organic compounds
[8-(4-Phenoxybenzoyl)-2,7-bis(propan-2-yloxy)naphthalen-1-yl](4-phenoxyphenyl)methanone
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
The entire title molecule, C42H36O6, is completed by the application of a twofold axis. The 4-phenoxybenzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost antiparallel. The dihedral angle between the best planes of the benzene rings of the benzoyl moieties and the naphthalene ring system is 70.52 (5)° and that between the best planes of the benzene rings of the phenoxy groups and the naphthalene ring system is 27.80 (6)°. In the crystal, molecules are linked into a three-dimensional architecture by C—H⋯O and C—H⋯π interactions.
Related literature
For electrophilic aromatic aroylation of the naphthalene core, see; Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Sasagawa et al. (2012); Muto et al. (2010); Nakaema et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536813000913/pk2459sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813000913/pk2459Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813000913/pk2459Isup3.cml
1,8-(4-phenoxybenzoyl)-2,7-dihydroxynaphtalene (0.3 mmol, 157 mg), tetrabutylammonium iodide (0.03 mmol, 113 mg), potassium carbonate (0.9 mmol, 127 mg) and DMF (0.75 ml) were placed into a 10 ml flask, followed by stirring at room temperature under nitrogen for 1 h. 2-Bromopropane (1.8 mmol, 224 mg) was to the solution and heated at 70 °C for 5 h. After cooling to room temperature, the reaction mixture was poured into ice-cold water (20 ml). The aqueous layer was extracted with ethyl acetate (20 ml × 2). The combined extracts were washed with 2 M aqueous NaOH followed by washing the brine. The extracts thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (yield 22%). Colourless single crystals suitable for X-ray diffraction were obtained by repeated crystallization from methanol.
1H NMR δ (300 MHz, CDCl3): 1.04 (12H, d, J = 6.0 Hz), 4.51 (2H, sep, J = 6.0 Hz), 6.89 (4H, d, J = 8.1 Hz), 7.09 (4H, d, J = 8.1 Hz), 7.13 (2H, d, J = 9.0 Hz), 7.17 (2H, d, J = 8.1 Hz), 7.37 (4H, t, J = 8.1 Hz), 7.70 (4H, d, J = 8.1 Hz), 7.86 (2H, d, J = 9.0 Hz),
13C NMR δ (125 MHz, CDCl3): 21.6, 71.5, 113.1, 116.7, 120.0, 122.6, 124.1, 125.2, 129.8, 130.4, 131.3, 131.6, 134.3, 154.6, 155.8, 161.1, 196.0 p.p.m.
IR (KBr): 1656 (C=O), 1601, 1505, 1452 (Ar), 1267 (C—O—C) cm-1
HRMS (m/z): [M+H]+ called. for C42H37O6, 637.2581, found, 637.2590.
m.p. = 450.2–451.4 K
All H atoms were found in a difference map and were subsequently refined as riding atoms, with C–H = 0.95 (aromatic), 0.98 (methyl) and 1.00 (methine) Å and with Uiso(H) = 1.2 Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C42H36O6 | F(000) = 1344 |
Mr = 636.71 | Dx = 1.241 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54187 Å |
Hall symbol: -C 2yc | Cell parameters from 26902 reflections |
a = 22.7084 (4) Å | θ = 3.1–68.3° |
b = 10.3582 (2) Å | µ = 0.66 mm−1 |
c = 14.7152 (3) Å | T = 193 K |
β = 100.106 (1)° | Block, colorless |
V = 3407.58 (11) Å3 | 0.60 × 0.60 × 0.50 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 3101 independent reflections |
Radiation source: rotaing anode | 2749 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 10.000 pixels mm-1 | θmax = 68.3°, θmin = 4.0° |
ω scans | h = −27→27 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −12→12 |
Tmin = 0.693, Tmax = 0.734 | l = −17→17 |
28911 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0477P)2 + 1.7648P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3101 reflections | Δρmax = 0.21 e Å−3 |
221 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00263 (12) |
C42H36O6 | V = 3407.58 (11) Å3 |
Mr = 636.71 | Z = 4 |
Monoclinic, C2/c | Cu Kα radiation |
a = 22.7084 (4) Å | µ = 0.66 mm−1 |
b = 10.3582 (2) Å | T = 193 K |
c = 14.7152 (3) Å | 0.60 × 0.60 × 0.50 mm |
β = 100.106 (1)° |
Rigaku R-AXIS RAPID diffractometer | 3101 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2749 reflections with I > 2σ(I) |
Tmin = 0.693, Tmax = 0.734 | Rint = 0.029 |
28911 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.21 e Å−3 |
3101 reflections | Δρmin = −0.16 e Å−3 |
221 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.43879 (4) | 0.44016 (8) | 0.67336 (6) | 0.0378 (2) | |
O2 | 0.34771 (4) | 0.63044 (8) | 0.78791 (7) | 0.0418 (3) | |
O3 | 0.40230 (5) | 0.16418 (9) | 1.04457 (6) | 0.0475 (3) | |
C3 | 0.5000 | 0.83092 (15) | 0.7500 | 0.0279 (4) | |
C8 | 0.42720 (5) | 0.40189 (11) | 0.82730 (8) | 0.0288 (3) | |
C7 | 0.43753 (5) | 0.48524 (11) | 0.74958 (8) | 0.0290 (3) | |
C2 | 0.5000 | 0.69308 (15) | 0.7500 | 0.0263 (3) | |
C5 | 0.39876 (6) | 0.83609 (12) | 0.78052 (9) | 0.0341 (3) | |
H5 | 0.3651 | 0.8834 | 0.7926 | 0.041* | |
C1 | 0.44642 (5) | 0.62900 (11) | 0.76338 (8) | 0.0281 (3) | |
C6 | 0.39740 (5) | 0.70012 (11) | 0.77734 (8) | 0.0317 (3) | |
C9 | 0.41352 (6) | 0.27221 (11) | 0.81026 (8) | 0.0312 (3) | |
H9 | 0.4104 | 0.2394 | 0.7493 | 0.037* | |
C13 | 0.43221 (6) | 0.44792 (11) | 0.91753 (8) | 0.0340 (3) | |
H13 | 0.4417 | 0.5362 | 0.9301 | 0.041* | |
C10 | 0.40443 (6) | 0.19034 (11) | 0.88074 (8) | 0.0326 (3) | |
H10 | 0.3947 | 0.1022 | 0.8683 | 0.039* | |
C11 | 0.40974 (6) | 0.23839 (12) | 0.96986 (8) | 0.0330 (3) | |
C12 | 0.42366 (6) | 0.36733 (12) | 0.98865 (9) | 0.0369 (3) | |
H12 | 0.4272 | 0.3996 | 1.0498 | 0.044* | |
C14 | 0.38932 (6) | 0.03327 (12) | 1.03096 (8) | 0.0374 (3) | |
C15 | 0.43487 (7) | −0.05536 (14) | 1.05092 (9) | 0.0429 (3) | |
H15 | 0.4750 | −0.0273 | 1.0699 | 0.052* | |
C20 | 0.28915 (6) | 0.68545 (14) | 0.75933 (11) | 0.0458 (4) | |
H20 | 0.2858 | 0.7664 | 0.7951 | 0.055* | |
C16 | 0.42179 (8) | −0.18549 (14) | 1.04313 (10) | 0.0509 (4) | |
H16 | 0.4530 | −0.2472 | 1.0576 | 0.061* | |
C19 | 0.33118 (7) | −0.00546 (14) | 1.00293 (11) | 0.0475 (4) | |
H19 | 0.2999 | 0.0563 | 0.9898 | 0.057* | |
C17 | 0.36410 (8) | −0.22609 (14) | 1.01469 (11) | 0.0554 (4) | |
H17 | 0.3553 | −0.3157 | 1.0092 | 0.066* | |
C18 | 0.31893 (8) | −0.13676 (16) | 0.99415 (12) | 0.0568 (4) | |
H18 | 0.2790 | −0.1650 | 0.9738 | 0.068* | |
C21 | 0.24694 (7) | 0.58531 (18) | 0.78572 (15) | 0.0677 (5) | |
H21A | 0.2491 | 0.5069 | 0.7492 | 0.102* | |
H21B | 0.2060 | 0.6190 | 0.7736 | 0.102* | |
H21C | 0.2583 | 0.5650 | 0.8515 | 0.102* | |
C22 | 0.27768 (9) | 0.7160 (2) | 0.65854 (14) | 0.0779 (6) | |
H22B | 0.3046 | 0.7852 | 0.6462 | 0.117* | |
H22C | 0.2361 | 0.7439 | 0.6398 | 0.117* | |
H22A | 0.2848 | 0.6388 | 0.6235 | 0.117* | |
C4 | 0.44890 (5) | 0.89855 (11) | 0.76600 (8) | 0.0310 (3) | |
H4 | 0.4496 | 0.9903 | 0.7667 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0591 (6) | 0.0264 (4) | 0.0288 (5) | −0.0060 (4) | 0.0102 (4) | −0.0024 (3) |
O2 | 0.0344 (5) | 0.0291 (5) | 0.0639 (6) | −0.0017 (4) | 0.0141 (4) | 0.0045 (4) |
O3 | 0.0838 (7) | 0.0299 (5) | 0.0307 (5) | −0.0094 (5) | 0.0151 (5) | 0.0025 (4) |
C3 | 0.0356 (9) | 0.0225 (8) | 0.0252 (8) | 0.000 | 0.0040 (7) | 0.000 |
C8 | 0.0332 (6) | 0.0226 (6) | 0.0307 (6) | −0.0009 (5) | 0.0062 (5) | −0.0004 (5) |
C7 | 0.0330 (6) | 0.0238 (6) | 0.0300 (6) | −0.0019 (5) | 0.0047 (5) | −0.0010 (5) |
C2 | 0.0356 (9) | 0.0211 (8) | 0.0217 (8) | 0.000 | 0.0041 (6) | 0.000 |
C5 | 0.0372 (7) | 0.0263 (6) | 0.0402 (7) | 0.0041 (5) | 0.0102 (5) | −0.0019 (5) |
C1 | 0.0368 (6) | 0.0215 (6) | 0.0260 (6) | −0.0007 (5) | 0.0053 (5) | 0.0009 (4) |
C6 | 0.0351 (6) | 0.0264 (6) | 0.0342 (6) | −0.0033 (5) | 0.0079 (5) | 0.0005 (5) |
C9 | 0.0414 (7) | 0.0249 (6) | 0.0282 (6) | −0.0028 (5) | 0.0082 (5) | −0.0030 (5) |
C13 | 0.0459 (7) | 0.0220 (6) | 0.0339 (7) | −0.0032 (5) | 0.0071 (5) | −0.0037 (5) |
C10 | 0.0445 (7) | 0.0203 (6) | 0.0336 (7) | −0.0039 (5) | 0.0091 (5) | −0.0015 (5) |
C11 | 0.0424 (7) | 0.0276 (6) | 0.0299 (6) | −0.0008 (5) | 0.0090 (5) | 0.0036 (5) |
C12 | 0.0528 (8) | 0.0301 (6) | 0.0280 (6) | −0.0022 (6) | 0.0079 (5) | −0.0035 (5) |
C14 | 0.0569 (8) | 0.0298 (6) | 0.0274 (6) | −0.0047 (6) | 0.0120 (6) | 0.0054 (5) |
C15 | 0.0485 (8) | 0.0450 (8) | 0.0350 (7) | −0.0007 (6) | 0.0067 (6) | 0.0031 (6) |
C20 | 0.0350 (7) | 0.0392 (7) | 0.0631 (9) | −0.0008 (6) | 0.0086 (6) | 0.0002 (7) |
C16 | 0.0712 (10) | 0.0380 (8) | 0.0445 (8) | 0.0107 (7) | 0.0131 (7) | 0.0081 (6) |
C19 | 0.0496 (8) | 0.0442 (8) | 0.0497 (8) | 0.0024 (6) | 0.0114 (7) | 0.0080 (6) |
C17 | 0.0856 (12) | 0.0317 (7) | 0.0525 (9) | −0.0101 (8) | 0.0222 (8) | 0.0046 (6) |
C18 | 0.0566 (9) | 0.0569 (10) | 0.0590 (10) | −0.0201 (8) | 0.0159 (8) | 0.0014 (8) |
C21 | 0.0414 (8) | 0.0627 (11) | 0.1020 (15) | −0.0074 (8) | 0.0205 (9) | 0.0098 (10) |
C22 | 0.0671 (12) | 0.0893 (14) | 0.0687 (12) | −0.0250 (10) | −0.0120 (9) | 0.0140 (11) |
C4 | 0.0408 (7) | 0.0190 (5) | 0.0332 (6) | 0.0015 (5) | 0.0064 (5) | −0.0017 (5) |
O1—C7 | 1.2198 (14) | C11—C12 | 1.3891 (17) |
O2—C6 | 1.3711 (14) | C12—H12 | 0.9500 |
O2—C20 | 1.4401 (16) | C14—C19 | 1.372 (2) |
O3—C11 | 1.3760 (14) | C14—C15 | 1.376 (2) |
O3—C14 | 1.3947 (15) | C15—C16 | 1.381 (2) |
C3—C4 | 1.4101 (14) | C15—H15 | 0.9500 |
C3—C4i | 1.4102 (14) | C20—C22 | 1.494 (2) |
C3—C2 | 1.428 (2) | C20—C21 | 1.509 (2) |
C8—C9 | 1.3916 (16) | C20—H20 | 1.0000 |
C8—C13 | 1.3966 (17) | C16—C17 | 1.370 (2) |
C8—C7 | 1.4841 (16) | C16—H16 | 0.9500 |
C7—C1 | 1.5116 (16) | C19—C18 | 1.390 (2) |
C2—C1i | 1.4295 (13) | C19—H19 | 0.9500 |
C2—C1 | 1.4295 (13) | C17—C18 | 1.375 (2) |
C5—C4 | 1.3586 (17) | C17—H17 | 0.9500 |
C5—C6 | 1.4094 (17) | C18—H18 | 0.9500 |
C5—H5 | 0.9500 | C21—H21A | 0.9800 |
C1—C6 | 1.3800 (17) | C21—H21B | 0.9800 |
C9—C10 | 1.3829 (17) | C21—H21C | 0.9800 |
C9—H9 | 0.9500 | C22—H22B | 0.9800 |
C13—C12 | 1.3788 (18) | C22—H22C | 0.9800 |
C13—H13 | 0.9500 | C22—H22A | 0.9800 |
C10—C11 | 1.3881 (17) | C4—H4 | 0.9500 |
C10—H10 | 0.9500 | ||
C6—O2—C20 | 119.65 (10) | C19—C14—O3 | 119.69 (13) |
C11—O3—C14 | 118.75 (10) | C15—C14—O3 | 119.09 (13) |
C4—C3—C4i | 120.42 (15) | C14—C15—C16 | 119.40 (14) |
C4—C3—C2 | 119.79 (7) | C14—C15—H15 | 120.3 |
C4i—C3—C2 | 119.79 (7) | C16—C15—H15 | 120.3 |
C9—C8—C13 | 118.63 (11) | O2—C20—C22 | 111.41 (14) |
C9—C8—C7 | 118.90 (10) | O2—C20—C21 | 104.39 (12) |
C13—C8—C7 | 122.45 (10) | C22—C20—C21 | 113.15 (15) |
O1—C7—C8 | 121.21 (10) | O2—C20—H20 | 109.3 |
O1—C7—C1 | 118.46 (10) | C22—C20—H20 | 109.3 |
C8—C7—C1 | 120.33 (10) | C21—C20—H20 | 109.3 |
C3—C2—C1i | 117.67 (7) | C17—C16—C15 | 120.36 (15) |
C3—C2—C1 | 117.67 (7) | C17—C16—H16 | 119.8 |
C1i—C2—C1 | 124.67 (14) | C15—C16—H16 | 119.8 |
C4—C5—C6 | 119.00 (11) | C14—C19—C18 | 118.71 (14) |
C4—C5—H5 | 120.5 | C14—C19—H19 | 120.6 |
C6—C5—H5 | 120.5 | C18—C19—H19 | 120.6 |
C6—C1—C2 | 120.06 (11) | C16—C17—C18 | 119.81 (14) |
C6—C1—C7 | 116.97 (10) | C16—C17—H17 | 120.1 |
C2—C1—C7 | 122.40 (11) | C18—C17—H17 | 120.1 |
O2—C6—C1 | 115.93 (10) | C17—C18—C19 | 120.58 (15) |
O2—C6—C5 | 122.41 (11) | C17—C18—H18 | 119.7 |
C1—C6—C5 | 121.65 (11) | C19—C18—H18 | 119.7 |
C10—C9—C8 | 120.99 (11) | C20—C21—H21A | 109.5 |
C10—C9—H9 | 119.5 | C20—C21—H21B | 109.5 |
C8—C9—H9 | 119.5 | H21A—C21—H21B | 109.5 |
C12—C13—C8 | 121.08 (11) | C20—C21—H21C | 109.5 |
C12—C13—H13 | 119.5 | H21A—C21—H21C | 109.5 |
C8—C13—H13 | 119.5 | H21B—C21—H21C | 109.5 |
C9—C10—C11 | 119.28 (11) | C20—C22—H22B | 109.5 |
C9—C10—H10 | 120.4 | C20—C22—H22C | 109.5 |
C11—C10—H10 | 120.4 | H22B—C22—H22C | 109.5 |
O3—C11—C10 | 123.51 (11) | C20—C22—H22A | 109.5 |
O3—C11—C12 | 115.70 (11) | H22B—C22—H22A | 109.5 |
C10—C11—C12 | 120.79 (11) | H22C—C22—H22A | 109.5 |
C13—C12—C11 | 119.24 (11) | C5—C4—C3 | 121.77 (11) |
C13—C12—H12 | 120.4 | C5—C4—H4 | 119.1 |
C11—C12—H12 | 120.4 | C3—C4—H4 | 119.1 |
C19—C14—C15 | 121.12 (13) | ||
C9—C8—C7—O1 | −5.73 (18) | C9—C8—C13—C12 | −0.21 (19) |
C13—C8—C7—O1 | 172.58 (12) | C7—C8—C13—C12 | −178.51 (12) |
C9—C8—C7—C1 | 173.94 (11) | C8—C9—C10—C11 | −0.71 (19) |
C13—C8—C7—C1 | −7.76 (17) | C14—O3—C11—C10 | 0.68 (19) |
C4—C3—C2—C1i | −177.89 (7) | C14—O3—C11—C12 | −178.86 (12) |
C4i—C3—C2—C1i | 2.11 (7) | C9—C10—C11—O3 | −179.14 (12) |
C4—C3—C2—C1 | 2.11 (7) | C9—C10—C11—C12 | 0.38 (19) |
C4i—C3—C2—C1 | −177.89 (7) | C8—C13—C12—C11 | −0.1 (2) |
C3—C2—C1—C6 | −1.15 (12) | O3—C11—C12—C13 | 179.58 (12) |
C1i—C2—C1—C6 | 178.85 (12) | C10—C11—C12—C13 | 0.0 (2) |
C3—C2—C1—C7 | 169.94 (8) | C11—O3—C14—C19 | −84.84 (16) |
C1i—C2—C1—C7 | −10.06 (8) | C11—O3—C14—C15 | 98.74 (15) |
O1—C7—C1—C6 | 110.54 (13) | C19—C14—C15—C16 | −0.4 (2) |
C8—C7—C1—C6 | −69.13 (14) | O3—C14—C15—C16 | 175.98 (12) |
O1—C7—C1—C2 | −60.81 (15) | C6—O2—C20—C22 | 60.29 (17) |
C8—C7—C1—C2 | 119.52 (11) | C6—O2—C20—C21 | −177.26 (13) |
C20—O2—C6—C1 | −150.33 (12) | C14—C15—C16—C17 | 0.8 (2) |
C20—O2—C6—C5 | 29.72 (18) | C15—C14—C19—C18 | −0.5 (2) |
C2—C1—C6—O2 | 178.90 (9) | O3—C14—C19—C18 | −176.89 (13) |
C7—C1—C6—O2 | 7.34 (16) | C15—C16—C17—C18 | −0.3 (2) |
C2—C1—C6—C5 | −1.14 (17) | C16—C17—C18—C19 | −0.7 (2) |
C7—C1—C6—C5 | −172.70 (11) | C14—C19—C18—C17 | 1.1 (2) |
C4—C5—C6—O2 | −177.55 (11) | C6—C5—C4—C3 | −1.49 (18) |
C4—C5—C6—C1 | 2.49 (19) | C4i—C3—C4—C5 | 179.19 (13) |
C13—C8—C9—C10 | 0.62 (18) | C2—C3—C4—C5 | −0.81 (13) |
C7—C8—C9—C10 | 178.99 (11) |
Symmetry code: (i) −x+1, y, −z+3/2. |
Cg is the centroid of the C8–C13 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O1ii | 0.95 | 2.44 | 3.3398 (15) | 158 |
C16—H16···Cgiii | 0.95 | 2.97 | 3.8383 (19) | 152 |
Symmetry codes: (ii) x, −y+1, z+1/2; (iii) −x+1, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C42H36O6 |
Mr | 636.71 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 193 |
a, b, c (Å) | 22.7084 (4), 10.3582 (2), 14.7152 (3) |
β (°) | 100.106 (1) |
V (Å3) | 3407.58 (11) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.66 |
Crystal size (mm) | 0.60 × 0.60 × 0.50 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.693, 0.734 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28911, 3101, 2749 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.096, 1.04 |
No. of reflections | 3101 |
No. of parameters | 221 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.16 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
Cg is the centroid of the C8–C13 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O1i | 0.95 | 2.44 | 3.3398 (15) | 158 |
C16—H16···Cgii | 0.95 | 2.97 | 3.8383 (19) | 152 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1, −y, −z+2. |
Acknowledgements
The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Shorai Foundation for Science and Technology.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284. Web of Science CrossRef CAS Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sasagawa, K., Hijikata, D., Sakamoto, R., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2596. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the choice of suitable acidic mediators (Okamoto & Yonezawa, 2009 Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-dibenzoyl-2,7-dimethoxynaphtalene (Nakaema et al., 2008), [2,7-dimethoxy-8-(4-propylbenzoyl)naphthalene-1-yl]-(4-propylphenyl)methanone (Sasagawa et al., 2012) and [2,7-dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone (Muto et al. 2010). In the crystals of these compounds, two aroyl groups tend to attach to the naphthalene ring in nearly perpendicular manners and oriented in the opposite direction (anti-orientation). Recently, the crystal structure of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene has been clarified to take syn-orientation, where two phenoxybenzoyl groups are positioned on the same side against the naphthalene ring plane (Hijikata et al. 2010). As a part of our continuing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound peri-aroylnaphthalene bearing isopropoxy groups at the 2,7-positions is discussed in this article.
The molecular structure of the title compounds is displayed in Fig 1. Two 4-phenoxybenzoyl groups are situated in anti-orientation and are twisted away from the attached naphthalene ring. This molecule lies on a crystallographic 2-fold axis so that the asymmetric unit consists of one-half of the molecule. The dihedral angle between the best plane of the inner benzene ring of the 4-phenoxybenzoyl groups and the naphthalene system is 70.52 (5)°.
Centrosymmetrically related molecules are linked into dimeric unit by pairs of C—H···π interactions between the hydrogen atom (H16) on the terminal phenoxy group and the π-system of the benzene ring in the benzoyl moiety (C8–C13) (C16—H16···Cgiii, Fig. 2). The molecules of the title compound are aligned in an antiparallel fashion with the adjacent molecule. The terminal benzene ring of the phenoxybenzoyl group interacts with the inner benzene ring of the phenoxybenzoyl group of the adjacent molecule. Both of the pairs of the facing benzene rings in the couple of the phenoxybenzoyl groups are situated almost perpendicularly to the benzene ring in the benzoyl moiety (C8–C13). Then two identical interactions are formed to give cyclic structure between the two phenoxybenzoyl groups.
Furthermore, an oxygen atom of the carbonyl group forms intermolecular C—H···O interaction with the m-hydrogen of the benzoyl benzene ring of the other adjacent molecule (C12—H12···O1 = 2.44 Å, Fig. 3).