metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Chloro­acetanilido-κ2N,O)bis­­[2-(pyridin-2-yl)phenyl-κ2C1,N]iridium(III)

aSchool of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
*Correspondence e-mail: slzhang@jiangnan.edu.cn

(Received 14 December 2012; accepted 5 January 2013; online 12 January 2013)

In the neutral mononuclear iridium(III) title compound, [Ir(C8H7ClNO)(C11H8N)2], the IrIII atom adopts an octa­hedral geometry, and is coordinated by two 2-phenyl­pyridyl ligands and one anionic 4-chloro­acetanilide ligand. The 2-phenyl­pyridyl ligands are arranged in a cis-C,C′ and cis-N,N′ fashion. Each 2-phenyl­pyridyl ligand forms a five-membered ring with the IrIII atom. The 2-phenyl­pyridyl planes are perpendicular to each other [dihedral angle = 89.9 (1)°]. The Ir—C and Ir—N bond lengths are comparable to those reported for related iridium(III) 2-phenyl­pyridyl complexes. The remaining two coordination sites are occupied by the amidate N and O atoms, which form a four-membered ring with the iridium atom (Ir—N—C—O). The amidate plane is nearly perpendicular to both 2-phenyl­pyridyl ligands [dihedral angles = 87.8 (2) and 88.3 (2)°].

Related literature

For related iridium(III) complexes containing 2-phenyl­pyridyl derivatives as cyclo­metalating ligands, see: Lamansky et al. (2001[Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001). Inorg. Chem. 40, 1704-1711.]); Tamayo et al. (2003[Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S. L., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377-7387.]); Yang et al. (2011[Yang, W., Fu, H., Song, Q., Zhang, M. & Ding, Y. (2011). Organometallics, 30, 77-83.]); You & Park (2005[You, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438-12439.]); Zhang et al. (2011[Zhang, S., Wu, F., Yang, W. & Ding, Y. (2011). Inorg. Chem. Commun. 14, 1414-1417.]). For the coordination geometry of some heteroleptic iridium(III) complexes containing amidate ancillary ligands, see: Yang et al. (2011[Yang, W., Fu, H., Song, Q., Zhang, M. & Ding, Y. (2011). Organometallics, 30, 77-83.]); Zhang et al. (2011[Zhang, S., Wu, F., Yang, W. & Ding, Y. (2011). Inorg. Chem. Commun. 14, 1414-1417.]). For a general procedure for the preparation of a chloride-bridged iridium(III) dimer, see: Nonoyama (1974[Nonoyama, M. (1974). Bull. Chem. Soc. Jpn, 47, 767-768.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C8H7ClNO)(C11H8N)2]

  • Mr = 669.16

  • Orthorhombic, P b c a

  • a = 12.8391 (15) Å

  • b = 11.0697 (13) Å

  • c = 35.897 (4) Å

  • V = 5101.8 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.37 mm−1

  • T = 293 K

  • 0.58 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.073, Tmax = 0.584

  • 41875 measured reflections

  • 4668 independent reflections

  • 4140 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.099

  • S = 1.11

  • 4668 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 1.56 e Å−3

  • Δρmin = −0.76 e Å−3

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Previously, the synthesis, characterization and photophysical properties of a series of iridium(III) complexes have been reported, which contain 2-phenylpyridine and their derivatives as cyclometalating ligands and various monoanionic ligands as the ancillary ligand, such as acetylacetone, picolinate, amidate and others (Lamansky et al., 2001; Tamayo et al., 2003; Yang et al., 2011; You et al., 2005; Zhang et al., 2011). These complexes have shown good photoluminescence. The remote substituent effect of amidate ligand on photophysical properties was recognized (Zhang et al., 2011). The simple and efficient fine tuning of the emission properties of iridium(III) amidate complexes can potentially be achieved via the alternation of the subtle electronic effects of amidate ancillary ligands. Herein, an acetanilide ligand was used as the ancillary ligand, which contains a para-chlorine on the N-phenyl ring. The crystal structure of the resulting phenylpyridyl iridium(III) amidate complex was obtained. The iridium(III) center adopts an octahedral geometry, which is coordinated by two 2-phenylpyridyl ligands and one para-chloroacetanilide ancillary ligand. The two 2-phenylpyridyl ligands are arranged in a cis-C, C' and cis-N, N' fashion, whose planes are nearly perpendicular to each other.

Related literature top

For related iridium(III) complexes containing 2-phenylpyridyl derivatives as cyclometalating ligands, see: Lamansky et al. (2001); Tamayo et al. (2003); Yang et al. (2011); You & Park (2005); Zhang et al. (2011). For the coordination geometry of some heteroleptic iridium(III) complexes containing amidate ancillary ligands, see: Yang et al. (2011); Zhang et al. (2011). For a general procedure for the preparation of a chloride-bridged iridium(III) dimer, see: Nonoyama (1974).

Experimental top

The dichloro-bridged dimeric complex [(ppy)2IrCl]2 was obtained by reaction of IrCl3 with ppy ligand according to a general procedure originally developed by Nonoyama et al. (1974). Into a 100 ml Schlenk tube were added the dichloro-bridged dimer, 2.5 equiv. of amide ligand and 10 equiv. of sodium methoxide in 15 ml CH2Cl2 solvent under dinitrogen atmosphere. The mixture was stirred at room temperature for 48 h. The product mixture was filtered to remove the solids. The solvent of the resulting filtrate was removed by rotational evaporation to give the crude product powder. The powder was washed sequentially with n-hexane and ethers. Recrystallization by evaporation of a soution in CH2Cl2/n-hexane (in a 1:1 ratio) mixed solvent gave the final crystalline product.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H of 0.93–0.96 Å, and Uiso(H) = 1.2–1.5 Ueq (C).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with ellipsoids drawn at the 50% probability level.
(4-Chloroacetanilido-κ2N,O)bis[2-(pyridin-2-yl)phenyl- κ2C1,N]iridium(III) top
Crystal data top
[Ir(C8H7ClNO)(C11H8N)2]F(000) = 2608
Mr = 669.16Dx = 1.742 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ac 2abCell parameters from 15543 reflections
a = 12.8391 (15) Åθ = 3.2–25.3°
b = 11.0697 (13) ŵ = 5.37 mm1
c = 35.897 (4) ÅT = 293 K
V = 5101.8 (11) Å3Block, yellow
Z = 80.58 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury
diffractometer
4668 independent reflections
Radiation source: fine-focus sealed tube4140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.2°
ω scansh = 1515
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1213
Tmin = 0.073, Tmax = 0.584l = 3943
41875 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0063P)2 + 60.1899P]
where P = (Fo2 + 2Fc2)/3
4668 reflections(Δ/σ)max = 0.002
326 parametersΔρmax = 1.56 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Ir(C8H7ClNO)(C11H8N)2]V = 5101.8 (11) Å3
Mr = 669.16Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.8391 (15) ŵ = 5.37 mm1
b = 11.0697 (13) ÅT = 293 K
c = 35.897 (4) Å0.58 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury
diffractometer
4668 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4140 reflections with I > 2σ(I)
Tmin = 0.073, Tmax = 0.584Rint = 0.064
41875 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0063P)2 + 60.1899P]
where P = (Fo2 + 2Fc2)/3
4668 reflectionsΔρmax = 1.56 e Å3
326 parametersΔρmin = 0.76 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.52201 (3)0.20795 (3)0.647807 (9)0.03746 (11)
Cl10.3095 (3)0.6436 (3)0.50134 (10)0.1069 (13)
O10.5741 (5)0.3599 (5)0.68362 (16)0.0476 (15)
N10.6555 (5)0.2045 (6)0.61709 (18)0.0394 (16)
N20.5537 (7)0.0664 (7)0.6804 (2)0.061 (2)
N30.4950 (5)0.3970 (6)0.63019 (19)0.0417 (18)
C10.4800 (7)0.0911 (7)0.6084 (2)0.039 (2)
C20.3862 (8)0.0282 (9)0.6052 (3)0.055 (3)
H20.33500.03930.62310.066*
C30.3673 (9)0.0505 (9)0.5759 (3)0.064 (3)
H30.30400.09100.57410.076*
C40.4440 (10)0.0680 (10)0.5492 (3)0.067 (3)
H40.43160.11960.52930.081*
C50.5373 (9)0.0104 (9)0.5519 (3)0.059 (3)
H50.58850.02400.53400.070*
C60.5566 (8)0.0689 (8)0.5813 (2)0.045 (2)
C70.6552 (7)0.1308 (8)0.5868 (2)0.044 (2)
C80.7431 (9)0.1250 (10)0.5643 (3)0.062 (3)
H80.74370.07390.54380.075*
C90.8285 (9)0.1937 (11)0.5722 (3)0.067 (3)
H90.88730.18940.55710.080*
C100.8271 (8)0.2694 (10)0.6026 (3)0.061 (3)
H100.88410.31800.60830.074*
C110.7394 (7)0.2712 (8)0.6244 (3)0.048 (2)
H110.73840.32120.64520.057*
C120.3849 (5)0.2006 (7)0.6768 (2)0.0288 (16)
C130.3043 (8)0.2713 (9)0.6708 (3)0.056 (3)
H130.30850.32860.65190.067*
C140.2129 (8)0.2639 (11)0.6915 (3)0.066 (3)
H140.15750.31600.68690.079*
C150.2069 (9)0.1791 (11)0.7185 (4)0.073 (3)
H150.14700.17270.73290.088*
C160.2895 (8)0.1019 (10)0.7247 (3)0.064 (3)
H160.28530.04230.74290.077*
C170.3792 (7)0.1150 (9)0.7032 (3)0.049 (2)
C180.4726 (8)0.0400 (8)0.7067 (2)0.046 (2)
C190.4866 (8)0.0518 (9)0.7327 (2)0.055 (3)
H190.43370.06940.74950.066*
C200.5770 (9)0.1162 (10)0.7337 (3)0.063 (3)
H200.58580.17650.75150.076*
C210.6547 (9)0.0930 (9)0.7087 (3)0.059 (3)
H210.71580.13780.70960.071*
C220.6436 (7)0.0036 (8)0.6822 (3)0.047 (2)
H220.69700.00990.66520.056*
C230.5404 (7)0.4395 (8)0.6608 (2)0.042 (2)
C240.5570 (8)0.5710 (8)0.6703 (3)0.060 (3)
H24A0.49700.60150.68320.091*
H24B0.56730.61630.64780.091*
H24C0.61730.57890.68590.091*
C250.4504 (7)0.4570 (9)0.6010 (3)0.050 (2)
C260.4552 (10)0.4051 (10)0.5657 (3)0.069 (3)
H260.48830.33100.56260.083*
C270.4117 (9)0.4619 (11)0.5354 (3)0.071 (3)
H270.41530.42590.51210.085*
C280.3634 (10)0.5700 (11)0.5395 (3)0.071 (3)
C290.3555 (10)0.6215 (10)0.5731 (4)0.076 (4)
H290.32170.69540.57540.091*
C300.3972 (9)0.5661 (9)0.6046 (3)0.067 (3)
H300.38960.60180.62790.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.04144 (19)0.03439 (18)0.03655 (19)0.00003 (16)0.00421 (15)0.00038 (16)
Cl10.142 (3)0.083 (2)0.095 (3)0.004 (2)0.052 (2)0.027 (2)
O10.058 (4)0.045 (4)0.040 (3)0.003 (3)0.001 (3)0.008 (3)
N10.043 (4)0.041 (4)0.034 (4)0.001 (4)0.006 (3)0.009 (3)
N20.076 (6)0.054 (5)0.052 (5)0.013 (5)0.000 (5)0.005 (4)
N30.044 (4)0.042 (4)0.039 (4)0.010 (3)0.006 (3)0.010 (3)
C10.045 (5)0.034 (5)0.039 (5)0.003 (4)0.006 (4)0.011 (4)
C20.059 (6)0.057 (6)0.049 (6)0.003 (5)0.006 (5)0.001 (5)
C30.070 (7)0.051 (6)0.069 (7)0.017 (6)0.018 (6)0.003 (6)
C40.092 (9)0.057 (7)0.053 (7)0.004 (7)0.021 (6)0.006 (5)
C50.072 (8)0.058 (6)0.045 (6)0.012 (6)0.000 (5)0.004 (5)
C60.058 (6)0.039 (5)0.039 (5)0.008 (5)0.004 (4)0.004 (4)
C70.053 (6)0.046 (5)0.032 (5)0.005 (5)0.004 (4)0.000 (4)
C80.069 (7)0.064 (7)0.054 (6)0.007 (6)0.019 (6)0.006 (6)
C90.063 (7)0.083 (8)0.054 (6)0.011 (7)0.025 (5)0.004 (6)
C100.048 (6)0.066 (7)0.070 (7)0.012 (5)0.007 (5)0.011 (6)
C110.051 (5)0.041 (5)0.051 (5)0.008 (5)0.008 (5)0.006 (4)
C120.024 (4)0.030 (4)0.033 (4)0.002 (4)0.004 (3)0.006 (4)
C130.060 (6)0.044 (6)0.063 (6)0.006 (5)0.009 (5)0.006 (5)
C140.042 (6)0.075 (8)0.082 (8)0.007 (6)0.011 (6)0.019 (7)
C150.048 (6)0.085 (9)0.086 (9)0.017 (6)0.025 (6)0.011 (7)
C160.054 (6)0.073 (7)0.066 (7)0.019 (6)0.028 (5)0.009 (6)
C170.050 (6)0.051 (6)0.046 (5)0.016 (5)0.003 (4)0.021 (5)
C180.055 (6)0.049 (5)0.033 (5)0.015 (5)0.004 (4)0.003 (4)
C190.066 (7)0.061 (6)0.037 (5)0.018 (6)0.000 (5)0.006 (5)
C200.083 (8)0.058 (6)0.048 (6)0.004 (6)0.013 (6)0.014 (5)
C210.072 (7)0.057 (6)0.048 (6)0.012 (6)0.010 (5)0.004 (5)
C220.048 (5)0.041 (5)0.051 (6)0.007 (4)0.000 (4)0.002 (4)
C230.052 (6)0.031 (5)0.043 (5)0.007 (4)0.006 (4)0.009 (4)
C240.070 (7)0.043 (6)0.068 (7)0.009 (5)0.012 (6)0.007 (5)
C250.044 (6)0.050 (6)0.055 (6)0.012 (5)0.001 (5)0.003 (5)
C260.104 (9)0.050 (6)0.055 (7)0.013 (6)0.006 (6)0.001 (5)
C270.092 (9)0.076 (8)0.045 (6)0.008 (7)0.009 (6)0.002 (6)
C280.087 (9)0.065 (8)0.060 (7)0.009 (7)0.023 (6)0.015 (6)
C290.083 (9)0.043 (6)0.103 (10)0.002 (6)0.019 (8)0.014 (7)
C300.084 (8)0.047 (6)0.072 (8)0.005 (6)0.001 (6)0.004 (6)
Geometric parameters (Å, º) top
Ir1—C11.990 (9)C12—C131.315 (12)
Ir1—N21.998 (9)C12—C171.344 (12)
Ir1—N12.039 (7)C13—C141.392 (13)
Ir1—C122.045 (7)C13—H130.9300
Ir1—N32.213 (7)C14—C151.350 (15)
Ir1—O12.220 (6)C14—H140.9300
Ir1—C232.616 (8)C15—C161.380 (15)
Cl1—C281.738 (11)C15—H150.9300
O1—C231.279 (10)C16—C171.395 (12)
N1—C111.331 (11)C16—H160.9300
N1—C71.359 (11)C17—C181.463 (13)
N2—C221.391 (12)C18—C191.390 (12)
N2—C181.436 (12)C19—C201.363 (14)
N3—C231.330 (10)C19—H190.9300
N3—C251.367 (11)C20—C211.365 (14)
C1—C21.396 (13)C20—H200.9300
C1—C61.407 (12)C21—C221.380 (12)
C2—C31.387 (13)C21—H210.9300
C2—H20.9300C22—H220.9300
C3—C41.387 (15)C23—C241.510 (12)
C3—H30.9300C24—H24A0.9600
C4—C51.360 (15)C24—H24B0.9600
C4—H40.9300C24—H24C0.9600
C5—C61.394 (13)C25—C261.391 (13)
C5—H50.9300C25—C301.394 (14)
C6—C71.453 (13)C26—C271.375 (14)
C7—C81.388 (13)C26—H260.9300
C8—C91.364 (15)C27—C281.356 (15)
C8—H80.9300C27—H270.9300
C9—C101.376 (14)C28—C291.336 (16)
C9—H90.9300C29—C301.394 (15)
C10—C111.371 (13)C29—H290.9300
C10—H100.9300C30—H300.9300
C11—H110.9300
C1—Ir1—N287.8 (3)C13—C12—C17119.5 (8)
C1—Ir1—N180.3 (3)C13—C12—Ir1124.8 (7)
N2—Ir1—N197.5 (3)C17—C12—Ir1115.7 (6)
C1—Ir1—C1295.8 (3)C12—C13—C14122.8 (10)
N2—Ir1—C1281.2 (3)C12—C13—H13118.6
N1—Ir1—C12176.0 (3)C14—C13—H13118.6
C1—Ir1—N3111.7 (3)C15—C14—C13118.2 (10)
N2—Ir1—N3160.2 (3)C15—C14—H14120.9
N1—Ir1—N389.7 (3)C13—C14—H14120.9
C12—Ir1—N392.7 (3)C14—C15—C16120.2 (10)
C1—Ir1—O1170.1 (3)C14—C15—H15119.9
N2—Ir1—O1101.2 (3)C16—C15—H15119.9
N1—Ir1—O194.3 (3)C15—C16—C17118.7 (11)
C12—Ir1—O189.7 (3)C15—C16—H16120.7
N3—Ir1—O159.8 (2)C17—C16—H16120.7
C1—Ir1—C23142.0 (3)C12—C17—C16120.6 (10)
N2—Ir1—C23130.2 (3)C12—C17—C18114.6 (8)
N1—Ir1—C2392.2 (3)C16—C17—C18124.8 (10)
C12—Ir1—C2391.5 (3)C19—C18—N2119.7 (9)
N3—Ir1—C2330.5 (3)C19—C18—C17125.3 (9)
O1—Ir1—C2329.2 (2)N2—C18—C17115.0 (8)
C23—O1—Ir192.8 (5)C20—C19—C18120.7 (10)
C11—N1—C7119.5 (8)C20—C19—H19119.7
C11—N1—Ir1124.2 (6)C18—C19—H19119.7
C7—N1—Ir1116.2 (6)C19—C20—C21120.4 (10)
C22—N2—C18117.2 (8)C19—C20—H20119.8
C22—N2—Ir1129.3 (7)C21—C20—H20119.8
C18—N2—Ir1113.4 (7)C20—C21—C22120.8 (10)
C23—N3—C25130.2 (8)C20—C21—H21119.6
C23—N3—Ir191.7 (5)C22—C21—H21119.6
C25—N3—Ir1138.1 (6)C21—C22—N2121.1 (9)
C2—C1—C6117.2 (8)C21—C22—H22119.4
C2—C1—Ir1128.2 (7)N2—C22—H22119.4
C6—C1—Ir1114.6 (7)O1—C23—N3115.7 (7)
C3—C2—C1121.9 (10)O1—C23—C24118.2 (8)
C3—C2—H2119.1N3—C23—C24126.1 (9)
C1—C2—H2119.1O1—C23—Ir157.9 (4)
C2—C3—C4119.1 (10)N3—C23—Ir157.7 (4)
C2—C3—H3120.5C24—C23—Ir1175.9 (7)
C4—C3—H3120.5C23—C24—H24A109.5
C5—C4—C3120.8 (10)C23—C24—H24B109.5
C5—C4—H4119.6H24A—C24—H24B109.5
C3—C4—H4119.6C23—C24—H24C109.5
C4—C5—C6120.3 (10)H24A—C24—H24C109.5
C4—C5—H5119.8H24B—C24—H24C109.5
C6—C5—H5119.8N3—C25—C26118.6 (9)
C5—C6—C1120.7 (9)N3—C25—C30123.7 (9)
C5—C6—C7123.8 (9)C26—C25—C30117.7 (10)
C1—C6—C7115.6 (8)C27—C26—C25120.8 (10)
N1—C7—C8119.3 (9)C27—C26—H26119.6
N1—C7—C6113.3 (8)C25—C26—H26119.6
C8—C7—C6127.3 (9)C28—C27—C26120.3 (11)
C9—C8—C7120.5 (10)C28—C27—H27119.9
C9—C8—H8119.8C26—C27—H27119.9
C7—C8—H8119.8C29—C28—C27120.6 (11)
C8—C9—C10119.6 (10)C29—C28—Cl1118.7 (10)
C8—C9—H9120.2C27—C28—Cl1120.7 (10)
C10—C9—H9120.2C28—C29—C30121.0 (11)
C11—C10—C9118.1 (10)C28—C29—H29119.5
C11—C10—H10120.9C30—C29—H29119.5
C9—C10—H10120.9C25—C30—C29119.5 (11)
N1—C11—C10123.0 (9)C25—C30—H30120.2
N1—C11—H11118.5C29—C30—H30120.2
C10—C11—H11118.5
C1—Ir1—O1—C2331 (2)C9—C10—C11—N11.0 (15)
N2—Ir1—O1—C23174.5 (6)C1—Ir1—C12—C1390.0 (8)
N1—Ir1—O1—C2387.0 (5)N2—Ir1—C12—C13176.8 (8)
C12—Ir1—O1—C2393.5 (5)N1—Ir1—C12—C13106 (4)
N3—Ir1—O1—C230.2 (5)N3—Ir1—C12—C1322.2 (8)
C1—Ir1—N1—C11177.9 (7)O1—Ir1—C12—C1381.9 (8)
N2—Ir1—N1—C1195.7 (7)C23—Ir1—C12—C1352.7 (8)
C12—Ir1—N1—C11166 (4)C1—Ir1—C12—C1789.0 (6)
N3—Ir1—N1—C1165.8 (7)N2—Ir1—C12—C172.1 (6)
O1—Ir1—N1—C116.2 (7)N1—Ir1—C12—C1773 (4)
C23—Ir1—N1—C1135.4 (7)N3—Ir1—C12—C17158.9 (6)
C1—Ir1—N1—C70.2 (6)O1—Ir1—C12—C1799.2 (6)
N2—Ir1—N1—C786.2 (6)C23—Ir1—C12—C17128.4 (6)
C12—Ir1—N1—C716 (4)C17—C12—C13—C141.9 (14)
N3—Ir1—N1—C7112.3 (6)Ir1—C12—C13—C14179.2 (7)
O1—Ir1—N1—C7171.9 (6)C12—C13—C14—C151.1 (16)
C23—Ir1—N1—C7142.7 (6)C13—C14—C15—C160.5 (17)
C1—Ir1—N2—C2284.0 (8)C14—C15—C16—C171.2 (17)
N1—Ir1—N2—C224.1 (8)C13—C12—C17—C161.1 (13)
C12—Ir1—N2—C22179.7 (8)Ir1—C12—C17—C16179.9 (7)
N3—Ir1—N2—C22106.4 (11)C13—C12—C17—C18178.5 (8)
O1—Ir1—N2—C2291.8 (8)Ir1—C12—C17—C180.5 (9)
C23—Ir1—N2—C2295.3 (8)C15—C16—C17—C120.4 (15)
C1—Ir1—N2—C1899.6 (6)C15—C16—C17—C18180.0 (9)
N1—Ir1—N2—C18179.5 (6)C22—N2—C18—C190.6 (12)
C12—Ir1—N2—C183.3 (6)Ir1—N2—C18—C19176.3 (7)
N3—Ir1—N2—C1869.9 (12)C22—N2—C18—C17179.0 (8)
O1—Ir1—N2—C1884.6 (6)Ir1—N2—C18—C174.1 (10)
C23—Ir1—N2—C1881.1 (7)C12—C17—C18—C19178.0 (8)
C1—Ir1—N3—C23174.4 (5)C16—C17—C18—C192.3 (15)
N2—Ir1—N3—C2316.9 (12)C12—C17—C18—N22.4 (11)
N1—Ir1—N3—C2394.9 (5)C16—C17—C18—N2177.3 (9)
C12—Ir1—N3—C2388.2 (5)N2—C18—C19—C200.6 (14)
O1—Ir1—N3—C230.2 (5)C17—C18—C19—C20179.8 (9)
C1—Ir1—N3—C256.3 (10)C18—C19—C20—C211.1 (16)
N2—Ir1—N3—C25162.4 (10)C19—C20—C21—C220.3 (16)
N1—Ir1—N3—C2585.8 (9)C20—C21—C22—N21.0 (15)
C12—Ir1—N3—C2591.1 (9)C18—N2—C22—C211.4 (13)
O1—Ir1—N3—C25179.1 (10)Ir1—N2—C22—C21174.9 (7)
C23—Ir1—N3—C25179.3 (12)Ir1—O1—C23—N30.3 (8)
N2—Ir1—C1—C279.6 (8)Ir1—O1—C23—C24178.4 (8)
N1—Ir1—C1—C2177.6 (8)C25—N3—C23—O1179.1 (8)
C12—Ir1—C1—C21.3 (8)Ir1—N3—C23—O10.3 (8)
N3—Ir1—C1—C296.6 (8)C25—N3—C23—C242.3 (15)
O1—Ir1—C1—C2125.3 (17)Ir1—N3—C23—C24178.3 (9)
C23—Ir1—C1—C2101.3 (9)C25—N3—C23—Ir1179.4 (11)
N2—Ir1—C1—C699.0 (6)C1—Ir1—C23—O1171.8 (6)
N1—Ir1—C1—C61.0 (6)N2—Ir1—C23—O17.1 (7)
C12—Ir1—C1—C6179.9 (6)N1—Ir1—C23—O194.7 (5)
N3—Ir1—C1—C684.8 (6)C12—Ir1—C23—O186.8 (5)
O1—Ir1—C1—C656 (2)N3—Ir1—C23—O1179.7 (9)
C23—Ir1—C1—C680.1 (8)C1—Ir1—C23—N38.5 (8)
C6—C1—C2—C31.9 (14)N2—Ir1—C23—N3172.6 (5)
Ir1—C1—C2—C3179.6 (7)N1—Ir1—C23—N385.6 (5)
C1—C2—C3—C40.5 (16)C12—Ir1—C23—N392.9 (5)
C2—C3—C4—C51.0 (16)O1—Ir1—C23—N3179.7 (9)
C3—C4—C5—C61.1 (16)C1—Ir1—C23—C24152 (10)
C4—C5—C6—C10.3 (14)N2—Ir1—C23—C2427 (10)
C4—C5—C6—C7178.0 (9)N1—Ir1—C23—C2475 (10)
C2—C1—C6—C51.7 (13)C12—Ir1—C23—C24106 (10)
Ir1—C1—C6—C5179.5 (7)N3—Ir1—C23—C24161 (10)
C2—C1—C6—C7176.7 (8)O1—Ir1—C23—C2420 (10)
Ir1—C1—C6—C72.1 (10)C23—N3—C25—C26148.1 (10)
C11—N1—C7—C81.0 (13)Ir1—N3—C25—C2632.7 (14)
Ir1—N1—C7—C8179.3 (7)C23—N3—C25—C3033.9 (15)
C11—N1—C7—C6176.8 (8)Ir1—N3—C25—C30145.3 (9)
Ir1—N1—C7—C61.4 (10)N3—C25—C26—C27179.9 (10)
C5—C6—C7—N1179.4 (8)C30—C25—C26—C272.0 (17)
C1—C6—C7—N12.3 (11)C25—C26—C27—C280.2 (19)
C5—C6—C7—C81.7 (15)C26—C27—C28—C291 (2)
C1—C6—C7—C8179.9 (9)C26—C27—C28—Cl1179.2 (10)
N1—C7—C8—C91.0 (15)C27—C28—C29—C301 (2)
C6—C7—C8—C9176.6 (10)Cl1—C28—C29—C30179.9 (9)
C7—C8—C9—C100.1 (17)N3—C25—C30—C29179.1 (10)
C8—C9—C10—C111.1 (16)C26—C25—C30—C292.9 (16)
C7—N1—C11—C100.1 (14)C28—C29—C30—C251.7 (18)
Ir1—N1—C11—C10178.1 (7)

Experimental details

Crystal data
Chemical formula[Ir(C8H7ClNO)(C11H8N)2]
Mr669.16
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.8391 (15), 11.0697 (13), 35.897 (4)
V3)5101.8 (11)
Z8
Radiation typeMo Kα
µ (mm1)5.37
Crystal size (mm)0.58 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.073, 0.584
No. of measured, independent and
observed [I > 2σ(I)] reflections
41875, 4668, 4140
Rint0.064
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.099, 1.11
No. of reflections4668
No. of parameters326
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0063P)2 + 60.1899P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.56, 0.76

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant No. 21202062), the Natural Science Foundation of Jiangsu Province, China (grant No. BK2012108) and the Fundamental Research Funds for Central Universities (grant No. JUSRP 11105).

References

First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001). Inorg. Chem. 40, 1704–1711.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonoyama, M. (1974). Bull. Chem. Soc. Jpn, 47, 767–768.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S. L., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377–7387.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, W., Fu, H., Song, Q., Zhang, M. & Ding, Y. (2011). Organometallics, 30, 77–83.  Web of Science CSD CrossRef CAS Google Scholar
First citationYou, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438–12439.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, S., Wu, F., Yang, W. & Ding, Y. (2011). Inorg. Chem. Commun. 14, 1414–1417.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds