metal-organic compounds
Di-μ-chlorido-bis[(2,2′-bipyridine-5,5′-dicarboxylic acid-κ2N,N′)chloridocopper(II)] dimethylformamide tetrasolvate
ainGAP Centre for Research Based Innovation, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
*Correspondence e-mail: sigurdoi@kjemi.uio.no
In the title compound, [Cu2Cl4(C12H8N2O4)2]·4C3H7NO, which contains a chloride-bridged centrosymmetric CuII dimer, the CuII atom is in a distorted square-pyramidal 4 + 1 coordination geometry defined by the N atoms of the chelating 2,2′-bipyridine ligand, a terminal chloride and two bridging chloride ligands. Of the two independent dimethylformamide molecules, one is hydrogen bonded to a single –COOH group, while one links two adjacent –COOH groups via a strong accepted O—H⋯O and a weak donated C(O)—H⋯O hydrogen bond. Two of these last molecules and the two –COOH groups form a centrosymmetric hydrogen-bonded ring in which the CH=O and the –COOH groups by disorder adopt two alternate orientations in a 0.44:0.56 ratio. These hydrogen bonds link the CuII complex molecules and the dimethylformamide solvent molecules into infinite chains along [-111]. Slipped π–π stacking interactions between two centrosymmetric pyridine rings (centroid–centroid distance = 3.63 Å) contribute to the coherence of the structure along [0-11].
Related literature
For related structures with similar coordination geometry around the copper atoms, see: Goddard et al. (1990); Tynan et al. (2005); Han et al. (2008); Liu et al. (2009); Qi et al. (2009). For other related structures of chloro bipyridine copper complexes, see: Wang et al. (2004); Zhao et al. (2010).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006) and Materials Studio (Accelrys, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812051422/qk2049sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812051422/qk2049Isup2.hkl
5,5'-dimethyl-2,2'-bipyridine was purchased from Sigma-Aldrich and oxidized with K2Cr2O7 to 2,2'-bipyridine-5,5'-dicarboxylic acid according to literature methods. CuCl2.2H2O (>99%, Sigma-Aldrich) and dimethylformamide (DMF) (>99.5%, Merck) were used as received. 100 mg (0.41 mmol) H2bpydc was dissolved in 10 ml of water, using a minimal amount of KOH. 70 mg (0.41 mmol) CuCl2.2H2O was dissolved in water. When the two solutions were combined, a blue precipitate was immediately formed. Dilute HCl was added until pH was 4. The blue microcrystalline precipitate (96 mg) was recovered, dried and dissolved in 5 ml of DMF along with 50 µL conc. HCl, giving a green solution. 1 ml of the solution was transferred to a small vial. The crystals were precipitated by vapor diffusion, using water as antisolvent.
All H atoms were placed in geometrically idealized positions, with Csp2—H = 0.93 Å, Csp3—H = 0.96 Å, O—H = 0.82 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(Csp3,O). The atoms O6 A/B, C21 A/B and H21 A/B of one DMF molecule and H1/2 of a COOH group are disordered over 2 sites with refined occupancies of 0.437 (4) (part A and H1) and 0.563 (4) (part B and H2).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006) and Materials Studio (Accelrys, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu2Cl4(C12H8N2O4)2]·4C3H7NO | Z = 1 |
Mr = 1049.66 | F(000) = 538 |
Triclinic, P1 | Dx = 1.627 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.917 (5) Å | Cell parameters from 3373 reflections |
b = 11.030 (6) Å | θ = 2.5–27.4° |
c = 12.179 (7) Å | µ = 1.32 mm−1 |
α = 83.171 (6)° | T = 100 K |
β = 73.903 (6)° | Prism, green |
γ = 68.332 (6)° | 0.20 × 0.15 × 0.02 mm |
V = 1069.4 (11) Å3 |
Bruker APEXII CCD diffractometer | 4824 independent reflections |
Radiation source: fine-focus sealed tube | 3969 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ϕ and ω scans | θmax = 27.9°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −11→11 |
Tmin = 0.789, Tmax = 0.974 | k = −14→14 |
9231 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0259P)2 + 0.590P] where P = (Fo2 + 2Fc2)/3 |
4824 reflections | (Δ/σ)max = 0.001 |
295 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
[Cu2Cl4(C12H8N2O4)2]·4C3H7NO | γ = 68.332 (6)° |
Mr = 1049.66 | V = 1069.4 (11) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.917 (5) Å | Mo Kα radiation |
b = 11.030 (6) Å | µ = 1.32 mm−1 |
c = 12.179 (7) Å | T = 100 K |
α = 83.171 (6)° | 0.20 × 0.15 × 0.02 mm |
β = 73.903 (6)° |
Bruker APEXII CCD diffractometer | 4824 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3969 reflections with I > 2σ(I) |
Tmin = 0.789, Tmax = 0.974 | Rint = 0.021 |
9231 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.43 e Å−3 |
4824 reflections | Δρmin = −0.37 e Å−3 |
295 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.5061 (2) | 0.75714 (18) | 0.49804 (17) | 0.0142 (4) | |
C2 | 0.5665 (2) | 0.64520 (18) | 0.42163 (16) | 0.0141 (4) | |
C3 | 0.7981 (2) | 0.47716 (18) | 0.32901 (16) | 0.0150 (4) | |
H3A | 0.9128 | 0.4329 | 0.3112 | 0.018* | |
C4 | 0.6997 (3) | 0.43285 (18) | 0.28504 (17) | 0.0157 (4) | |
C5 | 0.5292 (2) | 0.49803 (19) | 0.31204 (17) | 0.0168 (4) | |
H5 | 0.4611 | 0.4698 | 0.2838 | 0.020* | |
C6 | 0.4604 (3) | 0.60601 (19) | 0.38163 (17) | 0.0170 (4) | |
H6 | 0.3459 | 0.6511 | 0.4010 | 0.020* | |
C7 | 0.7786 (3) | 0.31742 (19) | 0.20877 (17) | 0.0174 (4) | |
C8 | 0.3416 (3) | 0.84090 (19) | 0.52720 (17) | 0.0175 (4) | |
H8 | 0.2620 | 0.8292 | 0.4980 | 0.021* | |
C9 | 0.2973 (3) | 0.94225 (19) | 0.60049 (18) | 0.0178 (4) | |
H9 | 0.1884 | 1.0014 | 0.6192 | 0.021* | |
C10 | 0.4173 (3) | 0.95414 (18) | 0.64538 (17) | 0.0161 (4) | |
C11 | 0.3799 (3) | 1.0583 (2) | 0.72813 (18) | 0.0202 (4) | |
C12 | 0.5801 (3) | 0.86824 (19) | 0.61159 (17) | 0.0164 (4) | |
H12 | 0.6608 | 0.8774 | 0.6412 | 0.020* | |
C15 | 0.3041 (4) | 0.7442 (2) | 1.1227 (2) | 0.0452 (7) | |
H15A | 0.3318 | 0.7211 | 1.0441 | 0.068* | |
H15B | 0.2396 | 0.6952 | 1.1693 | 0.068* | |
H15C | 0.4047 | 0.7248 | 1.1465 | 0.068* | |
C16 | 0.1570 (3) | 0.9324 (3) | 1.2499 (2) | 0.0327 (6) | |
H16A | 0.0844 | 1.0220 | 1.2507 | 0.049* | |
H16B | 0.2539 | 0.9263 | 1.2734 | 0.049* | |
H16C | 0.0992 | 0.8818 | 1.3016 | 0.049* | |
C18 | 0.2042 (5) | 1.4697 (3) | 1.0417 (2) | 0.0590 (10) | |
H18A | 0.1608 | 1.5052 | 0.9764 | 0.088* | |
H18B | 0.2955 | 1.4971 | 1.0395 | 0.088* | |
H18C | 0.1180 | 1.5003 | 1.1103 | 0.088* | |
C19 | 0.2560 (3) | 1.2678 (2) | 0.95630 (19) | 0.0272 (5) | |
H19 | 0.2955 | 1.1771 | 0.9602 | 0.033* | |
C20 | 0.3184 (3) | 1.2590 (3) | 1.1386 (2) | 0.0434 (7) | |
H20A | 0.3579 | 1.1668 | 1.1265 | 0.065* | |
H20B | 0.2275 | 1.2811 | 1.2059 | 0.065* | |
H20C | 0.4073 | 1.2827 | 1.1483 | 0.065* | |
C21A | 0.1675 (3) | 0.9574 (2) | 1.04753 (19) | 0.0242 (5) | 0.437 (4) |
H21A | 0.1017 | 1.0445 | 1.0620 | 0.029* | 0.437 (4) |
O6A | 0.2100 (5) | 0.9214 (3) | 0.9473 (3) | 0.0255 (11) | 0.437 (4) |
C21B | 0.1675 (3) | 0.9574 (2) | 1.04753 (19) | 0.0242 (5) | 0.563 (4) |
H21B | 0.1983 | 0.9165 | 0.9781 | 0.029* | 0.563 (4) |
O6B | 0.0912 (4) | 1.0793 (3) | 1.0485 (2) | 0.0304 (9) | 0.563 (4) |
N1 | 0.6254 (2) | 0.77252 (15) | 0.53787 (14) | 0.0139 (3) | |
N2 | 0.7337 (2) | 0.58081 (15) | 0.39584 (14) | 0.0140 (3) | |
N4 | 0.2618 (3) | 1.32944 (19) | 1.04017 (16) | 0.0293 (4) | |
N21 | 0.2077 (2) | 0.88264 (17) | 1.13500 (15) | 0.0227 (4) | |
O1 | 0.6831 (2) | 0.27950 (15) | 0.17378 (14) | 0.0278 (4) | |
H1 | 0.7387 | 0.2161 | 0.1329 | 0.042* | 0.437 (4) |
O2 | 0.93592 (19) | 0.26688 (15) | 0.18333 (14) | 0.0293 (4) | |
H2 | 0.9662 | 0.2047 | 0.1415 | 0.044* | 0.563 (4) |
O3 | 0.23516 (19) | 1.15187 (14) | 0.73405 (13) | 0.0233 (3) | |
H3 | 0.2215 | 1.2066 | 0.7795 | 0.035* | |
O4 | 0.4777 (2) | 1.05397 (17) | 0.78151 (15) | 0.0347 (4) | |
O5 | 0.2021 (2) | 1.32076 (15) | 0.87227 (13) | 0.0337 (4) | |
Cl1 | 0.97529 (6) | 0.78040 (5) | 0.52466 (4) | 0.01868 (11) | |
Cl2 | 0.88428 (6) | 0.47339 (5) | 0.63849 (4) | 0.01680 (11) | |
Cu1 | 0.86273 (3) | 0.65512 (2) | 0.46635 (2) | 0.01421 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0145 (10) | 0.0134 (9) | 0.0158 (10) | −0.0059 (8) | −0.0049 (8) | 0.0017 (7) |
C2 | 0.0139 (10) | 0.0138 (9) | 0.0148 (10) | −0.0054 (8) | −0.0038 (8) | 0.0010 (7) |
C3 | 0.0136 (10) | 0.0149 (9) | 0.0153 (10) | −0.0035 (8) | −0.0042 (8) | 0.0005 (8) |
C4 | 0.0191 (10) | 0.0127 (9) | 0.0153 (10) | −0.0062 (8) | −0.0034 (8) | −0.0001 (7) |
C5 | 0.0177 (10) | 0.0170 (10) | 0.0187 (10) | −0.0082 (8) | −0.0067 (8) | −0.0007 (8) |
C6 | 0.0137 (10) | 0.0173 (10) | 0.0199 (11) | −0.0050 (8) | −0.0050 (8) | 0.0000 (8) |
C7 | 0.0195 (11) | 0.0152 (9) | 0.0159 (10) | −0.0055 (8) | −0.0030 (8) | −0.0006 (8) |
C8 | 0.0151 (10) | 0.0181 (10) | 0.0209 (11) | −0.0062 (8) | −0.0064 (8) | −0.0013 (8) |
C9 | 0.0139 (10) | 0.0158 (10) | 0.0207 (11) | −0.0031 (8) | −0.0027 (8) | −0.0011 (8) |
C10 | 0.0180 (10) | 0.0138 (9) | 0.0151 (10) | −0.0054 (8) | −0.0023 (8) | 0.0000 (8) |
C11 | 0.0207 (11) | 0.0207 (10) | 0.0176 (11) | −0.0079 (9) | 0.0002 (9) | −0.0046 (8) |
C12 | 0.0167 (10) | 0.0174 (10) | 0.0164 (10) | −0.0071 (8) | −0.0042 (8) | −0.0018 (8) |
C15 | 0.0600 (19) | 0.0260 (13) | 0.0336 (15) | −0.0043 (13) | −0.0032 (14) | 0.0031 (11) |
C16 | 0.0285 (13) | 0.0451 (15) | 0.0223 (12) | −0.0123 (11) | −0.0022 (10) | −0.0053 (11) |
C18 | 0.116 (3) | 0.0361 (16) | 0.0334 (16) | −0.0372 (18) | −0.0143 (18) | −0.0073 (13) |
C19 | 0.0318 (13) | 0.0209 (11) | 0.0236 (12) | −0.0049 (10) | −0.0021 (10) | −0.0068 (9) |
C20 | 0.0328 (15) | 0.0567 (18) | 0.0327 (15) | 0.0025 (13) | −0.0144 (12) | −0.0170 (13) |
C21A | 0.0257 (12) | 0.0203 (11) | 0.0270 (12) | −0.0070 (9) | −0.0061 (10) | −0.0068 (9) |
O6A | 0.035 (2) | 0.0194 (19) | 0.020 (2) | −0.0058 (16) | −0.0081 (16) | −0.0050 (14) |
C21B | 0.0257 (12) | 0.0203 (11) | 0.0270 (12) | −0.0070 (9) | −0.0061 (10) | −0.0068 (9) |
O6B | 0.0358 (18) | 0.0216 (15) | 0.0283 (17) | −0.0037 (13) | −0.0062 (13) | −0.0056 (12) |
N1 | 0.0125 (8) | 0.0136 (8) | 0.0165 (8) | −0.0046 (6) | −0.0047 (7) | −0.0003 (6) |
N2 | 0.0132 (8) | 0.0138 (8) | 0.0152 (8) | −0.0047 (7) | −0.0040 (7) | −0.0001 (6) |
N4 | 0.0333 (12) | 0.0327 (11) | 0.0208 (10) | −0.0114 (9) | −0.0017 (9) | −0.0097 (8) |
N21 | 0.0223 (10) | 0.0221 (9) | 0.0213 (10) | −0.0068 (8) | −0.0020 (8) | −0.0032 (7) |
O1 | 0.0317 (9) | 0.0262 (8) | 0.0302 (9) | −0.0137 (7) | −0.0056 (7) | −0.0114 (7) |
O2 | 0.0210 (9) | 0.0259 (8) | 0.0344 (9) | 0.0000 (7) | −0.0033 (7) | −0.0114 (7) |
O3 | 0.0269 (9) | 0.0170 (7) | 0.0219 (8) | −0.0014 (6) | −0.0053 (7) | −0.0074 (6) |
O4 | 0.0239 (9) | 0.0420 (10) | 0.0379 (10) | −0.0025 (8) | −0.0100 (8) | −0.0239 (8) |
O5 | 0.0581 (12) | 0.0210 (8) | 0.0189 (8) | −0.0089 (8) | −0.0109 (8) | −0.0028 (7) |
Cl1 | 0.0153 (2) | 0.0184 (2) | 0.0249 (3) | −0.00683 (19) | −0.0069 (2) | −0.00293 (19) |
Cl2 | 0.0120 (2) | 0.0202 (2) | 0.0173 (2) | −0.00488 (19) | −0.00233 (18) | −0.00277 (19) |
Cu1 | 0.01079 (13) | 0.01549 (12) | 0.01676 (13) | −0.00388 (9) | −0.00401 (9) | −0.00304 (9) |
C1—N1 | 1.355 (3) | C15—H15C | 0.9600 |
C1—C8 | 1.386 (3) | C16—N21 | 1.453 (3) |
C1—C2 | 1.478 (3) | C16—H16A | 0.9600 |
C2—N2 | 1.355 (3) | C16—H16B | 0.9600 |
C2—C6 | 1.388 (3) | C16—H16C | 0.9600 |
C3—N2 | 1.333 (3) | C18—N4 | 1.439 (3) |
C3—C4 | 1.391 (3) | C18—H18A | 0.9600 |
C3—H3A | 0.9300 | C18—H18B | 0.9600 |
C4—C5 | 1.382 (3) | C18—H18C | 0.9600 |
C4—C7 | 1.495 (3) | C19—O5 | 1.242 (3) |
C5—C6 | 1.388 (3) | C19—N4 | 1.315 (3) |
C5—H5 | 0.9300 | C19—H19 | 0.9300 |
C6—H6 | 0.9300 | C20—N4 | 1.456 (3) |
C7—O1 | 1.261 (3) | C20—H20A | 0.9600 |
C7—O2 | 1.264 (3) | C20—H20B | 0.9600 |
C8—C9 | 1.385 (3) | C20—H20C | 0.9600 |
C8—H8 | 0.9300 | C21A—O6A | 1.241 (4) |
C9—C10 | 1.381 (3) | C21A—N21 | 1.315 (3) |
C9—H9 | 0.9300 | C21A—H21A | 0.9300 |
C10—C12 | 1.386 (3) | N1—Cu1 | 2.0337 (18) |
C10—C11 | 1.501 (3) | N2—Cu1 | 2.0361 (17) |
C11—O4 | 1.209 (3) | O1—H1 | 0.8200 |
C11—O3 | 1.311 (3) | O2—H2 | 0.8200 |
C12—N1 | 1.339 (3) | O3—H3 | 0.8200 |
C12—H12 | 0.9300 | Cl1—Cu1 | 2.2525 (10) |
C15—N21 | 1.451 (3) | Cl2—Cu1i | 2.2804 (10) |
C15—H15A | 0.9600 | Cl2—Cu1 | 2.7183 (12) |
C15—H15B | 0.9600 | ||
N1—C1—C8 | 121.94 (18) | H16A—C16—H16C | 109.5 |
N1—C1—C2 | 114.49 (17) | H16B—C16—H16C | 109.5 |
C8—C1—C2 | 123.57 (18) | N4—C18—H18A | 109.5 |
N2—C2—C6 | 122.18 (18) | N4—C18—H18B | 109.5 |
N2—C2—C1 | 114.96 (16) | H18A—C18—H18B | 109.5 |
C6—C2—C1 | 122.83 (18) | N4—C18—H18C | 109.5 |
N2—C3—C4 | 122.29 (19) | H18A—C18—H18C | 109.5 |
N2—C3—H3A | 118.9 | H18B—C18—H18C | 109.5 |
C4—C3—H3A | 118.9 | O5—C19—N4 | 125.3 (2) |
C5—C4—C3 | 118.91 (18) | O5—C19—H19 | 117.3 |
C5—C4—C7 | 120.96 (18) | N4—C19—H19 | 117.3 |
C3—C4—C7 | 120.13 (18) | N4—C20—H20A | 109.5 |
C4—C5—C6 | 119.42 (18) | N4—C20—H20B | 109.5 |
C4—C5—H5 | 120.3 | H20A—C20—H20B | 109.5 |
C6—C5—H5 | 120.3 | N4—C20—H20C | 109.5 |
C5—C6—C2 | 118.45 (19) | H20A—C20—H20C | 109.5 |
C5—C6—H6 | 120.8 | H20B—C20—H20C | 109.5 |
C2—C6—H6 | 120.8 | O6A—C21A—N21 | 125.4 (3) |
O1—C7—O2 | 125.27 (19) | O6A—C21A—H21A | 117.3 |
O1—C7—C4 | 117.40 (18) | N21—C21A—H21A | 117.3 |
O2—C7—C4 | 117.32 (18) | C12—N1—C1 | 118.42 (17) |
C9—C8—C1 | 119.05 (19) | C12—N1—Cu1 | 126.23 (14) |
C9—C8—H8 | 120.5 | C1—N1—Cu1 | 115.10 (13) |
C1—C8—H8 | 120.5 | C3—N2—C2 | 118.75 (17) |
C10—C9—C8 | 118.98 (19) | C3—N2—Cu1 | 126.29 (14) |
C10—C9—H9 | 120.5 | C2—N2—Cu1 | 114.96 (13) |
C8—C9—H9 | 120.5 | C19—N4—C18 | 121.5 (2) |
C9—C10—C12 | 119.08 (18) | C19—N4—C20 | 121.4 (2) |
C9—C10—C11 | 122.74 (18) | C18—N4—C20 | 117.0 (2) |
C12—C10—C11 | 118.17 (18) | C21A—N21—C15 | 121.8 (2) |
O4—C11—O3 | 124.97 (19) | C21A—N21—C16 | 122.4 (2) |
O4—C11—C10 | 121.63 (19) | C15—N21—C16 | 115.8 (2) |
O3—C11—C10 | 113.39 (18) | C7—O1—H1 | 109.5 |
N1—C12—C10 | 122.42 (18) | C7—O2—H2 | 109.5 |
N1—C12—H12 | 118.8 | C11—O3—H3 | 109.5 |
C10—C12—H12 | 118.8 | Cu1i—Cl2—Cu1 | 90.20 (4) |
N21—C15—H15A | 109.5 | N1—Cu1—N2 | 79.91 (8) |
N21—C15—H15B | 109.5 | N1—Cu1—Cl1 | 92.97 (6) |
H15A—C15—H15B | 109.5 | N2—Cu1—Cl1 | 166.75 (5) |
N21—C15—H15C | 109.5 | N1—Cu1—Cl2i | 171.33 (5) |
H15A—C15—H15C | 109.5 | N2—Cu1—Cl2i | 93.45 (7) |
H15B—C15—H15C | 109.5 | Cl1—Cu1—Cl2i | 92.41 (5) |
N21—C16—H16A | 109.5 | N1—Cu1—Cl2 | 96.09 (5) |
N21—C16—H16B | 109.5 | N2—Cu1—Cl2 | 93.10 (6) |
H16A—C16—H16B | 109.5 | Cl1—Cu1—Cl2 | 98.80 (4) |
N21—C16—H16C | 109.5 | Cl2i—Cu1—Cl2 | 89.80 (4) |
N1—C1—C2—N2 | −4.8 (2) | C8—C1—N1—Cu1 | −171.55 (15) |
C8—C1—C2—N2 | 174.95 (18) | C2—C1—N1—Cu1 | 8.2 (2) |
N1—C1—C2—C6 | 173.40 (18) | C4—C3—N2—C2 | −0.1 (3) |
C8—C1—C2—C6 | −6.9 (3) | C4—C3—N2—Cu1 | 179.64 (14) |
N2—C3—C4—C5 | −0.4 (3) | C6—C2—N2—C3 | 0.6 (3) |
N2—C3—C4—C7 | 178.92 (17) | C1—C2—N2—C3 | 178.81 (16) |
C3—C4—C5—C6 | 0.3 (3) | C6—C2—N2—Cu1 | −179.13 (15) |
C7—C4—C5—C6 | −179.00 (18) | C1—C2—N2—Cu1 | −0.9 (2) |
C4—C5—C6—C2 | 0.2 (3) | O5—C19—N4—C18 | −0.3 (4) |
N2—C2—C6—C5 | −0.7 (3) | O5—C19—N4—C20 | 176.4 (2) |
C1—C2—C6—C5 | −178.74 (18) | O6A—C21A—N21—C15 | −2.5 (4) |
C5—C4—C7—O1 | −2.5 (3) | O6A—C21A—N21—C16 | 178.3 (3) |
C3—C4—C7—O1 | 178.22 (18) | C12—N1—Cu1—N2 | 179.08 (17) |
C5—C4—C7—O2 | 176.55 (19) | C1—N1—Cu1—N2 | −6.78 (13) |
C3—C4—C7—O2 | −2.7 (3) | C12—N1—Cu1—Cl1 | −12.18 (16) |
N1—C1—C8—C9 | −0.9 (3) | C1—N1—Cu1—Cl1 | 161.96 (13) |
C2—C1—C8—C9 | 179.35 (18) | C12—N1—Cu1—Cl2 | 87.00 (16) |
C1—C8—C9—C10 | −2.2 (3) | C1—N1—Cu1—Cl2 | −98.86 (14) |
C8—C9—C10—C12 | 3.1 (3) | C3—N2—Cu1—N1 | −175.67 (17) |
C8—C9—C10—C11 | −178.12 (19) | C2—N2—Cu1—N1 | 4.05 (13) |
C9—C10—C11—O4 | 166.9 (2) | C3—N2—Cu1—Cl1 | 126.0 (2) |
C12—C10—C11—O4 | −14.3 (3) | C2—N2—Cu1—Cl1 | −54.2 (3) |
C9—C10—C11—O3 | −14.0 (3) | C3—N2—Cu1—Cl2i | 9.96 (16) |
C12—C10—C11—O3 | 164.78 (18) | C2—N2—Cu1—Cl2i | −170.32 (13) |
C9—C10—C12—N1 | −0.9 (3) | C3—N2—Cu1—Cl2 | −80.03 (16) |
C11—C10—C12—N1 | −179.79 (18) | C2—N2—Cu1—Cl2 | 99.69 (13) |
C10—C12—N1—C1 | −2.2 (3) | Cu1i—Cl2—Cu1—N1 | 173.62 (5) |
C10—C12—N1—Cu1 | 171.82 (14) | Cu1i—Cl2—Cu1—N2 | 93.44 (6) |
C8—C1—N1—C12 | 3.1 (3) | Cu1i—Cl2—Cu1—Cl1 | −92.40 (5) |
C2—C1—N1—C12 | −177.18 (16) | Cu1i—Cl2—Cu1—Cl2i | 0.0 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O6Bii | 0.82 | 1.72 | 2.515 (3) | 161 |
O1—H1···O6Aiii | 0.82 | 1.75 | 2.536 (4) | 161 |
O3—H3···O5 | 0.82 | 1.72 | 2.541 (2) | 177 |
C21A—H21A···O2iv | 0.93 | 2.71 | 3.591 (3) | 158 |
C21B—H21B···O1iii | 0.93 | 2.72 | 3.603 (3) | 159 |
Symmetry codes: (ii) x+1, y−1, z−1; (iii) −x+1, −y+1, −z+1; (iv) x−1, y+1, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Cl4(C12H8N2O4)2]·4C3H7NO |
Mr | 1049.66 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 8.917 (5), 11.030 (6), 12.179 (7) |
α, β, γ (°) | 83.171 (6), 73.903 (6), 68.332 (6) |
V (Å3) | 1069.4 (11) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.32 |
Crystal size (mm) | 0.20 × 0.15 × 0.02 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.789, 0.974 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9231, 4824, 3969 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.068, 1.02 |
No. of reflections | 4824 |
No. of parameters | 295 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.37 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006) and Materials Studio (Accelrys, 2010), publCIF (Westrip, 2010).
N1—Cu1 | 2.0337 (18) | Cl2—Cu1i | 2.2804 (10) |
N2—Cu1 | 2.0361 (17) | Cl2—Cu1 | 2.7183 (12) |
Cl1—Cu1 | 2.2525 (10) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O6Bii | 0.82 | 1.72 | 2.515 (3) | 161.4 |
O1—H1···O6Aiii | 0.82 | 1.75 | 2.536 (4) | 160.5 |
O3—H3···O5 | 0.82 | 1.72 | 2.541 (2) | 177.4 |
C21A—H21A···O2iv | 0.93 | 2.71 | 3.591 (3) | 157.8 |
C21B—H21B···O1iii | 0.93 | 2.72 | 3.603 (3) | 159.1 |
Symmetry codes: (ii) x+1, y−1, z−1; (iii) −x+1, −y+1, −z+1; (iv) x−1, y+1, z+1. |
Acknowledgements
This work is part of the inGAP and CLIMIT, which receive financial support from the Norwegian Research Council under contract Nos. 174893 and 215735, respectively.
References
Accelrys (2010). Materials Studio. Accelrys Inc., San Diego, California, USA. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Goddard, R., Hemalatha, B. & Rajasekharan, M. V. (1990). Acta Cryst. C46, 33–35. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Han, K.-F., Wu, H.-Y., Wang, Z.-M. & Guo, H.-Y. (2008). Acta Cryst. E64, m1607–m1608. Web of Science CrossRef IUCr Journals Google Scholar
Liu, Y.-F., Rong, D.-F., Xia, H.-T. & Wang, D.-Q. (2009). Acta Cryst. E65, m1492. Web of Science CrossRef IUCr Journals Google Scholar
Qi, Z.-P., Wang, A.-D., Zhang, H. & Wang, X.-X. (2009). Acta Cryst. E65, m1507–m1508. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tynan, E., Jensen, P., Lees, A. C., Moubaraki, B., Murray, K. S. & Kruger, P. E. (2005). CrystEngComm, 7, 90–95. Web of Science CSD CrossRef CAS Google Scholar
Wang, Y.-Q., Bi, W.-H., Li, X. & Cao, R. (2004). Acta Cryst. E60, m876–m877. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, J., Shi, D., Cheng, H., Chen, L., Ma, P. & Niu, J. (2010). Inorg. Chem. Commun. 13, 822–827. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, linear dicarboxylic acids have attracted much attention for their usage as linkers in metal-organic frameworks. This diverse class of porous materials can be utilized as heterogeneous catalysts or selective adsorbents, by incorporating active species onto the linkers. The reported compound (Fig. 1) consists of centrosymmetric dinuclear Cu complexes hydrogen bonded to four DMF molecules via O—H···O and C—H···O links. These Cu dimers and the DMF molecules create hydrogen bonded chains parallell to [111] (Fig. 2). The copper atoms have a slightly distorted square-pyramidal coordination by two N and three Cl atoms (two short and one long Cu—Cl bonds;Table 1), as observed in similar copper dimer complexes reported for instance by Goddard et al. (1990),Tynan et al. (2005), Han et al. (2008), Liu et al. (2009) and Qi et al. (2009). Fig. 1 and Fig. 2 show that the COOH group of O1–C7–O2 and the second DMF molecule (C21, O6A/O6B, N21, C15, C16) form a centrosymmetric hydrogen bond ring with alternating strong O—H···O(DMF) and weak C(DMF)—H···O hydrogen bonds. Due to a synchronous orientation disorder of the COOH groups and the DMF molecules the hydrogen bonds in these rings can adopt a clock or an anticlockwise sense in 0.44/0.56 ratio. Consequently, the observed bond distances C7—O1 = 1.261 (3) Å and C7—O2 = 1.264 (3) Å are approximately an average of the single and double bond distances of an ordered COOH group (e.g. C11═O4 = 1.209 (3) and C11—O3 = 1.311 (3) Å in the title compound). Apart from hydrogen bonding the structure of the title compound is held together by slipped π-π stacking interactions between centrosymmetric pairs of pyridine ring 1 (N1–C1–C8–C9–C10–C12). They show stacking distances of ca. 3.33 Å which are effective along [011] (Fig. 3). A polymeric copper(II) complex with the same organoligand as in (I) but with a Cu/Cl ratio of 1:1 has been reported by Zhao et al. (2010).