.0080 (13)0.0032 (12)
C160.051 (2)0.042 (2)0.099 (3)0.0104 (16)0.001 (2)0.0071 (19)
C170.0399 (18)0.048 (2)0.0470 (19)0.0082 (14)0.0144 (15)0.0176 (15)
Geometric parameters (Å, º) top
Br1—C121.897 (3)C6—H60.9300
S1—O11.423 (2)C7—C81.491 (4)
S1—O21.427 (2)C8—H8A0.9600
S1—N31.639 (2)C8—H8B0.9600
S1—C171.744 (3)C8—H8C0.9600
N1—C71.282 (4)C9—C101.475 (4)
N1—N21.407 (3)C9—C171.501 (4)
N2—C91.288 (3)C10—C111.393 (4)
N3—C151.420 (3)C10—C151.407 (4)
N3—C161.464 (4)C11—C121.376 (4)
C1—C21.389 (4)C11—H110.9300
C1—C61.391 (4)C12—C131.375 (4)
C1—C71.484 (4)C13—C141.370 (4)
C2—C31.381 (4)C13—H130.9300
C2—H20.9300C14—C151.390 (4)
C3—C41.371 (5)C14—H140.9300
C3—H30.9300C16—H16A0.9600
C4—C51.369 (5)C16—H16B0.9600
C4—H40.9300C16—H16C0.9600
C5—C61.391 (5)C17—H17A0.9700
C5—H50.9300C17—H17B0.9700
O1—S1—O2118.12 (15)H8A—C8—H8C109.5
O1—S1—N3110.94 (14)H8B—C8—H8C109.5
O2—S1—N3107.57 (13)N2—C9—C10118.5 (3)
O1—S1—C17108.81 (15)N2—C9—C17122.9 (3)
O2—S1—C17110.25 (15)C10—C9—C17118.5 (2)
N3—S1—C1799.55 (13)C11—C10—C15118.7 (2)
C7—N1—N2114.7 (2)C11—C10—C9119.0 (2)
C9—N2—N1112.6 (2)C15—C10—C9122.3 (2)
C15—N3—C16120.8 (2)C12—C11—C10120.5 (3)
C15—N3—S1117.68 (18)C12—C11—H11119.7
C16—N3—S1116.8 (2)C10—C11—H11119.7
C2—C1—C6118.0 (3)C13—C12—C11120.7 (3)
C2—C1—C7120.3 (3)C13—C12—Br1118.9 (2)
C6—C1—C7121.7 (3)C11—C12—Br1120.4 (2)
C3—C2—C1121.1 (3)C14—C13—C12119.7 (3)
C3—C2—H2119.5C14—C13—H13120.1
C1—C2—H2119.5C12—C13—H13120.1
C4—C3—C2120.2 (3)C13—C14—C15121.0 (3)
C4—C3—H3119.9C13—C14—H14119.5
C2—C3—H3119.9C15—C14—H14119.5
C5—C4—C3120.0 (3)C14—C15—C10119.3 (3)
C5—C4—H4120.0C14—C15—N3119.3 (2)
C3—C4—H4120.0C10—C15—N3121.4 (2)
C4—C5—C6120.3 (3)N3—C16—H16A109.5
C4—C5—H5119.9N3—C16—H16B109.5
C6—C5—H5119.9H16A—C16—H16B109.5
C5—C6—C1120.5 (3)N3—C16—H16C109.5
C5—C6—H6119.8H16A—C16—H16C109.5
C1—C6—H6119.8H16B—C16—H16C109.5
N1—C7—C1115.4 (3)C9—C17—S1111.6 (2)
N1—C7—C8124.9 (3)C9—C17—H17A109.3
C1—C7—C8119.8 (3)S1—C17—H17A109.3
C7—C8—H8A109.5C9—C17—H17B109.3
C7—C8—H8B109.5S1—C17—H17B109.3
H8A—C8—H8B109.5H17A—C17—H17B108.0
C7—C8—H8C109.5
C7—N1—N2—C9167.7 (3)N2—C9—C10—C15177.5 (3)
O1—S1—N3—C1560.7 (2)C17—C9—C10—C154.6 (4)
O2—S1—N3—C15168.7 (2)C15—C10—C11—C121.3 (4)
C17—S1—N3—C1553.8 (2)C9—C10—C11—C12178.2 (3)
O1—S1—N3—C1695.2 (3)C10—C11—C12—C130.1 (4)
O2—S1—N3—C1635.4 (3)C10—C11—C12—Br1179.5 (2)
C17—S1—N3—C16150.3 (3)C11—C12—C13—C141.1 (5)
C6—C1—C2—C30.0 (4)Br1—C12—C13—C14178.4 (2)
C7—C1—C2—C3179.6 (3)C12—C13—C14—C151.0 (5)
C1—C2—C3—C41.3 (5)C13—C14—C15—C100.2 (4)
C2—C3—C4—C51.7 (5)C13—C14—C15—N3179.0 (3)
C3—C4—C5—C60.8 (5)C11—C10—C15—C141.3 (4)
C4—C5—C6—C10.5 (5)C9—C10—C15—C14178.1 (3)
C2—C1—C6—C50.8 (5)C11—C10—C15—N3180.0 (2)
C7—C1—C6—C5179.5 (3)C9—C10—C15—N30.6 (4)
N2—N1—C7—C1178.9 (2)C16—N3—C15—C143.1 (4)
N2—N1—C7—C82.3 (4)S1—N3—C15—C14151.7 (2)
C2—C1—C7—N110.8 (4)C16—N3—C15—C10175.6 (3)
C6—C1—C7—N1169.5 (3)S1—N3—C15—C1029.5 (3)
C2—C1—C7—C8168.0 (3)N2—C9—C17—S1146.5 (3)
C6—C1—C7—C811.6 (4)C10—C9—C17—S135.7 (3)
N1—N2—C9—C10179.9 (2)O1—S1—C17—C960.6 (2)
N1—N2—C9—C172.1 (4)O2—S1—C17—C9168.4 (2)
N2—C9—C10—C113.1 (4)N3—S1—C17—C955.5 (2)
C17—C9—C10—C11174.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.493.280 (4)143
C13—H13···Cg2ii0.932.653.445 (3)143
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H16BrN3O2S
Mr406.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.4369 (13), 6.5400 (5), 16.5025 (17)
β (°) 104.312 (4)
V3)1718.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.53
Crystal size (mm)0.34 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.518, 0.603
No. of measured, independent and
observed [I > 2σ(I)] reflections
7358, 3213, 2256
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.082, 1.02
No. of reflections3213
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.493.280 (4)143
C13—H13···Cg2ii0.932.653.445 (3)143
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+3/2, z1/2.
 

Acknowledgements

MS acknowledges the support of HEC Pakistan for the PhD fellowship.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011). Asian J. Chem. 23, 2101–2106.  CAS Google Scholar
First citationShafiq, M., Zia-Ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chil. Chem. Soc. 56, 527–531.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds