organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[3-(Naphthalen-2-yl)phen­yl]naph­thal­ene

aDepartment of Chemistry, Louisiana State University, Baton Rouge LA, 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 17 January 2013; accepted 23 January 2013; online 31 January 2013)

The title compound, C26H18, consists of a benzene ring with meta-substituted 2-naphthalene substituents, which are essentially planar [r.m.s. deviations = 0.022 (1) and 0.003 (1) Å]. The conformation is syn, with equivalent torsion angles about the benzene–naphthalene bonds of −36.04 (13) and +34.14 (13)°. The mol­ecule has quasi-Cs mol­ecular symmetry.

Related literature

For properties of oligophenyls, see: Bocchinfuso et al. (2009[Bocchinfuso, G., Mazzuca, C., Palleschi, A., Pizzoferrato, R. & Tagliatesta, P. (2009). J. Phys. Chem. A, 113, 14887-14895.]) and for their synthesis, see: Marcinow & Rabideau (1990[Marcinow, Z. & Rabideau, P. (1990). J. Org. Chem. 55, 3812-3816.]); Du et al. (1986[Du, C. J. F., Hart, H. & Ng, K. K. D. (1986). J. Org. Chem. 51, 3162-3165.]); Woods et al. (1951[Woods, G. F., Reed, F. T., Arthur, T. E. & Ezekiel, H. (1951). J. Am. Chem. Soc. 73, 3854-3856.]). For similar structures, see: Baker et al. (1990[Baker, K. N., Fratini, A. V. & Adams, W. W. (1990). Polymer, 31, 1623-1631.]); Lin & Williams (1975[Lin, Y. C. & Williams, D. E. (1975). Acta Cryst. B31, 318-320.]); Bart (1968[Bart, J. C. J. (1968). Acta Cryst. B24, 1277-1287.]); Tummala et al. (2013[Tummala, M., Dhar, R. K., Fronczek, F. R. & Watkins, S. F. (2013). Acta Cryst. E69, o307.]). For conformational calculations with GAUSSIAN09, see: Frisch et al. (2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18

  • Mr = 330.4

  • Orthorhombic, P b c n

  • a = 25.9304 (3) Å

  • b = 8.9300 (1) Å

  • c = 14.9377 (2) Å

  • V = 3458.95 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.40 × 0.27 × 0.22 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.972, Tmax = 0.984

  • 37425 measured reflections

  • 6240 independent reflections

  • 4993 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.125

  • S = 1.02

  • 6240 reflections

  • 289 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: COLLECT (Nonius 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The crystal and molecular structures of p-oligophenyls have been well investigated (Baker et al., 1990, and references therein), but relatively few studies have appeared concerning the conformational preferences of m-oligophenyls. Two interesting papers were reported, one by Lin & Williams (1975) about the crystal structure of 1,3,5 triphenyl, which serves as a model for m-polyphenyls, showing substituted phenyl groups being twisted about the formal single bonds by +40.7, -37.2, and +36.1° out of the plane of the central ring. The crystal structure of one of the polymorphic forms of hexaphenyl benzene, reported by Bart (1968), has shown that the peripheral rings are not perpendicular to the central ring, but are twisted by about 25°. The molecule was found to be highly distorted as a result of out-of-plane bending of the exocyclic bonds. Therefore, we have studied the structure of 1,3-bis(2-naphthyl)benzene for comparison of its conformation with the previous results.

Title compound I is of quasi-Cs symmetry and consists of a benzene ring with meta-substituted 2-naphthalenes. The benzene ring is nearly planar (C-atoms only, δr.m.s. = 0.005 (1) Å), as are the two naphthalenes (δr.m.s. = 0.022 (1) and 0.003 (1) Å). The benzene plane and both naphthalene planes are bent with respect to the benzene-naphthalene (BN) bonds: C8 and C18 lie above the benzene plane by 0.039 (2) and 0.040 (1) Å respectively, while C1 lies above its proximate naphthalene plane by 0.016 (1) Å, and C3 lies above its proximate naphthalene plane by 0.085 (1) Å. The naphthalene ring planes are also twisted about the BN bonds with equivalent torsion angles of -36.04 (13)° (C6–C1–C8–C7) and +34.14 (13)° (C4–C3–C18–C17). An isolated and optimized Cs model (Gaussian09; Frisch et al., 2009; DFT:b3lyp/3–21 g) shows a small amount of bending about the BN bonds, with equivalent distances from mean planes C8/C18 = 0.020 Å and C1/C3 = 0.004 Å, and BN torsion angles of ± 43°.

Related literature top

For properties of oligophenyls, see: Bocchinfuso et al. (2009) and for their synthesis, see: Marcinow & Rabideau (1990); Du et al. (1986); Woods et al. (1951). For similar structures, see: Baker et al. (1990); Lin & Williams (1975); Bart (1968). For conformational calculations with GAUSSIAN09, see: Frisch et al. (2009).

Experimental top

Compound I was prepared after Du et al. (1986) and recrystallized from petroleum ether.

Refinement top

The positional parameters of all H atoms were refined, but Uiso(H) was set to 1.2Ueq of the attached C atom. The range of C–H distances is 0.959 (14) - 1.020 (14) Å.

Computing details top

Data collection: COLLECT (Nonius 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
2-[3-(Naphthalen-2-yl)phenyl]naphthalene top
Crystal data top
C26H18Dx = 1.269 Mg m3
Mr = 330.4Melting point: 143.5(5) K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6568 reflections
a = 25.9304 (3) Åθ = 2.6–32.6°
b = 8.9300 (1) ŵ = 0.07 mm1
c = 14.9377 (2) ÅT = 100 K
V = 3458.95 (7) Å3Prism, colourless
Z = 80.40 × 0.27 × 0.22 mm
F(000) = 1392
Data collection top
Nonius KappaCCD
diffractometer
6240 independent reflections
Radiation source: fine-focus sealed tube4993 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 9 pixels mm-1θmax = 32.6°, θmin = 2.7°
ϕ and ω scansh = 3939
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1313
Tmin = 0.972, Tmax = 0.984l = 2222
37425 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125Only H-atom coordinates refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.9158P]
where P = (Fo2 + 2Fc2)/3
6240 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.22 e Å3
0 constraints
Crystal data top
C26H18V = 3458.95 (7) Å3
Mr = 330.4Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 25.9304 (3) ŵ = 0.07 mm1
b = 8.9300 (1) ÅT = 100 K
c = 14.9377 (2) Å0.40 × 0.27 × 0.22 mm
Data collection top
Nonius KappaCCD
diffractometer
6240 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
4993 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.984Rint = 0.023
37425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.125Only H-atom coordinates refined
S = 1.02Δρmax = 0.38 e Å3
6240 reflectionsΔρmin = 0.22 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63414 (3)0.65124 (10)0.39203 (6)0.01689 (17)
C20.62992 (3)0.71392 (10)0.30628 (6)0.01694 (16)
H20.6484 (5)0.8056 (15)0.2934 (8)0.02*
C30.59837 (3)0.65068 (10)0.24032 (6)0.01660 (16)
C40.57139 (4)0.51927 (11)0.26073 (6)0.01896 (17)
H40.5494 (5)0.4704 (15)0.2136 (8)0.023*
C50.57577 (4)0.45461 (11)0.34519 (6)0.02072 (18)
H50.5574 (5)0.3638 (16)0.3575 (8)0.025*
C60.60671 (4)0.51962 (11)0.41055 (6)0.01975 (18)
H60.6101 (5)0.4717 (15)0.4700 (9)0.024*
C70.65216 (4)0.72652 (11)0.55034 (6)0.01811 (17)
H70.6193 (5)0.6799 (15)0.5698 (8)0.022*
C80.66657 (3)0.72466 (10)0.46121 (6)0.01701 (16)
C90.71347 (4)0.79654 (11)0.43622 (6)0.01953 (17)
H90.7242 (5)0.7931 (15)0.3721 (8)0.023*
C100.74404 (4)0.86589 (11)0.49847 (6)0.02031 (18)
H100.7772 (5)0.9160 (15)0.4807 (8)0.024*
C110.72952 (4)0.86948 (10)0.59028 (6)0.01801 (17)
C120.76011 (4)0.94138 (11)0.65616 (7)0.02206 (19)
H120.7930 (5)0.9933 (16)0.6373 (9)0.026*
C130.74530 (4)0.94171 (12)0.74436 (7)0.0246 (2)
H130.7680 (5)0.9909 (16)0.7903 (9)0.03*
C140.69902 (4)0.87049 (13)0.77044 (6)0.0248 (2)
H140.6888 (5)0.8669 (17)0.8349 (9)0.03*
C150.66831 (4)0.80109 (12)0.70813 (6)0.02236 (19)
H150.6365 (5)0.7517 (16)0.7256 (9)0.027*
C160.68280 (4)0.79842 (10)0.61631 (6)0.01787 (17)
C170.54718 (3)0.72005 (10)0.10483 (6)0.01746 (17)
H170.5158 (5)0.6693 (15)0.1293 (8)0.021*
C180.59332 (3)0.72319 (10)0.15125 (6)0.01630 (16)
C190.63624 (3)0.79954 (11)0.11308 (6)0.01800 (17)
H190.6705 (5)0.8014 (15)0.1453 (8)0.022*
C200.63221 (3)0.86852 (11)0.03141 (6)0.01788 (17)
H200.6622 (5)0.9217 (15)0.0055 (8)0.021*
C210.58490 (3)0.86835 (10)0.01638 (6)0.01625 (16)
C220.57913 (4)0.94470 (11)0.09892 (6)0.01963 (18)
H220.6099 (5)0.9976 (15)0.1227 (9)0.024*
C230.53253 (4)0.94754 (12)0.14213 (6)0.02269 (19)
H230.5289 (5)1.0075 (16)0.1999 (9)0.027*
C240.48948 (4)0.87247 (12)0.10533 (6)0.02300 (19)
H240.4556 (5)0.8770 (16)0.1362 (9)0.028*
C250.49393 (4)0.79656 (11)0.02576 (6)0.02032 (18)
H250.4636 (5)0.7474 (16)0.0014 (8)0.024*
C260.54175 (3)0.79277 (10)0.02090 (6)0.01655 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0171 (4)0.0180 (4)0.0155 (4)0.0020 (3)0.0003 (3)0.0006 (3)
C20.0186 (4)0.0168 (4)0.0154 (4)0.0002 (3)0.0008 (3)0.0003 (3)
C30.0170 (4)0.0177 (4)0.0151 (3)0.0020 (3)0.0006 (3)0.0004 (3)
C40.0204 (4)0.0185 (4)0.0180 (4)0.0005 (3)0.0009 (3)0.0001 (3)
C50.0237 (4)0.0183 (4)0.0202 (4)0.0023 (3)0.0001 (3)0.0023 (3)
C60.0232 (4)0.0189 (4)0.0172 (4)0.0007 (3)0.0001 (3)0.0028 (3)
C70.0170 (4)0.0212 (4)0.0161 (4)0.0001 (3)0.0001 (3)0.0021 (3)
C80.0179 (4)0.0172 (4)0.0159 (4)0.0016 (3)0.0009 (3)0.0010 (3)
C90.0195 (4)0.0220 (4)0.0171 (4)0.0002 (3)0.0018 (3)0.0009 (3)
C100.0186 (4)0.0221 (4)0.0202 (4)0.0011 (3)0.0012 (3)0.0015 (3)
C110.0171 (4)0.0182 (4)0.0187 (4)0.0019 (3)0.0011 (3)0.0009 (3)
C120.0209 (4)0.0212 (4)0.0241 (4)0.0006 (3)0.0031 (3)0.0015 (3)
C130.0251 (5)0.0265 (5)0.0224 (4)0.0049 (4)0.0058 (4)0.0052 (4)
C140.0256 (5)0.0319 (5)0.0169 (4)0.0058 (4)0.0019 (3)0.0024 (4)
C150.0218 (4)0.0288 (5)0.0165 (4)0.0020 (4)0.0005 (3)0.0010 (3)
C160.0175 (4)0.0205 (4)0.0156 (4)0.0022 (3)0.0013 (3)0.0011 (3)
C170.0168 (4)0.0187 (4)0.0169 (4)0.0013 (3)0.0012 (3)0.0002 (3)
C180.0181 (4)0.0161 (4)0.0146 (3)0.0001 (3)0.0004 (3)0.0010 (3)
C190.0161 (4)0.0211 (4)0.0168 (4)0.0011 (3)0.0007 (3)0.0007 (3)
C200.0175 (4)0.0193 (4)0.0168 (4)0.0024 (3)0.0004 (3)0.0003 (3)
C210.0179 (4)0.0157 (4)0.0152 (4)0.0001 (3)0.0000 (3)0.0016 (3)
C220.0235 (4)0.0189 (4)0.0165 (4)0.0001 (3)0.0009 (3)0.0011 (3)
C230.0271 (5)0.0234 (4)0.0176 (4)0.0038 (4)0.0022 (3)0.0019 (3)
C240.0208 (4)0.0269 (5)0.0213 (4)0.0036 (4)0.0047 (3)0.0001 (4)
C250.0173 (4)0.0235 (4)0.0201 (4)0.0008 (3)0.0014 (3)0.0009 (3)
C260.0170 (4)0.0172 (4)0.0154 (4)0.0009 (3)0.0000 (3)0.0013 (3)
Geometric parameters (Å, º) top
C1—C61.4014 (13)C13—C141.4129 (16)
C1—C21.4022 (12)C13—H131.005 (14)
C1—C81.4850 (12)C14—C151.3729 (14)
C2—C31.3995 (12)C14—H140.999 (13)
C2—H20.968 (13)C15—C161.4224 (13)
C3—C41.3999 (13)C15—H150.970 (14)
C3—C181.4856 (12)C17—C181.3830 (12)
C4—C51.3922 (13)C17—C261.4190 (12)
C4—H41.005 (13)C17—H171.000 (13)
C5—C61.3907 (13)C18—C191.4243 (12)
C5—H50.959 (14)C19—C201.3707 (12)
C6—H60.989 (13)C19—H191.012 (13)
C7—C81.3829 (12)C20—C211.4193 (12)
C7—C161.4193 (13)C20—H200.990 (13)
C7—H70.991 (13)C21—C221.4168 (12)
C8—C91.4250 (13)C21—C261.4204 (12)
C9—C101.3698 (13)C22—C231.3702 (14)
C9—H90.997 (13)C22—H220.994 (13)
C10—C111.4226 (13)C23—C241.4136 (14)
C10—H101.006 (13)C23—H231.020 (14)
C11—C121.4178 (13)C24—C251.3731 (13)
C11—C161.4217 (13)C24—H240.992 (13)
C12—C131.3723 (14)C25—C261.4229 (13)
C12—H121.010 (13)C25—H250.987 (13)
C6—C1—C2118.39 (8)C15—C14—C13120.59 (9)
C6—C1—C8121.35 (8)C15—C14—H14118.9 (8)
C2—C1—C8120.25 (8)C13—C14—H14120.4 (8)
C3—C2—C1121.85 (8)C14—C15—C16120.54 (9)
C3—C2—H2119.4 (7)C14—C15—H15121.1 (8)
C1—C2—H2118.7 (7)C16—C15—H15118.4 (8)
C2—C3—C4118.50 (8)C7—C16—C11119.27 (8)
C2—C3—C18120.41 (8)C7—C16—C15121.95 (9)
C4—C3—C18121.08 (8)C11—C16—C15118.78 (8)
C5—C4—C3120.28 (8)C18—C17—C26121.30 (8)
C5—C4—H4120.1 (7)C18—C17—H17121.9 (7)
C3—C4—H4119.7 (7)C26—C17—H17116.7 (7)
C6—C5—C4120.68 (9)C17—C18—C19119.01 (8)
C6—C5—H5120.4 (8)C17—C18—C3121.10 (8)
C4—C5—H5119.0 (8)C19—C18—C3119.88 (8)
C5—C6—C1120.28 (8)C20—C19—C18120.78 (8)
C5—C6—H6120.0 (8)C20—C19—H19118.9 (7)
C1—C6—H6119.7 (8)C18—C19—H19120.3 (7)
C8—C7—C16121.51 (9)C19—C20—C21120.87 (8)
C8—C7—H7120.6 (7)C19—C20—H20120.2 (7)
C16—C7—H7117.9 (7)C21—C20—H20118.9 (7)
C7—C8—C9118.52 (8)C22—C21—C20121.90 (8)
C7—C8—C1121.48 (8)C22—C21—C26119.12 (8)
C9—C8—C1120.00 (8)C20—C21—C26118.96 (8)
C10—C9—C8121.31 (8)C23—C22—C21120.80 (9)
C10—C9—H9120.3 (8)C23—C22—H22122.1 (7)
C8—C9—H9118.4 (8)C21—C22—H22117.1 (7)
C9—C10—C11120.75 (9)C22—C23—C24120.30 (9)
C9—C10—H10121.1 (7)C22—C23—H23119.3 (7)
C11—C10—H10118.1 (7)C24—C23—H23120.4 (7)
C12—C11—C16119.28 (8)C25—C24—C23120.29 (9)
C12—C11—C10122.08 (9)C25—C24—H24119.8 (8)
C16—C11—C10118.64 (8)C23—C24—H24119.9 (8)
C13—C12—C11120.71 (9)C24—C25—C26120.60 (9)
C13—C12—H12120.2 (8)C24—C25—H25120.5 (8)
C11—C12—H12119.1 (8)C26—C25—H25118.8 (8)
C12—C13—C14120.10 (9)C17—C26—C21119.06 (8)
C12—C13—H13119.4 (8)C17—C26—C25122.01 (8)
C14—C13—H13120.4 (8)C21—C26—C25118.89 (8)
C6—C1—C2—C31.51 (13)C10—C11—C16—C70.07 (13)
C8—C1—C2—C3177.83 (8)C12—C11—C16—C150.31 (13)
C1—C2—C3—C41.46 (13)C10—C11—C16—C15179.66 (9)
C1—C2—C3—C18177.73 (8)C14—C15—C16—C7179.43 (9)
C2—C3—C4—C50.54 (13)C14—C15—C16—C110.28 (15)
C18—C3—C4—C5178.65 (9)C26—C17—C18—C190.81 (14)
C3—C4—C5—C60.30 (14)C26—C17—C18—C3178.19 (8)
C4—C5—C6—C10.24 (15)C2—C3—C18—C17145.04 (9)
C2—C1—C6—C50.64 (14)C4—C3—C18—C1734.14 (13)
C8—C1—C6—C5178.69 (9)C2—C3—C18—C1933.95 (12)
C16—C7—C8—C90.27 (14)C4—C3—C18—C19146.87 (9)
C16—C7—C8—C1179.14 (8)C17—C18—C19—C200.30 (14)
C6—C1—C8—C736.04 (13)C3—C18—C19—C20179.31 (8)
C2—C1—C8—C7143.28 (9)C18—C19—C20—C211.32 (14)
C6—C1—C8—C9144.56 (9)C19—C20—C21—C22177.04 (9)
C2—C1—C8—C936.12 (13)C19—C20—C21—C261.24 (14)
C7—C8—C9—C100.22 (14)C20—C21—C22—C23177.55 (9)
C1—C8—C9—C10179.64 (9)C26—C21—C22—C230.72 (14)
C8—C9—C10—C110.64 (15)C21—C22—C23—C240.75 (15)
C9—C10—C11—C12179.48 (9)C22—C23—C24—C250.27 (15)
C9—C10—C11—C160.55 (14)C23—C24—C25—C260.23 (15)
C16—C11—C12—C130.59 (14)C18—C17—C26—C210.87 (13)
C10—C11—C12—C13179.38 (9)C18—C17—C26—C25177.02 (9)
C11—C12—C13—C140.27 (15)C22—C21—C26—C17178.18 (8)
C12—C13—C14—C150.34 (16)C20—C21—C26—C170.15 (13)
C13—C14—C15—C160.61 (16)C22—C21—C26—C250.22 (13)
C8—C7—C16—C110.34 (14)C20—C21—C26—C25178.10 (8)
C8—C7—C16—C15179.94 (9)C24—C25—C26—C17177.64 (9)
C12—C11—C16—C7179.96 (9)C24—C25—C26—C210.25 (14)

Experimental details

Crystal data
Chemical formulaC26H18
Mr330.4
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)25.9304 (3), 8.9300 (1), 14.9377 (2)
V3)3458.95 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.27 × 0.22
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.972, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
37425, 6240, 4993
Rint0.023
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.02
No. of reflections6240
No. of parameters289
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.38, 0.22

Computer programs: COLLECT (Nonius 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Footnotes

CAS 103068–17–3.

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

First citationBaker, K. N., Fratini, A. V. & Adams, W. W. (1990). Polymer, 31, 1623–1631.  CrossRef CAS Web of Science Google Scholar
First citationBart, J. C. J. (1968). Acta Cryst. B24, 1277–1287.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBocchinfuso, G., Mazzuca, C., Palleschi, A., Pizzoferrato, R. & Tagliatesta, P. (2009). J. Phys. Chem. A, 113, 14887–14895.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationDu, C. J. F., Hart, H. & Ng, K. K. D. (1986). J. Org. Chem. 51, 3162–3165.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.  Google Scholar
First citationLin, Y. C. & Williams, D. E. (1975). Acta Cryst. B31, 318–320.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMarcinow, Z. & Rabideau, P. (1990). J. Org. Chem. 55, 3812–3816.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTummala, M., Dhar, R. K., Fronczek, F. R. & Watkins, S. F. (2013). Acta Cryst. E69, o307.  CSD CrossRef IUCr Journals Google Scholar
First citationWoods, G. F., Reed, F. T., Arthur, T. E. & Ezekiel, H. (1951). J. Am. Chem. Soc. 73, 3854–3856.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds