organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl N-[(Z)-(1-methyl-2-sulfanyl­propyl­­idene)amino]­carbamodi­thio­ate

aSchool of Pharmacy, University of Nottingham Malaysia Campus, Selangor, Malaysia, and bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, Malaysia
*Correspondence e-mail: tengjin.khoo@nottingham.edu.my

(Received 15 November 2012; accepted 17 December 2012; online 4 January 2013)

The title compound, C12H16N2S3, was obtained by the condensation reaction of S-benzyl dithio­carbazate and 3-mercaptobutan-2-one. The phenyl ring and thiol (SH) group are approximately perpendicular [S—C—C—C and N—C—C—S torsion angles = 67.8 (3) and 116.9 (2)°, respectively] to the rest of the mol­ecule. In the crystal, mol­ecules are linked by weak S—H⋯S and N—H⋯S hydrogen bonds, ππ inter­actions between the benzene rings [centroid–centroid distance = 3.823 (2) Å] and C—H⋯π inter­actions.

Related literature

For biological applications of Schiff base ligands and complexes derived from S-benzyl­dithio­carbazate, see: Hossain et al. (1996[Hossain, E., Alam, M., Ali, M., Nazimuddin, M., Smith, E. & Hynes, C. (1996). Polyhedron, 15, 973-980.]); Tarafder et al. (2002[Tarafder, M., Khoo, T. J., Crouse, A., Ali, M., Yamin, B. & Fun, H. (2002). Polyhedron, 21, 2691-2698.]). For related structures derived from S-benzyl­dithio­carbazate, which exhibit a similar geometry to the title compound, see: Khoo et al. (2005[Khoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441-o2443.]); How et al. (2007[How, F. N.-F., Watkin, D. J., Crouse, K. A. & Tahir, M. I. M. (2007). Acta Cryst. E63, o3023-o3024.]); Shan et al. (2011[Shan, S., Huang, Y.-L., Guo, H.-Q., Li, D.-F. & Sun, J. (2011). Acta Cryst. E67, o2105.]). For the synthesis, see: Tarafder et al. (2002[Tarafder, M., Khoo, T. J., Crouse, A., Ali, M., Yamin, B. & Fun, H. (2002). Polyhedron, 21, 2691-2698.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2S3

  • Mr = 284.47

  • Monoclinic, P 21 /c

  • a = 16.3887 (4) Å

  • b = 8.3136 (2) Å

  • c = 10.1404 (3) Å

  • β = 90.234 (2)°

  • V = 1381.61 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.73 mm−1

  • T = 100 K

  • 0.25 × 0.10 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.31, Tmax = 0.68

  • 7359 measured reflections

  • 2615 independent reflections

  • 2374 reflections with I > 2σ(I)

  • Rint = 0.027

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.123

  • S = 0.99

  • 2605 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
S15—H151⋯S3i 1.38 2.96 4.186 (1) 146
N11—H111⋯S1ii 0.86 2.72 3.567 (2) 168
C7—H71⋯Cgiii 0.95 2.97 3.827 (3) 152
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+2, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The past few years have seen a growing interest in the synthesis of Schiff base ligands and metal complexes specifically those derived from dithiocarbazates (Tarafder et al., 2002; Hossain et al., 1996). S-benzyldithiocarbazate (SBDTC) has been extensively studied due to the possibility of modifying its derivatives by the introduction of different substituents (Khoo et al., 2005), furthermore, SBDTC-derived Schiff base ligands have been shown to possess antimicrobial and anticancer properties (Hossain et al., 1996). Therefore, we have managed to synthesize the title compound, (I), which was a result of the condensation reaction between SBDTC and 3-mercaptobutan-2-one in order to investigate the bioactivity of this ligand and its metal complexes. In our course of research we have managed to grow crystals of the title compound, (I), from ethanol via the slow evaporation method.

X-ray crystallographic analysis has shown that the molecule [Fig.1] is planar with the phenyl ring and thiol group being nearly perpendicular to the rest of the molecule [S3—C4—C5—C10 and N12—C13—C14—S15 torsion angles of 67.8 (3)° and 116.9 (2)°, respectively]. The bond C2—N11 has a length of 1.3503 (3) Å whereas C13—N12 has a bond length of 1.278 (3) Å which is shorter than the former indicating that the latter possesses a double-bond character and belongs to the imine group. Similarly, the C2—S1 bond has a length of 1.659 (3) Å which is the shortest bond length relative to the other C—S bonds, and that indicates that it possesses a double bond character which further proves that the ligand exists in the thione tautomer in solid state. The bond lengths of the imine group (C=N) and that of the thione group (C=S) are similar to those reported in previously synthesized dithiocarbazate compounds [1.289 (3) Å for C=N, 1.664 (2) Å for C=S; Khoo et al., 2005] and [1.285 (2) Å for C=N, 1.6667 (15) Å for C=S; Tarafder et al., 2002], which indicates that such bond lengths are typical of Schiff base ligands derived from dithiocarbazates. The molecules in the crystal are linked together via intermolecular H···S [Fig.2] hydrogen bond interactions (Table 2). The benzene rings at (x, y, z) and (1 - x, 2 - y, 1 - z) are stacked parallel to each other and form π- π interactions with a separation of 3.823 Å and a shift distance of 1.539 Å [Fig.3.], while the distance between the planes of the benzene rings is 3.500 Å. Furthermore, there are C—H···π interactions (Table 2) between the molecules of the structure [Fig.4.] and the perpendicular distance between the plane of the benzene ring and H71 was found to be 2.790 Å. Cg in (Table 2) refers to the centroid of the benzene ring present in the structure.

The molecule crystallizes in the conformer in which the thione sulfur is in a trans position with the ketone moiety across the C2—N11 bond but adopts a cis position with the phenyl group across the C2—S3 bond. The ketone moiety is cis to the phenyl group with respect to the C2—N11 bond. Such geometrical arrangements are similar to dithiocarbazate derived compounds reported previously (Khoo et al., 2005; How et al., 2007).

Related literature top

For biological applications of Schiff base ligands and complexes derived from S-benzyldithiocarbazate, see: Hossain et al. (1996); Tarafder et al. (2002). For related structures derived from S-benzyldithiocarbazate which exhibit a similar geometry to the title compound, see: Khoo et al. (2005); How et al. (2007); Shan et al. (2011). For the synthesis, see: Tarafder et al. (2002).

Experimental top

The method used for synthesis of the Schiff base ligand was a modified form of the one reported by (Tarafder et al., 2002). (0.02) moles of S-benzyldithiocarbazate were dissolved in 40 ml absolute ethanol and then heated on a heating plate with constant stirring in order to ensure complete dissolving. Similarly, (0.02) moles of 3-mercaptobutan-2-one were mixed with 40 ml of absolute ethanol and heated on a heating plate for 10 minutes. The reactants were mixed and 2–4 drops of concentrated H2SO4 were added to the mixture. The mixture was kept on the heating plate for 5 more minutes and then cooled to 0°C in an ice-bath until the Schiff base precipitated. The Schiff base precipitated was filtered via suction filtration, washed with cold ethanol and dried over silica gel (yield 79.7%, m.p 361.45 K). Crystals suitable for X-ray analysis have been obtained via slow evaporation of ethanol over a period of 10 days.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 and N—H= 0.86 Å) and isotropic atomic displacement parameters (Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. H atom for the thiol group was located in a difference map and its coordinates were refined

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (I) showing 50% probability displacement ellipsoids in addition to the atomic numbering scheme.
[Figure 2] Fig. 2. The molecules in the structure are stabilized by intermolecular H···S hydrogen bond interactions. Symmetry codes: (i)x, -y+3/2, z-1/2; (ii) -x, -y+2, -z+1
[Figure 3] Fig. 3. Molecules in the structure are linked by π- π interactions between pairs of benzene rings with centroid-centroid distance of 3.823 Å.
[Figure 4] Fig. 4. Diagram showing the C—H···π interactions between the molecules of the structure. Distance between the centroid of the benzene ring and the hydrogen atom of the neighbouring molecule is 2.970 Å.
Benzyl N-[(Z)-(1-methyl-2-sulfanylpropylidene)amino]carbamodithioate top
Crystal data top
C12H16N2S3F(000) = 600
Mr = 284.47Dx = 1.368 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
a = 16.3887 (4) ÅCell parameters from 3777 reflections
b = 8.3136 (2) Åθ = 4–71°
c = 10.1404 (3) ŵ = 4.73 mm1
β = 90.234 (2)°T = 100 K
V = 1381.61 (6) Å3Plate, yellow
Z = 40.25 × 0.10 × 0.08 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
2374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 71.4°, θmin = 5.4°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1920
Tmin = 0.31, Tmax = 0.68k = 1010
7359 measured reflectionsl = 129
2615 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.123 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.07P)2 + 2.47P],
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2605 reflectionsΔρmax = 0.55 e Å3
154 parametersΔρmin = 0.60 e Å3
0 restraints
Crystal data top
C12H16N2S3V = 1381.61 (6) Å3
Mr = 284.47Z = 4
Monoclinic, P21/cCu Kα radiation
a = 16.3887 (4) ŵ = 4.73 mm1
b = 8.3136 (2) ÅT = 100 K
c = 10.1404 (3) Å0.25 × 0.10 × 0.08 mm
β = 90.234 (2)°
Data collection top
Oxford Diffraction Gemini
diffractometer
2615 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2374 reflections with I > 2σ(I)
Tmin = 0.31, Tmax = 0.68Rint = 0.027
7359 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 0.99Δρmax = 0.55 e Å3
2605 reflectionsΔρmin = 0.60 e Å3
154 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat with a nominal stability of 0.1 K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09283 (4)0.86651 (8)0.60282 (6)0.0199
C20.14578 (15)0.9210 (3)0.4711 (3)0.0161
S30.25242 (4)0.90367 (8)0.45582 (6)0.0169
C40.28225 (15)0.8290 (3)0.6180 (2)0.0188
C50.37460 (15)0.8307 (3)0.6187 (2)0.0169
C60.41672 (16)0.9417 (3)0.6956 (3)0.0206
C70.50166 (17)0.9473 (4)0.6929 (3)0.0225
C80.54462 (16)0.8430 (4)0.6130 (3)0.0219
C90.50291 (16)0.7324 (3)0.5353 (3)0.0214
C100.41832 (16)0.7260 (3)0.5382 (3)0.0197
N110.11068 (12)0.9875 (3)0.3635 (2)0.0170
N120.16216 (13)1.0374 (3)0.2636 (2)0.0175
C130.13156 (16)1.1118 (3)0.1648 (3)0.0177
C140.19140 (16)1.1704 (3)0.0635 (3)0.0204
S150.17221 (5)1.07040 (10)0.09485 (8)0.0330
C160.28359 (14)1.1622 (3)0.1108 (3)0.0174
C170.04289 (17)1.1502 (4)0.1460 (3)0.0280
H420.26060.89960.68570.0241*
H410.26100.72010.62900.0236*
H610.38761.01350.74890.0263*
H710.52971.02370.74540.0292*
H810.60200.84720.61200.0276*
H910.53160.66270.48150.0271*
H1010.39100.65050.48500.0248*
H1410.17761.28460.04850.0260*
H1620.31311.20500.04760.0278*
H1610.28911.21820.18580.0279*
H1630.29631.05850.12180.0273*
H1710.03481.19570.06040.0430*
H1730.02591.22800.21110.0430*
H1720.01091.05360.15440.0427*
H1110.05951.01010.36340.0211*
H1510.17360.91720.04130.0626*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0142 (3)0.0288 (4)0.0167 (3)0.0005 (2)0.0001 (2)0.0022 (3)
C20.0139 (12)0.0171 (12)0.0173 (12)0.0001 (9)0.0009 (9)0.0038 (10)
S30.0123 (3)0.0223 (3)0.0159 (3)0.0019 (2)0.0009 (2)0.0016 (2)
C40.0160 (12)0.0258 (14)0.0146 (12)0.0025 (10)0.0014 (9)0.0029 (10)
C50.0155 (12)0.0223 (13)0.0130 (11)0.0009 (10)0.0014 (9)0.0051 (10)
C60.0218 (13)0.0247 (14)0.0154 (13)0.0034 (11)0.0004 (10)0.0000 (11)
C70.0212 (13)0.0281 (15)0.0182 (13)0.0022 (11)0.0040 (10)0.0015 (11)
C80.0145 (12)0.0294 (15)0.0219 (13)0.0000 (11)0.0016 (10)0.0051 (11)
C90.0201 (13)0.0242 (14)0.0199 (13)0.0043 (11)0.0027 (10)0.0021 (11)
C100.0196 (12)0.0211 (13)0.0183 (13)0.0012 (10)0.0021 (10)0.0005 (10)
N110.0113 (9)0.0217 (11)0.0179 (11)0.0009 (8)0.0003 (8)0.0015 (9)
N120.0157 (10)0.0176 (11)0.0191 (11)0.0008 (8)0.0001 (8)0.0009 (9)
C130.0179 (13)0.0184 (12)0.0167 (12)0.0003 (10)0.0001 (10)0.0012 (10)
C140.0189 (13)0.0195 (13)0.0229 (13)0.0004 (10)0.0007 (10)0.0036 (11)
S150.0372 (4)0.0348 (4)0.0269 (4)0.0010 (3)0.0047 (3)0.0019 (3)
C160.0076 (11)0.0178 (13)0.0269 (14)0.0035 (9)0.0069 (9)0.0070 (10)
C170.0201 (14)0.0412 (18)0.0225 (14)0.0051 (12)0.0010 (11)0.0102 (13)
Geometric parameters (Å, º) top
S1—C21.659 (3)C10—H1010.941
C2—S31.761 (3)N11—N121.384 (3)
C2—N111.350 (3)N11—H1110.859
S3—C41.823 (3)N12—C131.278 (3)
C4—C51.514 (3)C13—C141.504 (4)
C4—H420.972C13—C171.499 (4)
C4—H410.976C14—S151.834 (3)
C5—C61.390 (4)C14—C161.585 (3)
C5—C101.393 (4)C14—H1410.988
C6—C71.393 (4)S15—H1511.385
C6—H610.937C16—H1620.880
C7—C81.382 (4)C16—H1610.896
C7—H710.947C16—H1630.894
C8—C91.389 (4)C17—H1710.955
C8—H810.941C17—H1730.966
C9—C101.388 (4)C17—H1720.963
C9—H910.926
S1—C2—S3124.83 (15)C9—C10—H101119.2
S1—C2—N11122.70 (19)C2—N11—N12117.1 (2)
S3—C2—N11112.46 (19)C2—N11—H111120.2
C2—S3—C4102.18 (12)N12—N11—H111122.1
S3—C4—C5105.39 (17)N11—N12—C13118.7 (2)
S3—C4—H42109.5N12—C13—C14115.9 (2)
C5—C4—H42111.0N12—C13—C17125.4 (2)
S3—C4—H41108.9C14—C13—C17118.6 (2)
C5—C4—H41111.4C13—C14—S15109.95 (18)
H42—C4—H41110.4C13—C14—C16113.7 (2)
C4—C5—C6120.2 (2)S15—C14—C16113.94 (19)
C4—C5—C10120.5 (2)C13—C14—H141105.5
C6—C5—C10119.2 (2)S15—C14—H141105.2
C5—C6—C7120.4 (3)C16—C14—H141107.8
C5—C6—H61119.6C14—S15—H15194.1
C7—C6—H61120.1C14—C16—H162106.7
C6—C7—C8120.1 (3)C14—C16—H161109.1
C6—C7—H71119.7H162—C16—H161110.7
C8—C7—H71120.2C14—C16—H163107.4
C7—C8—C9119.8 (2)H162—C16—H163110.6
C7—C8—H81119.6H161—C16—H163112.0
C9—C8—H81120.6C13—C17—H171109.3
C8—C9—C10120.2 (3)C13—C17—H173109.8
C8—C9—H91120.0H171—C17—H173108.4
C10—C9—H91119.8C13—C17—H172109.8
C5—C10—C9120.3 (2)H171—C17—H172109.7
C5—C10—H101120.5H173—C17—H172109.8
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
S15—H151···S3i1.382.964.186 (1)146
N11—H111···S1ii0.862.723.567 (2)168
C7—H71···Cgiii0.952.973.827 (3)152
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+2, z+1; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H16N2S3
Mr284.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.3887 (4), 8.3136 (2), 10.1404 (3)
β (°) 90.234 (2)
V3)1381.61 (6)
Z4
Radiation typeCu Kα
µ (mm1)4.73
Crystal size (mm)0.25 × 0.10 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.31, 0.68
No. of measured, independent and
observed [I > 2σ(I)] reflections
7359, 2615, 2374
Rint0.027
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 0.99
No. of reflections2605
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.60

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
S15—H151···S3i1.382.964.186 (1)146
N11—H111···S1ii0.862.723.567 (2)168
C7—H71···Cgiii0.952.973.827 (3)152
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+2, z+1; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Ministry of Higher Education Malaysia (MOHE) under FRGS (F0010.54.02) for providing a grant for this study.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHossain, E., Alam, M., Ali, M., Nazimuddin, M., Smith, E. & Hynes, C. (1996). Polyhedron, 15, 973–980.  CSD CrossRef CAS Web of Science Google Scholar
First citationHow, F. N.-F., Watkin, D. J., Crouse, K. A. & Tahir, M. I. M. (2007). Acta Cryst. E63, o3023–o3024.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441–o2443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShan, S., Huang, Y.-L., Guo, H.-Q., Li, D.-F. & Sun, J. (2011). Acta Cryst. E67, o2105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTarafder, M., Khoo, T. J., Crouse, A., Ali, M., Yamin, B. & Fun, H. (2002). Polyhedron, 21, 2691–2698.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds