organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyclo­propyl-2-(2-fluoro­phen­yl)-5-(4-fluoro­phen­yl)-3-phenyl­pentane-1,5-dione

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment Of Chemistry, Annamalai University, Annamalainagar 608 002, Tamilnadu, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 17 December 2012; accepted 2 January 2013; online 9 January 2013)

In the title compound, C26H22F2O2, the cyclo­propane ring makes dihedral angles of 47.6 (2), 51.3 (2) and 63.9 (2)° with the 2-fluoro-substituted phenyl ring, the unsubstituted phenyl ring and the 4-fluoro-substituted phenyl ring, respectively. There is a short C—H⋯F contact in the molecule. In the crystal, weak C—H⋯F hydrogen bonds lead to chains of mol­ecules extending along the b-axis direction.

Related literature

For the uses and biological importance of diketones, see: Bennett et al. (1999[Bennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847-1852.]); Sato et al. (2008[Sato, K., Yamazoe, S., Yamamoto, R., Ohata, S., Tarui, A., Omote, M., Kumadaki, I. & Ando, A. (2008). Org. Lett. 10, 2405-2408.]). For the crystal structure of a related compound, see: Li et al. (2008[Li, K.-Z., Chen, Y.-T., Zhao, C.-W., Wei, G.-D. & He, Q.-P. (2008). Acta Cryst. E64, o1665.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22F2O2

  • Mr = 404.44

  • Monoclinic, C 2/c

  • a = 38.9453 (14) Å

  • b = 5.7769 (2) Å

  • c = 18.3045 (7) Å

  • β = 95.334 (2)°

  • V = 4100.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.982

  • 18721 measured reflections

  • 5017 independent reflections

  • 3326 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.133

  • S = 1.02

  • 5017 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯F1i 0.98 2.51 3.402 (2) 151
C5—H5⋯F1 0.98 2.42 2.833 (2) 105
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Diketones are popular in organic synthesis for their applications in biology and medicine. They are known to exhibit antioxidants, antitumour and antibacterial activities (Bennett et al.,1999). They are also key intermediates in the preparation of various heterocyclic compounds (Sato et al., 2008).

In the titled compound (Fig.1), the cyclopropane ring (C1/C2/C3) makes a dihedral angle of 47.6 (2)° with the fluoro substituted phenyl ring (C6/C7/C8/C9/C10/C11). It makes a dihedral angle of 51.3 (2)° with the unsubstituted phenyl ring (C13/C14/C15/C16/C17/C18) and a dihedral angle of 63.9 (2)° with the fluoro substituted phenyl ring (C21/C22/C23/C24/C25/C26). The dihedral angle between the unsubstituted phenyl ring and the fluoro substituted phenyl ring (C6–C11) is 3.86 (9)° and the dihedral angle between the unsubstituted phenyl ring and the fluoro substituted phenyl ring (C21–C26) is 69.43 (9)°. The dihedral angle between the two fluoro substituted phenyl rings is 67.28 (9)°. The packing of the crystal is stabilized by weak C–H···F hydrogen bonding interactions (Tab. 1 & Fig. 2).

Related literature top

For the uses and biological importance of diketones, see: Bennett et al. (1999); Sato et al. (2008). For the crystal structure of a related compound, see: Li et al. (2008).

Experimental top

A mixture of 4-fluoroacetophenone (0.01 mole), benzaldehyde (0.01 mole), cyclopropyl 2-fluorobenzyl ketone (0.01 mole) and sodium hydroxide solution (10 ml, 10%) in ethanol (50 ml) was stirred for 3 hrs at room temperature. The solid that separated was filtered and washed with distilled water. The product was recrystallised from ethanol to yield the crystals of the title compound suitable for X-ray crystallographic studies. Yield = 97%, melting point = 391–393 K.

Refinement top

All H-atoms were positioned and refined using a riding model with C–H = 0.98, 0.97 and 0.93 Å for methine, methylelne and aryl H-atoms, respectively. The H-atoms were allowed Uiso = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down b axis. H-atoms not involved in H-bonds have been excluded for clarity.
1-Cyclopropyl-2-(2-fluorophenyl)-5-(4-fluorophenyl)-3-phenylpentane-1,5-dione top
Crystal data top
C26H22F2O2F(000) = 1696
Mr = 404.44Dx = 1.310 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5017 reflections
a = 38.9453 (14) Åθ = 1.1–28.3°
b = 5.7769 (2) ŵ = 0.09 mm1
c = 18.3045 (7) ÅT = 293 K
β = 95.334 (2)°Block, colourless
V = 4100.4 (3) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5017 independent reflections
Radiation source: fine-focus sealed tube3326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 28.3°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 5043
Tmin = 0.972, Tmax = 0.982k = 77
18721 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0504P)2 + 2.5291P]
where P = (Fo2 + 2Fc2)/3
5017 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C26H22F2O2V = 4100.4 (3) Å3
Mr = 404.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 38.9453 (14) ŵ = 0.09 mm1
b = 5.7769 (2) ÅT = 293 K
c = 18.3045 (7) Å0.30 × 0.25 × 0.20 mm
β = 95.334 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5017 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3326 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.982Rint = 0.032
18721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
5017 reflectionsΔρmin = 0.20 e Å3
271 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00262 (5)0.6122 (5)0.08432 (12)0.0835 (7)
H1A0.00480.75240.05830.100*
H1B0.01230.47950.07410.100*
C20.01946 (5)0.6368 (5)0.15898 (11)0.0768 (6)
H2A0.01490.51910.19460.092*
H2B0.02240.79200.17880.092*
C30.04098 (5)0.5684 (4)0.09772 (11)0.0628 (5)
H30.04870.40700.09660.075*
C40.06452 (4)0.7452 (3)0.07330 (9)0.0494 (4)
C50.10063 (4)0.6636 (3)0.05999 (8)0.0402 (3)
H50.09870.50690.03950.048*
C60.12138 (4)0.6493 (3)0.13465 (8)0.0403 (3)
C70.12022 (4)0.8227 (3)0.18717 (8)0.0473 (4)
H70.10650.95230.17650.057*
C80.13904 (5)0.8064 (3)0.25495 (9)0.0553 (4)
H80.13780.92380.28940.066*
C90.15958 (5)0.6159 (3)0.27130 (9)0.0565 (5)
H90.17210.60450.31700.068*
C100.16176 (5)0.4425 (3)0.22048 (10)0.0549 (4)
H100.17580.31420.23100.066*
C110.14271 (4)0.4636 (3)0.15372 (9)0.0464 (4)
C120.11779 (4)0.8197 (3)0.00456 (8)0.0406 (3)
H120.11830.97860.02330.049*
C130.09715 (4)0.8184 (3)0.07003 (8)0.0397 (3)
C140.07706 (5)1.0070 (3)0.09310 (10)0.0536 (4)
H140.07601.13400.06220.064*
C150.05858 (5)1.0098 (4)0.16130 (11)0.0645 (5)
H150.04511.13780.17570.077*
C160.05997 (5)0.8243 (4)0.20788 (10)0.0615 (5)
H160.04760.82650.25390.074*
C170.07965 (5)0.6367 (3)0.18606 (10)0.0596 (5)
H170.08070.51060.21740.072*
C180.09808 (5)0.6331 (3)0.11760 (9)0.0506 (4)
H180.11130.50390.10340.061*
C190.15504 (4)0.7407 (3)0.00056 (9)0.0468 (4)
H19A0.16690.73920.04840.056*
H19B0.15480.58330.01900.056*
C200.17512 (4)0.8902 (3)0.04919 (8)0.0436 (4)
C210.20585 (4)0.7867 (3)0.08010 (8)0.0417 (3)
C220.22127 (5)0.9066 (3)0.13411 (10)0.0552 (4)
H220.21211.04770.15070.066*
C230.24992 (5)0.8207 (4)0.16359 (11)0.0689 (6)
H230.26000.90150.20000.083*
C240.26322 (5)0.6147 (4)0.13818 (11)0.0625 (5)
C250.24916 (5)0.4901 (3)0.08487 (11)0.0613 (5)
H250.25890.35060.06820.074*
C260.22017 (4)0.5761 (3)0.05628 (10)0.0520 (4)
H260.21010.49210.02060.062*
O10.05644 (4)0.9477 (3)0.06815 (9)0.0757 (4)
O20.16725 (3)1.0902 (2)0.06242 (7)0.0608 (3)
F10.14564 (3)0.29321 (18)0.10349 (6)0.0686 (3)
F20.29148 (3)0.5295 (3)0.16639 (8)0.0974 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0478 (11)0.132 (2)0.0718 (13)0.0092 (12)0.0112 (10)0.0214 (14)
C20.0593 (12)0.1175 (19)0.0566 (11)0.0007 (12)0.0211 (10)0.0027 (12)
C30.0491 (10)0.0742 (13)0.0678 (12)0.0008 (9)0.0193 (9)0.0031 (10)
C40.0478 (9)0.0616 (11)0.0393 (8)0.0067 (8)0.0073 (7)0.0017 (8)
C50.0431 (8)0.0415 (8)0.0367 (7)0.0007 (7)0.0072 (6)0.0015 (6)
C60.0438 (8)0.0432 (8)0.0350 (7)0.0025 (7)0.0096 (6)0.0018 (6)
C70.0551 (10)0.0476 (9)0.0403 (8)0.0012 (8)0.0107 (7)0.0014 (7)
C80.0668 (11)0.0597 (11)0.0402 (8)0.0128 (9)0.0092 (8)0.0061 (8)
C90.0608 (11)0.0682 (12)0.0395 (8)0.0144 (9)0.0011 (8)0.0081 (8)
C100.0562 (10)0.0533 (10)0.0542 (10)0.0009 (8)0.0002 (8)0.0125 (8)
C110.0545 (10)0.0425 (9)0.0428 (8)0.0013 (7)0.0073 (7)0.0007 (7)
C120.0445 (8)0.0402 (8)0.0377 (7)0.0009 (7)0.0071 (6)0.0000 (6)
C130.0393 (8)0.0422 (8)0.0383 (7)0.0015 (6)0.0080 (6)0.0014 (6)
C140.0599 (11)0.0474 (9)0.0532 (10)0.0121 (8)0.0037 (8)0.0021 (8)
C150.0638 (12)0.0655 (12)0.0625 (11)0.0212 (10)0.0038 (10)0.0098 (10)
C160.0576 (11)0.0767 (13)0.0478 (9)0.0017 (10)0.0072 (8)0.0041 (9)
C170.0727 (12)0.0582 (11)0.0468 (9)0.0041 (9)0.0006 (9)0.0088 (8)
C180.0595 (10)0.0470 (9)0.0450 (9)0.0119 (8)0.0027 (8)0.0011 (7)
C190.0426 (8)0.0560 (10)0.0420 (8)0.0002 (7)0.0046 (7)0.0090 (7)
C200.0448 (9)0.0466 (9)0.0389 (8)0.0052 (7)0.0013 (7)0.0029 (7)
C210.0393 (8)0.0467 (9)0.0386 (7)0.0071 (7)0.0009 (6)0.0019 (7)
C220.0538 (10)0.0564 (10)0.0564 (10)0.0007 (8)0.0111 (8)0.0107 (8)
C230.0596 (12)0.0859 (15)0.0649 (12)0.0009 (11)0.0246 (10)0.0106 (11)
C240.0458 (10)0.0771 (13)0.0657 (12)0.0027 (9)0.0114 (9)0.0142 (10)
C250.0554 (11)0.0542 (10)0.0735 (12)0.0065 (9)0.0021 (10)0.0025 (10)
C260.0503 (10)0.0512 (10)0.0548 (10)0.0027 (8)0.0061 (8)0.0052 (8)
O10.0719 (9)0.0683 (9)0.0911 (11)0.0222 (7)0.0290 (8)0.0081 (8)
O20.0657 (8)0.0478 (7)0.0717 (8)0.0030 (6)0.0217 (7)0.0074 (6)
F10.0890 (8)0.0519 (6)0.0636 (6)0.0169 (6)0.0003 (6)0.0103 (5)
F20.0719 (8)0.1137 (11)0.1122 (11)0.0203 (7)0.0387 (8)0.0110 (9)
Geometric parameters (Å, º) top
C1—C21.467 (3)C13—C181.382 (2)
C1—C31.513 (3)C13—C141.384 (2)
C1—H1A0.9700C14—C151.382 (3)
C1—H1B0.9700C14—H140.9300
C2—C31.514 (3)C15—C161.373 (3)
C2—H2A0.9700C15—H150.9300
C2—H2B0.9700C16—C171.366 (3)
C3—C41.469 (3)C16—H160.9300
C3—H30.9800C17—C181.385 (2)
C4—O11.213 (2)C17—H170.9300
C4—C51.524 (2)C18—H180.9300
C5—C61.524 (2)C19—C201.510 (2)
C5—C121.554 (2)C19—H19A0.9700
C5—H50.9800C19—H19B0.9700
C6—C111.382 (2)C20—O21.2138 (19)
C6—C71.392 (2)C20—C211.495 (2)
C7—C81.384 (2)C21—C221.389 (2)
C7—H70.9300C21—C261.391 (2)
C8—C91.377 (3)C22—C231.376 (3)
C8—H80.9300C22—H220.9300
C9—C101.375 (3)C23—C241.362 (3)
C9—H90.9300C23—H230.9300
C10—C111.375 (2)C24—F21.351 (2)
C10—H100.9300C24—C251.367 (3)
C11—F11.3589 (18)C25—C261.380 (3)
C12—C131.519 (2)C25—H250.9300
C12—C191.532 (2)C26—H260.9300
C12—H120.9800
C2—C1—C361.04 (13)C13—C12—H12108.1
C2—C1—H1A117.7C19—C12—H12108.1
C3—C1—H1A117.7C5—C12—H12108.1
C2—C1—H1B117.7C18—C13—C14117.68 (15)
C3—C1—H1B117.7C18—C13—C12121.82 (14)
H1A—C1—H1B114.8C14—C13—C12120.49 (14)
C1—C2—C360.98 (13)C15—C14—C13121.11 (16)
C1—C2—H2A117.7C15—C14—H14119.4
C3—C2—H2A117.7C13—C14—H14119.4
C1—C2—H2B117.7C16—C15—C14120.31 (17)
C3—C2—H2B117.7C16—C15—H15119.8
H2A—C2—H2B114.8C14—C15—H15119.8
C4—C3—C1117.96 (19)C17—C16—C15119.41 (17)
C4—C3—C2116.61 (18)C17—C16—H16120.3
C1—C3—C257.98 (13)C15—C16—H16120.3
C4—C3—H3117.1C16—C17—C18120.40 (17)
C1—C3—H3117.1C16—C17—H17119.8
C2—C3—H3117.1C18—C17—H17119.8
O1—C4—C3121.98 (17)C13—C18—C17121.09 (16)
O1—C4—C5121.47 (16)C13—C18—H18119.5
C3—C4—C5116.41 (15)C17—C18—H18119.5
C6—C5—C4107.08 (12)C20—C19—C12114.29 (13)
C6—C5—C12113.11 (12)C20—C19—H19A108.7
C4—C5—C12112.61 (13)C12—C19—H19A108.7
C6—C5—H5107.9C20—C19—H19B108.7
C4—C5—H5107.9C12—C19—H19B108.7
C12—C5—H5107.9H19A—C19—H19B107.6
C11—C6—C7116.21 (14)O2—C20—C21120.10 (14)
C11—C6—C5121.66 (13)O2—C20—C19121.79 (15)
C7—C6—C5122.13 (14)C21—C20—C19118.10 (14)
C8—C7—C6121.43 (16)C22—C21—C26118.17 (16)
C8—C7—H7119.3C22—C21—C20118.95 (15)
C6—C7—H7119.3C26—C21—C20122.88 (14)
C9—C8—C7119.85 (16)C23—C22—C21121.29 (17)
C9—C8—H8120.1C23—C22—H22119.4
C7—C8—H8120.1C21—C22—H22119.4
C10—C9—C8120.41 (16)C24—C23—C22118.51 (18)
C10—C9—H9119.8C24—C23—H23120.7
C8—C9—H9119.8C22—C23—H23120.7
C11—C10—C9118.35 (17)F2—C24—C23119.03 (19)
C11—C10—H10120.8F2—C24—C25118.37 (19)
C9—C10—H10120.8C23—C24—C25122.60 (18)
F1—C11—C10117.72 (15)C24—C25—C26118.49 (18)
F1—C11—C6118.55 (14)C24—C25—H25120.8
C10—C11—C6123.72 (15)C26—C25—H25120.8
C13—C12—C19111.64 (12)C25—C26—C21120.94 (17)
C13—C12—C5111.11 (12)C25—C26—H26119.5
C19—C12—C5109.56 (12)C21—C26—H26119.5
C2—C1—C3—C4105.4 (2)C5—C12—C13—C1876.16 (18)
C1—C2—C3—C4107.8 (2)C19—C12—C13—C14132.39 (16)
C1—C3—C4—O127.0 (3)C5—C12—C13—C14104.98 (17)
C2—C3—C4—O139.1 (3)C18—C13—C14—C150.0 (3)
C1—C3—C4—C5157.23 (16)C12—C13—C14—C15178.94 (16)
C2—C3—C4—C5136.69 (17)C13—C14—C15—C160.3 (3)
O1—C4—C5—C695.68 (19)C14—C15—C16—C170.3 (3)
C3—C4—C5—C680.10 (17)C15—C16—C17—C180.0 (3)
O1—C4—C5—C1229.3 (2)C14—C13—C18—C170.3 (3)
C3—C4—C5—C12154.95 (14)C12—C13—C18—C17178.64 (16)
C4—C5—C6—C11136.23 (16)C16—C17—C18—C130.3 (3)
C12—C5—C6—C1199.12 (17)C13—C12—C19—C2060.36 (18)
C4—C5—C6—C744.37 (19)C5—C12—C19—C20176.12 (13)
C12—C5—C6—C780.28 (17)C12—C19—C20—O223.4 (2)
C11—C6—C7—C81.0 (2)C12—C19—C20—C21157.76 (14)
C5—C6—C7—C8179.55 (15)O2—C20—C21—C2211.6 (2)
C6—C7—C8—C90.3 (3)C19—C20—C21—C22169.58 (15)
C7—C8—C9—C100.6 (3)O2—C20—C21—C26167.32 (16)
C8—C9—C10—C110.6 (3)C19—C20—C21—C2611.5 (2)
C9—C10—C11—F1178.71 (15)C26—C21—C22—C230.0 (3)
C9—C10—C11—C60.1 (3)C20—C21—C22—C23179.00 (17)
C7—C6—C11—F1177.89 (14)C21—C22—C23—C240.5 (3)
C5—C6—C11—F11.5 (2)C22—C23—C24—F2179.57 (18)
C7—C6—C11—C100.9 (2)C22—C23—C24—C250.2 (3)
C5—C6—C11—C10179.62 (15)F2—C24—C25—C26179.61 (17)
C6—C5—C12—C13177.05 (12)C23—C24—C25—C260.6 (3)
C4—C5—C12—C1361.37 (16)C24—C25—C26—C211.1 (3)
C6—C5—C12—C1953.22 (17)C22—C21—C26—C250.8 (2)
C4—C5—C12—C19174.80 (13)C20—C21—C26—C25178.12 (16)
C19—C12—C13—C1846.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.982.513.402 (2)151
C5—H5···F10.982.422.833 (2)105
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H22F2O2
Mr404.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)38.9453 (14), 5.7769 (2), 18.3045 (7)
β (°) 95.334 (2)
V3)4100.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.972, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
18721, 5017, 3326
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.02
No. of reflections5017
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.982.513.402 (2)151
C5—H5···F10.982.422.833 (2)105
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS thanks the DST Inspire for financial assistance.

References

First citationBennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847–1852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, K.-Z., Chen, Y.-T., Zhao, C.-W., Wei, G.-D. & He, Q.-P. (2008). Acta Cryst. E64, o1665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSato, K., Yamazoe, S., Yamamoto, R., Ohata, S., Tarui, A., Omote, M., Kumadaki, I. & Ando, A. (2008). Org. Lett. 10, 2405–2408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds