organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

14-Eth­­oxy-4,6,9-tri­methyl-8,12-dioxa-4,6-di­aza­tetra­cyclo­[8.8.0.02,7.013,18]octa­deca-2(7),13,15,17-tetra­ene-3,5,11-trione

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 2 December 2012; accepted 8 January 2013; online 23 January 2013)

In the title compound, C19H20N2O6, the pyrone and pyran rings adopt envelope conformations with the same common C atom as the flap, the dihedral angle between the planes of the remaining ring atoms being 68.27 (4)°. The planar atoms of the pyran ring and the diaza­cyclic ring are almost coplanar, the dihedral angle between their mean planes being 3.29 (7)°. Moreover, the planar atoms of the pyrone ring and benzene ring of the coumarin unit are also close to coplanar, the dihedral angle between their mean planes being 8.03 (9)°. The meth­oxy group lies in the plane of the benzene ring, with a dihedral angle between their mean planes of 9.4 (2)°. In the crystal, the molecules are linked by C—H⋯O hydrogen bonds resulting in sheets of mol­ecules in the ac plane.

Related literature

For the biological activity of pyran­ocoumarin compounds, see: Kawaii et al. (2001[Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M., Yoshizawa, Y., Ito, C. & Furukawa, H. (2001). Anticancer Res. 21, 1905-1911.]); Goel et al. (1997[Goel, R. K., Maiti, R. N., Manickam, M. & Ray, A. B. (1997). Indian J. Exp. Biol. 35, 1080-1083.]); Su et al. (2009[Su, C. R., Yeh, S. F., Liu, C. M., Damu, A. G., Kuo, T. H., Chiang, P. C., Bastow, K. F., Lee, K. H. & Wu, T. S. (2009). Bioorg. Med. Chem. 17, 6137-6143.]). For a related structure, see: Pojarová et al. (2012[Pojarová, M., Dušek, M., Sedláková, Z. & Makrlík, E. (2012). Acta Cryst. E68, o805-o806.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20N2O6

  • Mr = 372.37

  • Monoclinic, P 21 /n

  • a = 9.3526 (3) Å

  • b = 17.9559 (5) Å

  • c = 10.9158 (3) Å

  • β = 101.346 (1)°

  • V = 1797.31 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 21571 measured reflections

  • 5615 independent reflections

  • 3743 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.151

  • S = 1.03

  • 5615 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O6i 0.98 2.40 3.1480 (17) 132
C18—H18C⋯O3ii 0.96 2.45 3.252 (2) 140
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarin derivatives show strong activity against cancer cell lines (Kawaii et al., 2001) and exhibit antiulcer (Goel et al., 1997) and cytotoxic activities (Su et al., 2009). We report here in this paper the crystal structure of the title coumarin derivative.

In the title molecule (Fig. 1), the pyrone (O2/C3/C4/C9/C10/C15) and pyran (O4/C2–C6) rings adopt C3-envelope conformations with C3 displaced by 0.603 (2) and 0.668 (2) Å, respectively, from the least-square planes formed by the remaining ring atoms; the dihedral angle between the two mean-planes being 68.27 (4)°. The planar atoms of the pyran ring (O4/C2/C4–C6) and diazacyclic ring (N1/N2/C5–C8) are almost co-planar with dihedral angle between the mean-planes being 3.29 (7)°. Moreover, the planar atoms of the pyrone ring (O2/C4/C9/C10/C15) and benzene ring (C9–C14) of the coumarin moiety are also co-planar with dihedral angle between the mean-planes being 8.03 (9)°. The methoxy group (O1/C16/C17) lies in the plane of the benzene ring (C9–C14) with a dihedral angle between the mean-planes 9.4 (2)°. The crystal packing is stabilized by intermolecular C2—H2···O6 and C18—H18C···O3 hydrogen bonding interactions (Fig. 2 and Table 1).

Related literature top

For the biological activity of pyranocoumarin compounds, see: Kawaii et al. (2001); Goel et al. (1997); Su et al. (2009). For a related structure, see: Pojarová et al. (2012).

Experimental top

A mixture of 2-ethoxy-6-formylphenyl (2E)-but-2-enoate (0.234 g, 1 mmol) and N,N-dimethylbarbituric acid (0.156 g, 1 mmol) was placed in a round bottom flask and melted at 14-Ethoxy-4,6,9-trimethyl-8,12-dioxa-4,6-diazatetracyclo[8.8.0.02,7.013,18]octadeca-2(7),13,15,17-tetraene-3,5,11-trione180 °C for 1 h. After completion of the reaction as indicated by TLC, the crude product was washed with 5 ml of ethylacetate and hexane mixture (1:49 ratio) which successfully provided the pure product in 90% yield as colorless solid.

Refinement top

All the H atoms were positioned geometrically, with C–H = 0.93–0.97 A and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, Displacement ellipsoids are drawn at the 30% probability level, H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound, Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.
14-Ethoxy-4,6,9-trimethyl-8,12-dioxa-4,6- diazatetracyclo[8.8.0.02,7.013,18]octadeca- 2(7),13,15,17-tetraene-3,5,11-trione top
Crystal data top
C19H20N2O6F(000) = 784
Mr = 372.37Dx = 1.376 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8834 reflections
a = 9.3526 (3) Åθ = 2.1–31.2°
b = 17.9559 (5) ŵ = 0.10 mm1
c = 10.9158 (3) ÅT = 293 K
β = 101.346 (1)°Block, colourless
V = 1797.31 (9) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5615 independent reflections
Radiation source: fine-focus sealed tube3743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scanθmax = 31.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker 2004)
h = 1313
Tmin = 0.979, Tmax = 0.983k = 2625
21571 measured reflectionsl = 159
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0701P)2 + 0.3178P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5615 reflectionsΔρmax = 0.31 e Å3
245 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (11)
Crystal data top
C19H20N2O6V = 1797.31 (9) Å3
Mr = 372.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3526 (3) ŵ = 0.10 mm1
b = 17.9559 (5) ÅT = 293 K
c = 10.9158 (3) Å0.25 × 0.20 × 0.20 mm
β = 101.346 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5615 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2004)
3743 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.024
21571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
5615 reflectionsΔρmin = 0.20 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.13936 (13)0.22959 (7)0.17644 (11)0.0356 (3)
H40.23340.20500.20610.043*
O20.12546 (11)0.18881 (6)0.07686 (9)0.0488 (3)
O40.00265 (11)0.37272 (5)0.16207 (10)0.0509 (3)
C30.15760 (13)0.28831 (7)0.07958 (12)0.0385 (3)
H30.23850.32110.11630.046*
C50.09372 (13)0.26778 (7)0.28399 (12)0.0383 (3)
N10.07800 (14)0.27406 (8)0.50011 (11)0.0533 (3)
O30.27612 (11)0.27910 (7)0.09473 (10)0.0570 (3)
O60.18464 (12)0.17436 (7)0.42755 (10)0.0582 (3)
C90.03042 (13)0.17227 (7)0.11316 (12)0.0359 (3)
N20.01928 (14)0.37032 (8)0.36503 (13)0.0546 (3)
C20.01853 (15)0.33507 (7)0.04908 (13)0.0423 (3)
H20.06450.30190.02030.051*
C60.02593 (14)0.33416 (8)0.26892 (13)0.0429 (3)
C80.12327 (14)0.23418 (9)0.40514 (12)0.0443 (3)
C150.19303 (14)0.25353 (8)0.03619 (12)0.0422 (3)
C100.02937 (14)0.15529 (7)0.01043 (12)0.0394 (3)
C110.06657 (16)0.10293 (8)0.07638 (13)0.0454 (3)
C140.07055 (15)0.13790 (8)0.17140 (13)0.0433 (3)
H140.07340.14930.25400.052*
O10.05510 (14)0.09050 (6)0.19682 (10)0.0605 (3)
C120.16431 (17)0.06843 (8)0.01514 (15)0.0517 (4)
H120.22850.03280.05630.062*
C130.16670 (17)0.08690 (8)0.10732 (15)0.0516 (4)
H130.23460.06440.14710.062*
C160.13766 (19)0.03015 (9)0.26109 (15)0.0594 (4)
H16A0.24100.04170.27660.071*
H16B0.12130.01490.21130.071*
C70.00306 (18)0.33991 (11)0.48375 (16)0.0592 (4)
O50.04221 (16)0.37072 (9)0.56792 (13)0.0855 (5)
C180.1006 (2)0.24059 (13)0.62469 (15)0.0734 (5)
H18A0.15380.19480.62490.110*
H18B0.00790.23070.64640.110*
H18C0.15510.27430.68450.110*
C170.0879 (2)0.01967 (12)0.38124 (18)0.0775 (6)
H17A0.14120.02050.42700.116*
H17B0.01440.00820.36460.116*
H17C0.10470.06460.42970.116*
C190.1050 (2)0.43883 (11)0.3431 (2)0.0813 (6)
H19A0.11350.45380.25750.122*
H19B0.05740.47740.39690.122*
H19C0.20040.43020.36030.122*
C10.0188 (2)0.39517 (9)0.04694 (17)0.0625 (4)
H1A0.07280.42110.06080.094*
H1C0.03280.37320.12380.094*
H1B0.09640.42960.01750.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0312 (5)0.0409 (6)0.0348 (6)0.0038 (5)0.0069 (5)0.0008 (5)
O20.0530 (6)0.0568 (6)0.0407 (5)0.0071 (5)0.0197 (4)0.0078 (4)
O40.0557 (6)0.0419 (5)0.0550 (6)0.0095 (4)0.0102 (5)0.0018 (4)
C30.0338 (6)0.0433 (7)0.0378 (6)0.0037 (5)0.0056 (5)0.0004 (5)
C50.0337 (6)0.0455 (7)0.0354 (6)0.0006 (5)0.0063 (5)0.0050 (5)
N10.0478 (7)0.0770 (9)0.0351 (6)0.0090 (6)0.0083 (5)0.0115 (6)
O30.0472 (6)0.0811 (8)0.0460 (6)0.0100 (5)0.0172 (5)0.0057 (5)
O60.0537 (6)0.0729 (7)0.0452 (6)0.0102 (6)0.0027 (5)0.0103 (5)
C90.0362 (6)0.0346 (6)0.0373 (6)0.0044 (5)0.0082 (5)0.0003 (5)
N20.0510 (7)0.0551 (8)0.0589 (8)0.0028 (6)0.0140 (6)0.0192 (6)
C20.0408 (7)0.0396 (7)0.0446 (7)0.0010 (5)0.0035 (5)0.0017 (5)
C60.0367 (6)0.0453 (7)0.0464 (7)0.0019 (5)0.0073 (5)0.0100 (6)
C80.0331 (6)0.0612 (9)0.0368 (6)0.0047 (6)0.0026 (5)0.0045 (6)
C150.0351 (6)0.0540 (8)0.0373 (6)0.0001 (6)0.0069 (5)0.0043 (6)
C100.0416 (7)0.0382 (6)0.0402 (6)0.0013 (5)0.0126 (5)0.0017 (5)
C110.0527 (8)0.0407 (7)0.0418 (7)0.0033 (6)0.0071 (6)0.0053 (6)
C140.0458 (7)0.0429 (7)0.0433 (7)0.0003 (6)0.0135 (6)0.0008 (6)
O10.0773 (8)0.0580 (7)0.0462 (6)0.0103 (6)0.0123 (5)0.0163 (5)
C120.0510 (8)0.0416 (7)0.0601 (9)0.0067 (6)0.0052 (7)0.0045 (7)
C130.0511 (8)0.0475 (8)0.0588 (9)0.0084 (6)0.0172 (7)0.0019 (7)
C160.0656 (10)0.0489 (8)0.0585 (9)0.0060 (7)0.0005 (7)0.0188 (7)
C70.0491 (8)0.0773 (11)0.0524 (9)0.0082 (8)0.0126 (7)0.0248 (8)
O50.0845 (9)0.1113 (11)0.0661 (8)0.0010 (8)0.0283 (7)0.0401 (8)
C180.0725 (11)0.1111 (16)0.0368 (8)0.0087 (11)0.0110 (8)0.0010 (9)
C170.0926 (14)0.0744 (12)0.0624 (11)0.0085 (11)0.0076 (10)0.0287 (10)
C190.0893 (14)0.0655 (11)0.0923 (15)0.0240 (10)0.0258 (11)0.0246 (11)
C10.0695 (11)0.0531 (9)0.0621 (10)0.0046 (8)0.0062 (8)0.0156 (8)
Geometric parameters (Å, º) top
C4—C51.4926 (18)C10—C111.3975 (19)
C4—C91.5157 (17)C11—O11.3584 (17)
C4—C31.5263 (18)C11—C121.381 (2)
C4—H40.9800C14—C131.374 (2)
O2—C151.3552 (17)C14—H140.9300
O2—C101.3972 (16)O1—C161.4316 (18)
O4—C61.3373 (18)C12—C131.382 (2)
O4—C21.4538 (17)C12—H120.9300
C3—C151.5038 (19)C13—H130.9300
C3—C21.5288 (18)C16—C171.487 (3)
C3—H30.9800C16—H16A0.9700
C5—C61.3448 (19)C16—H16B0.9700
C5—C81.4301 (19)C7—O51.2175 (19)
N1—C71.368 (2)C18—H18A0.9600
N1—C81.3926 (19)C18—H18B0.9600
N1—C181.464 (2)C18—H18C0.9600
O3—C151.1910 (16)C17—H17A0.9600
O6—C81.2197 (19)C17—H17B0.9600
C9—C101.3812 (18)C17—H17C0.9600
C9—C141.3832 (18)C19—H19A0.9600
N2—C61.3695 (18)C19—H19B0.9600
N2—C71.384 (2)C19—H19C0.9600
N2—C191.462 (2)C1—H1A0.9600
C2—C11.505 (2)C1—H1C0.9600
C2—H20.9800C1—H1B0.9600
C5—C4—C9113.56 (10)O1—C11—C10116.37 (13)
C5—C4—C3108.40 (11)C12—C11—C10118.13 (13)
C9—C4—C3108.06 (10)C13—C14—C9120.06 (13)
C5—C4—H4108.9C13—C14—H14120.0
C9—C4—H4108.9C9—C14—H14120.0
C3—C4—H4108.9C11—O1—C16117.45 (13)
C15—O2—C10120.36 (10)C11—C12—C13119.93 (13)
C6—O4—C2117.52 (10)C11—C12—H12120.0
C15—C3—C4111.61 (11)C13—C12—H12120.0
C15—C3—C2111.33 (11)C14—C13—C12121.25 (14)
C4—C3—C2108.91 (10)C14—C13—H13119.4
C15—C3—H3108.3C12—C13—H13119.4
C4—C3—H3108.3O1—C16—C17107.20 (15)
C2—C3—H3108.3O1—C16—H16A110.3
C6—C5—C8119.19 (13)C17—C16—H16A110.3
C6—C5—C4120.79 (12)O1—C16—H16B110.3
C8—C5—C4120.02 (12)C17—C16—H16B110.3
C7—N1—C8124.76 (13)H16A—C16—H16B108.5
C7—N1—C18116.92 (14)O5—C7—N1122.64 (18)
C8—N1—C18118.10 (16)O5—C7—N2121.11 (18)
C10—C9—C14118.43 (12)N1—C7—N2116.25 (13)
C10—C9—C4118.03 (11)N1—C18—H18A109.5
C14—C9—C4123.51 (11)N1—C18—H18B109.5
C6—N2—C7121.19 (14)H18A—C18—H18B109.5
C6—N2—C19121.01 (15)N1—C18—H18C109.5
C7—N2—C19117.55 (14)H18A—C18—H18C109.5
O4—C2—C1106.06 (12)H18B—C18—H18C109.5
O4—C2—C3108.82 (10)C16—C17—H17A109.5
C1—C2—C3115.33 (13)C16—C17—H17B109.5
O4—C2—H2108.8H17A—C17—H17B109.5
C1—C2—H2108.8C16—C17—H17C109.5
C3—C2—H2108.8H17A—C17—H17C109.5
O4—C6—C5125.03 (13)H17B—C17—H17C109.5
O4—C6—N2112.57 (12)N2—C19—H19A109.5
C5—C6—N2122.39 (14)N2—C19—H19B109.5
O6—C8—N1120.23 (13)H19A—C19—H19B109.5
O6—C8—C5123.69 (13)N2—C19—H19C109.5
N1—C8—C5116.08 (13)H19A—C19—H19C109.5
O3—C15—O2117.79 (13)H19B—C19—H19C109.5
O3—C15—C3124.45 (13)C2—C1—H1A109.5
O2—C15—C3117.76 (11)C2—C1—H1C109.5
C9—C10—O2122.01 (12)H1A—C1—H1C109.5
C9—C10—C11122.15 (13)C2—C1—H1B109.5
O2—C10—C11115.83 (12)H1A—C1—H1B109.5
O1—C11—C12125.50 (13)H1C—C1—H1B109.5
C5—C4—C3—C15175.85 (10)C4—C5—C8—N1179.44 (11)
C9—C4—C3—C1552.37 (13)C10—O2—C15—O3178.55 (12)
C5—C4—C3—C252.53 (13)C10—O2—C15—C31.65 (18)
C9—C4—C3—C270.95 (13)C4—C3—C15—O3141.90 (14)
C9—C4—C5—C696.05 (15)C2—C3—C15—O396.17 (16)
C3—C4—C5—C624.06 (16)C4—C3—C15—O238.32 (15)
C9—C4—C5—C884.60 (14)C2—C3—C15—O283.61 (14)
C3—C4—C5—C8155.30 (11)C14—C9—C10—O2178.53 (12)
C5—C4—C9—C10155.04 (11)C4—C9—C10—O20.45 (18)
C3—C4—C9—C1034.75 (15)C14—C9—C10—C112.3 (2)
C5—C4—C9—C1422.92 (17)C4—C9—C10—C11179.67 (12)
C3—C4—C9—C14143.22 (12)C15—O2—C10—C919.32 (19)
C6—O4—C2—C1165.09 (12)C15—O2—C10—C11161.42 (12)
C6—O4—C2—C340.44 (15)C9—C10—C11—O1179.05 (12)
C15—C3—C2—O4174.74 (11)O2—C10—C11—O10.21 (18)
C4—C3—C2—O461.77 (13)C9—C10—C11—C121.0 (2)
C15—C3—C2—C155.75 (16)O2—C10—C11—C12179.70 (13)
C4—C3—C2—C1179.23 (12)C10—C9—C14—C131.5 (2)
C2—O4—C6—C510.88 (19)C4—C9—C14—C13179.43 (13)
C2—O4—C6—N2170.26 (11)C12—C11—O1—C168.5 (2)
C8—C5—C6—O4177.18 (12)C10—C11—O1—C16171.64 (13)
C4—C5—C6—O42.2 (2)O1—C11—C12—C13178.93 (14)
C8—C5—C6—N21.6 (2)C10—C11—C12—C131.0 (2)
C4—C5—C6—N2179.07 (12)C9—C14—C13—C120.5 (2)
C7—N2—C6—O4178.82 (13)C11—C12—C13—C141.7 (2)
C19—N2—C6—O47.1 (2)C11—O1—C16—C17170.40 (14)
C7—N2—C6—C50.1 (2)C8—N1—C7—O5175.43 (15)
C19—N2—C6—C5174.03 (15)C18—N1—C7—O50.9 (2)
C7—N1—C8—O6177.10 (14)C8—N1—C7—N24.5 (2)
C18—N1—C8—O62.6 (2)C18—N1—C7—N2179.10 (14)
C7—N1—C8—C53.1 (2)C6—N2—C7—O5177.11 (15)
C18—N1—C8—C5177.62 (13)C19—N2—C7—O52.8 (2)
C6—C5—C8—O6179.70 (13)C6—N2—C7—N12.9 (2)
C4—C5—C8—O60.3 (2)C19—N2—C7—N1177.15 (15)
C6—C5—C8—N10.07 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.982.403.1480 (17)132
C18—H18C···O3ii0.962.453.252 (2)140
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H20N2O6
Mr372.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.3526 (3), 17.9559 (5), 10.9158 (3)
β (°) 101.346 (1)
V3)1797.31 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2004)
Tmin, Tmax0.979, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
21571, 5615, 3743
Rint0.024
(sin θ/λ)max1)0.729
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.151, 1.03
No. of reflections5615
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.20

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.982.403.1480 (17)132.3
C18—H18C···O3ii0.962.453.252 (2)140.4
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z+1.
 

Acknowledgements

SA thanks the UGC, India, for financial support

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoel, R. K., Maiti, R. N., Manickam, M. & Ray, A. B. (1997). Indian J. Exp. Biol. 35, 1080–1083.  CAS PubMed Google Scholar
First citationKawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M., Yoshizawa, Y., Ito, C. & Furukawa, H. (2001). Anticancer Res. 21, 1905–1911.  Web of Science PubMed CAS Google Scholar
First citationPojarová, M., Dušek, M., Sedláková, Z. & Makrlík, E. (2012). Acta Cryst. E68, o805–o806.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C. R., Yeh, S. F., Liu, C. M., Damu, A. G., Kuo, T. H., Chiang, P. C., Bastow, K. F., Lee, K. H. & Wu, T. S. (2009). Bioorg. Med. Chem. 17, 6137–6143.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds