organic compounds
Benzyl N-[(Z)-(1-methyl-2-sulfanylpropylidene)amino]carbamodithioate
aSchool of Pharmacy, University of Nottingham Malaysia Campus, Selangor, Malaysia, and bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, Malaysia
*Correspondence e-mail: tengjin.khoo@nottingham.edu.my
The title compound, C12H16N2S3, was obtained by the condensation reaction of S-benzyl dithiocarbazate and 3-mercaptobutan-2-one. The phenyl ring and thiol (SH) group are approximately perpendicular [S—C—C—C and N—C—C—S torsion angles = 67.8 (3) and 116.9 (2)°, respectively] to the rest of the molecule. In the crystal, molecules are linked by weak S—H⋯S and N—H⋯S hydrogen bonds, π–π interactions between the benzene rings [centroid–centroid distance = 3.823 (2) Å] and C—H⋯π interactions.
Related literature
For biological applications of Schiff base ligands and complexes derived from S-benzyldithiocarbazate, see: Hossain et al. (1996); Tarafder et al. (2002). For related structures derived from S-benzyldithiocarbazate, which exhibit a similar geometry to the title compound, see: Khoo et al. (2005); How et al. (2007); Shan et al. (2011). For the synthesis, see: Tarafder et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812051008/nk2192sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812051008/nk2192Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812051008/nk2192Isup3.mol
Supporting information file. DOI: 10.1107/S1600536812051008/nk2192Isup4.cml
The method used for synthesis of the Schiff base ligand was a modified form of the one reported by (Tarafder et al., 2002). (0.02) moles of S-benzyldithiocarbazate were dissolved in 40 ml absolute ethanol and then heated on a heating plate with constant stirring in order to ensure complete dissolving. Similarly, (0.02) moles of 3-mercaptobutan-2-one were mixed with 40 ml of absolute ethanol and heated on a heating plate for 10 minutes. The reactants were mixed and 2–4 drops of concentrated H2SO4 were added to the mixture. The mixture was kept on the heating plate for 5 more minutes and then cooled to 0°C in an ice-bath until the Schiff base precipitated. The Schiff base precipitated was filtered via suction filtration, washed with cold ethanol and dried over silica gel (yield 79.7%, m.p 361.45 K). Crystals suitable for X-ray analysis have been obtained via slow evaporation of ethanol over a period of 10 days.
The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 and N—H= 0.86 Å) and isotropic atomic displacement parameters (Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. H atom for the thiol group was located in a difference map and its coordinates were refined
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C12H16N2S3 | F(000) = 600 |
Mr = 284.47 | Dx = 1.368 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
a = 16.3887 (4) Å | Cell parameters from 3777 reflections |
b = 8.3136 (2) Å | θ = 4–71° |
c = 10.1404 (3) Å | µ = 4.73 mm−1 |
β = 90.234 (2)° | T = 100 K |
V = 1381.61 (6) Å3 | Plate, yellow |
Z = 4 | 0.25 × 0.10 × 0.08 mm |
Oxford Diffraction Gemini diffractometer | 2374 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω scans | θmax = 71.4°, θmin = 5.4° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | h = −19→20 |
Tmin = 0.31, Tmax = 0.68 | k = −10→10 |
7359 measured reflections | l = −12→9 |
2615 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.123 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.07P)2 + 2.47P], where P = (max(Fo2,0) + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max = 0.001 |
2605 reflections | Δρmax = 0.55 e Å−3 |
154 parameters | Δρmin = −0.60 e Å−3 |
0 restraints |
C12H16N2S3 | V = 1381.61 (6) Å3 |
Mr = 284.47 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 16.3887 (4) Å | µ = 4.73 mm−1 |
b = 8.3136 (2) Å | T = 100 K |
c = 10.1404 (3) Å | 0.25 × 0.10 × 0.08 mm |
β = 90.234 (2)° |
Oxford Diffraction Gemini diffractometer | 2615 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 2374 reflections with I > 2σ(I) |
Tmin = 0.31, Tmax = 0.68 | Rint = 0.027 |
7359 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.55 e Å−3 |
2605 reflections | Δρmin = −0.60 e Å−3 |
154 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat with a nominal stability of 0.1 K. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.09283 (4) | 0.86651 (8) | 0.60282 (6) | 0.0199 | |
C2 | 0.14578 (15) | 0.9210 (3) | 0.4711 (3) | 0.0161 | |
S3 | 0.25242 (4) | 0.90367 (8) | 0.45582 (6) | 0.0169 | |
C4 | 0.28225 (15) | 0.8290 (3) | 0.6180 (2) | 0.0188 | |
C5 | 0.37460 (15) | 0.8307 (3) | 0.6187 (2) | 0.0169 | |
C6 | 0.41672 (16) | 0.9417 (3) | 0.6956 (3) | 0.0206 | |
C7 | 0.50166 (17) | 0.9473 (4) | 0.6929 (3) | 0.0225 | |
C8 | 0.54462 (16) | 0.8430 (4) | 0.6130 (3) | 0.0219 | |
C9 | 0.50291 (16) | 0.7324 (3) | 0.5353 (3) | 0.0214 | |
C10 | 0.41832 (16) | 0.7260 (3) | 0.5382 (3) | 0.0197 | |
N11 | 0.11068 (12) | 0.9875 (3) | 0.3635 (2) | 0.0170 | |
N12 | 0.16216 (13) | 1.0374 (3) | 0.2636 (2) | 0.0175 | |
C13 | 0.13156 (16) | 1.1118 (3) | 0.1648 (3) | 0.0177 | |
C14 | 0.19140 (16) | 1.1704 (3) | 0.0635 (3) | 0.0204 | |
S15 | 0.17221 (5) | 1.07040 (10) | −0.09485 (8) | 0.0330 | |
C16 | 0.28359 (14) | 1.1622 (3) | 0.1108 (3) | 0.0174 | |
C17 | 0.04289 (17) | 1.1502 (4) | 0.1460 (3) | 0.0280 | |
H42 | 0.2606 | 0.8996 | 0.6857 | 0.0241* | |
H41 | 0.2610 | 0.7201 | 0.6290 | 0.0236* | |
H61 | 0.3876 | 1.0135 | 0.7489 | 0.0263* | |
H71 | 0.5297 | 1.0237 | 0.7454 | 0.0292* | |
H81 | 0.6020 | 0.8472 | 0.6120 | 0.0276* | |
H91 | 0.5316 | 0.6627 | 0.4815 | 0.0271* | |
H101 | 0.3910 | 0.6505 | 0.4850 | 0.0248* | |
H141 | 0.1776 | 1.2846 | 0.0485 | 0.0260* | |
H162 | 0.3131 | 1.2050 | 0.0476 | 0.0278* | |
H161 | 0.2891 | 1.2182 | 0.1858 | 0.0279* | |
H163 | 0.2963 | 1.0585 | 0.1218 | 0.0273* | |
H171 | 0.0348 | 1.1957 | 0.0604 | 0.0430* | |
H173 | 0.0259 | 1.2280 | 0.2111 | 0.0430* | |
H172 | 0.0109 | 1.0536 | 0.1544 | 0.0427* | |
H111 | 0.0595 | 1.0101 | 0.3634 | 0.0211* | |
H151 | 0.1736 | 0.9172 | −0.0413 | 0.0626* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0142 (3) | 0.0288 (4) | 0.0167 (3) | 0.0005 (2) | 0.0001 (2) | 0.0022 (3) |
C2 | 0.0139 (12) | 0.0171 (12) | 0.0173 (12) | −0.0001 (9) | −0.0009 (9) | −0.0038 (10) |
S3 | 0.0123 (3) | 0.0223 (3) | 0.0159 (3) | 0.0019 (2) | −0.0009 (2) | 0.0016 (2) |
C4 | 0.0160 (12) | 0.0258 (14) | 0.0146 (12) | 0.0025 (10) | −0.0014 (9) | 0.0029 (10) |
C5 | 0.0155 (12) | 0.0223 (13) | 0.0130 (11) | 0.0009 (10) | −0.0014 (9) | 0.0051 (10) |
C6 | 0.0218 (13) | 0.0247 (14) | 0.0154 (13) | 0.0034 (11) | −0.0004 (10) | 0.0000 (11) |
C7 | 0.0212 (13) | 0.0281 (15) | 0.0182 (13) | −0.0022 (11) | −0.0040 (10) | 0.0015 (11) |
C8 | 0.0145 (12) | 0.0294 (15) | 0.0219 (13) | 0.0000 (11) | −0.0016 (10) | 0.0051 (11) |
C9 | 0.0201 (13) | 0.0242 (14) | 0.0199 (13) | 0.0043 (11) | 0.0027 (10) | 0.0021 (11) |
C10 | 0.0196 (12) | 0.0211 (13) | 0.0183 (13) | −0.0012 (10) | −0.0021 (10) | 0.0005 (10) |
N11 | 0.0113 (9) | 0.0217 (11) | 0.0179 (11) | 0.0009 (8) | −0.0003 (8) | 0.0015 (9) |
N12 | 0.0157 (10) | 0.0176 (11) | 0.0191 (11) | −0.0008 (8) | 0.0001 (8) | 0.0009 (9) |
C13 | 0.0179 (13) | 0.0184 (12) | 0.0167 (12) | 0.0003 (10) | 0.0001 (10) | −0.0012 (10) |
C14 | 0.0189 (13) | 0.0195 (13) | 0.0229 (13) | −0.0004 (10) | −0.0007 (10) | 0.0036 (11) |
S15 | 0.0372 (4) | 0.0348 (4) | 0.0269 (4) | 0.0010 (3) | 0.0047 (3) | 0.0019 (3) |
C16 | 0.0076 (11) | 0.0178 (13) | 0.0269 (14) | −0.0035 (9) | 0.0069 (9) | 0.0070 (10) |
C17 | 0.0201 (14) | 0.0412 (18) | 0.0225 (14) | 0.0051 (12) | −0.0010 (11) | 0.0102 (13) |
S1—C2 | 1.659 (3) | C10—H101 | 0.941 |
C2—S3 | 1.761 (3) | N11—N12 | 1.384 (3) |
C2—N11 | 1.350 (3) | N11—H111 | 0.859 |
S3—C4 | 1.823 (3) | N12—C13 | 1.278 (3) |
C4—C5 | 1.514 (3) | C13—C14 | 1.504 (4) |
C4—H42 | 0.972 | C13—C17 | 1.499 (4) |
C4—H41 | 0.976 | C14—S15 | 1.834 (3) |
C5—C6 | 1.390 (4) | C14—C16 | 1.585 (3) |
C5—C10 | 1.393 (4) | C14—H141 | 0.988 |
C6—C7 | 1.393 (4) | S15—H151 | 1.385 |
C6—H61 | 0.937 | C16—H162 | 0.880 |
C7—C8 | 1.382 (4) | C16—H161 | 0.896 |
C7—H71 | 0.947 | C16—H163 | 0.894 |
C8—C9 | 1.389 (4) | C17—H171 | 0.955 |
C8—H81 | 0.941 | C17—H173 | 0.966 |
C9—C10 | 1.388 (4) | C17—H172 | 0.963 |
C9—H91 | 0.926 | ||
S1—C2—S3 | 124.83 (15) | C9—C10—H101 | 119.2 |
S1—C2—N11 | 122.70 (19) | C2—N11—N12 | 117.1 (2) |
S3—C2—N11 | 112.46 (19) | C2—N11—H111 | 120.2 |
C2—S3—C4 | 102.18 (12) | N12—N11—H111 | 122.1 |
S3—C4—C5 | 105.39 (17) | N11—N12—C13 | 118.7 (2) |
S3—C4—H42 | 109.5 | N12—C13—C14 | 115.9 (2) |
C5—C4—H42 | 111.0 | N12—C13—C17 | 125.4 (2) |
S3—C4—H41 | 108.9 | C14—C13—C17 | 118.6 (2) |
C5—C4—H41 | 111.4 | C13—C14—S15 | 109.95 (18) |
H42—C4—H41 | 110.4 | C13—C14—C16 | 113.7 (2) |
C4—C5—C6 | 120.2 (2) | S15—C14—C16 | 113.94 (19) |
C4—C5—C10 | 120.5 (2) | C13—C14—H141 | 105.5 |
C6—C5—C10 | 119.2 (2) | S15—C14—H141 | 105.2 |
C5—C6—C7 | 120.4 (3) | C16—C14—H141 | 107.8 |
C5—C6—H61 | 119.6 | C14—S15—H151 | 94.1 |
C7—C6—H61 | 120.1 | C14—C16—H162 | 106.7 |
C6—C7—C8 | 120.1 (3) | C14—C16—H161 | 109.1 |
C6—C7—H71 | 119.7 | H162—C16—H161 | 110.7 |
C8—C7—H71 | 120.2 | C14—C16—H163 | 107.4 |
C7—C8—C9 | 119.8 (2) | H162—C16—H163 | 110.6 |
C7—C8—H81 | 119.6 | H161—C16—H163 | 112.0 |
C9—C8—H81 | 120.6 | C13—C17—H171 | 109.3 |
C8—C9—C10 | 120.2 (3) | C13—C17—H173 | 109.8 |
C8—C9—H91 | 120.0 | H171—C17—H173 | 108.4 |
C10—C9—H91 | 119.8 | C13—C17—H172 | 109.8 |
C5—C10—C9 | 120.3 (2) | H171—C17—H172 | 109.7 |
C5—C10—H101 | 120.5 | H173—C17—H172 | 109.8 |
Cg1 is the centroid of the C5–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
S15—H151···S3i | 1.38 | 2.96 | 4.186 (1) | 146 |
N11—H111···S1ii | 0.86 | 2.72 | 3.567 (2) | 168 |
C7—H71···Cgiii | 0.95 | 2.97 | 3.827 (3) | 152 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, −y+2, −z+1; (iii) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C12H16N2S3 |
Mr | 284.47 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 16.3887 (4), 8.3136 (2), 10.1404 (3) |
β (°) | 90.234 (2) |
V (Å3) | 1381.61 (6) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 4.73 |
Crystal size (mm) | 0.25 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.31, 0.68 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7359, 2615, 2374 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.615 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.123, 0.99 |
No. of reflections | 2605 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.60 |
Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).
Cg1 is the centroid of the C5–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
S15—H151···S3i | 1.38 | 2.96 | 4.186 (1) | 146 |
N11—H111···S1ii | 0.86 | 2.72 | 3.567 (2) | 168 |
C7—H71···Cgiii | 0.95 | 2.97 | 3.827 (3) | 152 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, −y+2, −z+1; (iii) −x+1, y+1/2, −z+3/2. |
Acknowledgements
The authors thank the Ministry of Higher Education Malaysia (MOHE) under FRGS (F0010.54.02) for providing a grant for this study.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Hossain, E., Alam, M., Ali, M., Nazimuddin, M., Smith, E. & Hynes, C. (1996). Polyhedron, 15, 973–980. CSD CrossRef CAS Web of Science Google Scholar
How, F. N.-F., Watkin, D. J., Crouse, K. A. & Tahir, M. I. M. (2007). Acta Cryst. E63, o3023–o3024. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441–o2443. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shan, S., Huang, Y.-L., Guo, H.-Q., Li, D.-F. & Sun, J. (2011). Acta Cryst. E67, o2105. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tarafder, M., Khoo, T. J., Crouse, A., Ali, M., Yamin, B. & Fun, H. (2002). Polyhedron, 21, 2691–2698. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The past few years have seen a growing interest in the synthesis of Schiff base ligands and metal complexes specifically those derived from dithiocarbazates (Tarafder et al., 2002; Hossain et al., 1996). S-benzyldithiocarbazate (SBDTC) has been extensively studied due to the possibility of modifying its derivatives by the introduction of different substituents (Khoo et al., 2005), furthermore, SBDTC-derived Schiff base ligands have been shown to possess antimicrobial and anticancer properties (Hossain et al., 1996). Therefore, we have managed to synthesize the title compound, (I), which was a result of the condensation reaction between SBDTC and 3-mercaptobutan-2-one in order to investigate the bioactivity of this ligand and its metal complexes. In our course of research we have managed to grow crystals of the title compound, (I), from ethanol via the slow evaporation method.
X-ray crystallographic analysis has shown that the molecule [Fig.1] is planar with the phenyl ring and thiol group being nearly perpendicular to the rest of the molecule [S3—C4—C5—C10 and N12—C13—C14—S15 torsion angles of 67.8 (3)° and 116.9 (2)°, respectively]. The bond C2—N11 has a length of 1.3503 (3) Å whereas C13—N12 has a bond length of 1.278 (3) Å which is shorter than the former indicating that the latter possesses a double-bond character and belongs to the imine group. Similarly, the C2—S1 bond has a length of 1.659 (3) Å which is the shortest bond length relative to the other C—S bonds, and that indicates that it possesses a double bond character which further proves that the ligand exists in the thione tautomer in solid state. The bond lengths of the imine group (C=N) and that of the thione group (C=S) are similar to those reported in previously synthesized dithiocarbazate compounds [1.289 (3) Å for C=N, 1.664 (2) Å for C=S; Khoo et al., 2005] and [1.285 (2) Å for C=N, 1.6667 (15) Å for C=S; Tarafder et al., 2002], which indicates that such bond lengths are typical of Schiff base ligands derived from dithiocarbazates. The molecules in the crystal are linked together via intermolecular H···S [Fig.2] hydrogen bond interactions (Table 2). The benzene rings at (x, y, z) and (1 - x, 2 - y, 1 - z) are stacked parallel to each other and form π- π interactions with a separation of 3.823 Å and a shift distance of 1.539 Å [Fig.3.], while the distance between the planes of the benzene rings is 3.500 Å. Furthermore, there are C—H···π interactions (Table 2) between the molecules of the structure [Fig.4.] and the perpendicular distance between the plane of the benzene ring and H71 was found to be 2.790 Å. Cg in (Table 2) refers to the centroid of the benzene ring present in the structure.
The molecule crystallizes in the conformer in which the thione sulfur is in a trans position with the ketone moiety across the C2—N11 bond but adopts a cis position with the phenyl group across the C2—S3 bond. The ketone moiety is cis to the phenyl group with respect to the C2—N11 bond. Such geometrical arrangements are similar to dithiocarbazate derived compounds reported previously (Khoo et al., 2005; How et al., 2007).