metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m73-m74

Di-μ-chlorido-bis­­[(2,2′-bi­pyridine-5,5′-dicarb­­oxy­lic acid-κ2N,N′)chloridocopper(II)] di­methyl­formamide tetra­solvate

ainGAP Centre for Research Based Innovation, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
*Correspondence e-mail: sigurdoi@kjemi.uio.no

(Received 15 November 2012; accepted 20 December 2012; online 4 January 2013)

In the title compound, [Cu2Cl4(C12H8N2O4)2]·4C3H7NO, which contains a chloride-bridged centrosymmetric CuII dimer, the CuII atom is in a distorted square-pyramidal 4 + 1 coordination geometry defined by the N atoms of the chelating 2,2′-bipyridine ligand, a terminal chloride and two bridging chloride ligands. Of the two independent dimethyl­formamide mol­ecules, one is hydrogen bonded to a single –COOH group, while one links two adjacent –COOH groups via a strong accepted O—H⋯O and a weak donated C(O)—H⋯O hydrogen bond. Two of these last mol­ecules and the two –COOH groups form a centrosymmetric hydrogen-bonded ring in which the CH=O and the –COOH groups by disorder adopt two alternate orientations in a 0.44:0.56 ratio. These hydrogen bonds link the CuII complex mol­ecules and the dimethyl­formamide solvent mol­ecules into infinite chains along [-111]. Slipped ππ stacking inter­actions between two centrosymmetric pyridine rings (centroid–centroid distance = 3.63 Å) contribute to the coherence of the structure along [0-11].

Related literature

For related structures with similar coordination geometry around the copper atoms, see: Goddard et al. (1990[Goddard, R., Hemalatha, B. & Rajasekharan, M. V. (1990). Acta Cryst. C46, 33-35.]); Tynan et al. (2005[Tynan, E., Jensen, P., Lees, A. C., Moubaraki, B., Murray, K. S. & Kruger, P. E. (2005). CrystEngComm, 7, 90-95.]); Han et al. (2008[Han, K.-F., Wu, H.-Y., Wang, Z.-M. & Guo, H.-Y. (2008). Acta Cryst. E64, m1607-m1608.]); Liu et al. (2009[Liu, Y.-F., Rong, D.-F., Xia, H.-T. & Wang, D.-Q. (2009). Acta Cryst. E65, m1492.]); Qi et al. (2009[Qi, Z.-P., Wang, A.-D., Zhang, H. & Wang, X.-X. (2009). Acta Cryst. E65, m1507-m1508.]). For other related structures of chloro bipyridine copper complexes, see: Wang et al. (2004[Wang, Y.-Q., Bi, W.-H., Li, X. & Cao, R. (2004). Acta Cryst. E60, m876-m877.]); Zhao et al. (2010[Zhao, J., Shi, D., Cheng, H., Chen, L., Ma, P. & Niu, J. (2010). Inorg. Chem. Commun. 13, 822-827.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl4(C12H8N2O4)2]·4C3H7NO

  • Mr = 1049.66

  • Triclinic, [P \overline 1]

  • a = 8.917 (5) Å

  • b = 11.030 (6) Å

  • c = 12.179 (7) Å

  • α = 83.171 (6)°

  • β = 73.903 (6)°

  • γ = 68.332 (6)°

  • V = 1069.4 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.789, Tmax = 0.974

  • 9231 measured reflections

  • 4824 independent reflections

  • 3969 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.068

  • S = 1.02

  • 4824 reflections

  • 295 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

N1—Cu1 2.0337 (18)
N2—Cu1 2.0361 (17)
Cl1—Cu1 2.2525 (10)
Cl2—Cu1i 2.2804 (10)
Cl2—Cu1 2.7183 (12)
Symmetry code: (i) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O6Bii 0.82 1.72 2.515 (3) 161
O1—H1⋯O6Aiii 0.82 1.75 2.536 (4) 161
O3—H3⋯O5 0.82 1.72 2.541 (2) 177
C21A—H21A⋯O2iv 0.93 2.71 3.591 (3) 158
C21B—H21B⋯O1iii 0.93 2.72 3.603 (3) 159
Symmetry codes: (ii) x+1, y-1, z-1; (iii) -x+1, -y+1, -z+1; (iv) x-1, y+1, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Materials Studio (Accelrys, 2010[Accelrys (2010). Materials Studio. Accelrys Inc., San Diego, California, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In recent years, linear dicarboxylic acids have attracted much attention for their usage as linkers in metal-organic frameworks. This diverse class of porous materials can be utilized as heterogeneous catalysts or selective adsorbents, by incorporating active species onto the linkers. The reported compound (Fig. 1) consists of centrosymmetric dinuclear Cu complexes hydrogen bonded to four DMF molecules via O—H···O and C—H···O links. These Cu dimers and the DMF molecules create hydrogen bonded chains parallell to [111] (Fig. 2). The copper atoms have a slightly distorted square-pyramidal coordination by two N and three Cl atoms (two short and one long Cu—Cl bonds;Table 1), as observed in similar copper dimer complexes reported for instance by Goddard et al. (1990),Tynan et al. (2005), Han et al. (2008), Liu et al. (2009) and Qi et al. (2009). Fig. 1 and Fig. 2 show that the COOH group of O1–C7–O2 and the second DMF molecule (C21, O6A/O6B, N21, C15, C16) form a centrosymmetric hydrogen bond ring with alternating strong O—H···O(DMF) and weak C(DMF)—H···O hydrogen bonds. Due to a synchronous orientation disorder of the COOH groups and the DMF molecules the hydrogen bonds in these rings can adopt a clock or an anticlockwise sense in 0.44/0.56 ratio. Consequently, the observed bond distances C7—O1 = 1.261 (3) Å and C7—O2 = 1.264 (3) Å are approximately an average of the single and double bond distances of an ordered COOH group (e.g. C11O4 = 1.209 (3) and C11—O3 = 1.311 (3) Å in the title compound). Apart from hydrogen bonding the structure of the title compound is held together by slipped π-π stacking interactions between centrosymmetric pairs of pyridine ring 1 (N1–C1–C8–C9–C10–C12). They show stacking distances of ca. 3.33 Å which are effective along [011] (Fig. 3). A polymeric copper(II) complex with the same organoligand as in (I) but with a Cu/Cl ratio of 1:1 has been reported by Zhao et al. (2010).

Related literature top

For related structures with similar coordination geometry around the copper atoms, see: Goddard et al. (1990); Tynan et al. (2005); Han et al. (2008); Liu et al. (2009); Qi et al. (2009). For other related structures of chloro bipyridine copper complexes, see: Wang et al. (2004); Zhao et al. (2010).

Experimental top

5,5'-dimethyl-2,2'-bipyridine was purchased from Sigma-Aldrich and oxidized with K2Cr2O7 to 2,2'-bipyridine-5,5'-dicarboxylic acid according to literature methods. CuCl2.2H2O (>99%, Sigma-Aldrich) and dimethylformamide (DMF) (>99.5%, Merck) were used as received. 100 mg (0.41 mmol) H2bpydc was dissolved in 10 ml of water, using a minimal amount of KOH. 70 mg (0.41 mmol) CuCl2.2H2O was dissolved in water. When the two solutions were combined, a blue precipitate was immediately formed. Dilute HCl was added until pH was 4. The blue microcrystalline precipitate (96 mg) was recovered, dried and dissolved in 5 ml of DMF along with 50 µL conc. HCl, giving a green solution. 1 ml of the solution was transferred to a small vial. The crystals were precipitated by vapor diffusion, using water as antisolvent.

Refinement top

All H atoms were placed in geometrically idealized positions, with Csp2—H = 0.93 Å, Csp3—H = 0.96 Å, O—H = 0.82 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(Csp3,O). The atoms O6 A/B, C21 A/B and H21 A/B of one DMF molecule and H1/2 of a COOH group are disordered over 2 sites with refined occupancies of 0.437 (4) (part A and H1) and 0.563 (4) (part B and H2).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006) and Materials Studio (Accelrys, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms showing also the disorder of one COOH group (C7 etc.) and one DMF molecule (C21A etc).
[Figure 2] Fig. 2. The packing of (I), showing the hydrogen bonded chains. Hydrogen atoms (except amide and carboxylic) are omitted and hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Slipped π-π stacking interaction between the pyridine rings 1 (N1–C1–C8–C9–C10–C12) of two neighboring Cu complexes related by inversion (I).
Di-µ-chlorido-bis[(2,2'-bipyridine-5,5'-dicarboxylic acid-κ2N,N')chloridocopper(II)] dimethylformamide tetrasolvate top
Crystal data top
[Cu2Cl4(C12H8N2O4)2]·4C3H7NOZ = 1
Mr = 1049.66F(000) = 538
Triclinic, P1Dx = 1.627 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.917 (5) ÅCell parameters from 3373 reflections
b = 11.030 (6) Åθ = 2.5–27.4°
c = 12.179 (7) ŵ = 1.32 mm1
α = 83.171 (6)°T = 100 K
β = 73.903 (6)°Prism, green
γ = 68.332 (6)°0.20 × 0.15 × 0.02 mm
V = 1069.4 (11) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4824 independent reflections
Radiation source: fine-focus sealed tube3969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.789, Tmax = 0.974k = 1414
9231 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0259P)2 + 0.590P]
where P = (Fo2 + 2Fc2)/3
4824 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu2Cl4(C12H8N2O4)2]·4C3H7NOγ = 68.332 (6)°
Mr = 1049.66V = 1069.4 (11) Å3
Triclinic, P1Z = 1
a = 8.917 (5) ÅMo Kα radiation
b = 11.030 (6) ŵ = 1.32 mm1
c = 12.179 (7) ÅT = 100 K
α = 83.171 (6)°0.20 × 0.15 × 0.02 mm
β = 73.903 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
4824 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3969 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.974Rint = 0.021
9231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
4824 reflectionsΔρmin = 0.37 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5061 (2)0.75714 (18)0.49804 (17)0.0142 (4)
C20.5665 (2)0.64520 (18)0.42163 (16)0.0141 (4)
C30.7981 (2)0.47716 (18)0.32901 (16)0.0150 (4)
H3A0.91280.43290.31120.018*
C40.6997 (3)0.43285 (18)0.28504 (17)0.0157 (4)
C50.5292 (2)0.49803 (19)0.31204 (17)0.0168 (4)
H50.46110.46980.28380.020*
C60.4604 (3)0.60601 (19)0.38163 (17)0.0170 (4)
H60.34590.65110.40100.020*
C70.7786 (3)0.31742 (19)0.20877 (17)0.0174 (4)
C80.3416 (3)0.84090 (19)0.52720 (17)0.0175 (4)
H80.26200.82920.49800.021*
C90.2973 (3)0.94225 (19)0.60049 (18)0.0178 (4)
H90.18841.00140.61920.021*
C100.4173 (3)0.95414 (18)0.64538 (17)0.0161 (4)
C110.3799 (3)1.0583 (2)0.72813 (18)0.0202 (4)
C120.5801 (3)0.86824 (19)0.61159 (17)0.0164 (4)
H120.66080.87740.64120.020*
C150.3041 (4)0.7442 (2)1.1227 (2)0.0452 (7)
H15A0.33180.72111.04410.068*
H15B0.23960.69521.16930.068*
H15C0.40470.72481.14650.068*
C160.1570 (3)0.9324 (3)1.2499 (2)0.0327 (6)
H16A0.08441.02201.25070.049*
H16B0.25390.92631.27340.049*
H16C0.09920.88181.30160.049*
C180.2042 (5)1.4697 (3)1.0417 (2)0.0590 (10)
H18A0.16081.50520.97640.088*
H18B0.29551.49711.03950.088*
H18C0.11801.50031.11030.088*
C190.2560 (3)1.2678 (2)0.95630 (19)0.0272 (5)
H190.29551.17710.96020.033*
C200.3184 (3)1.2590 (3)1.1386 (2)0.0434 (7)
H20A0.35791.16681.12650.065*
H20B0.22751.28111.20590.065*
H20C0.40731.28271.14830.065*
C21A0.1675 (3)0.9574 (2)1.04753 (19)0.0242 (5)0.437 (4)
H21A0.10171.04451.06200.029*0.437 (4)
O6A0.2100 (5)0.9214 (3)0.9473 (3)0.0255 (11)0.437 (4)
C21B0.1675 (3)0.9574 (2)1.04753 (19)0.0242 (5)0.563 (4)
H21B0.19830.91650.97810.029*0.563 (4)
O6B0.0912 (4)1.0793 (3)1.0485 (2)0.0304 (9)0.563 (4)
N10.6254 (2)0.77252 (15)0.53787 (14)0.0139 (3)
N20.7337 (2)0.58081 (15)0.39584 (14)0.0140 (3)
N40.2618 (3)1.32944 (19)1.04017 (16)0.0293 (4)
N210.2077 (2)0.88264 (17)1.13500 (15)0.0227 (4)
O10.6831 (2)0.27950 (15)0.17378 (14)0.0278 (4)
H10.73870.21610.13290.042*0.437 (4)
O20.93592 (19)0.26688 (15)0.18333 (14)0.0293 (4)
H20.96620.20470.14150.044*0.563 (4)
O30.23516 (19)1.15187 (14)0.73405 (13)0.0233 (3)
H30.22151.20660.77950.035*
O40.4777 (2)1.05397 (17)0.78151 (15)0.0347 (4)
O50.2021 (2)1.32076 (15)0.87227 (13)0.0337 (4)
Cl10.97529 (6)0.78040 (5)0.52466 (4)0.01868 (11)
Cl20.88428 (6)0.47339 (5)0.63849 (4)0.01680 (11)
Cu10.86273 (3)0.65512 (2)0.46635 (2)0.01421 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0145 (10)0.0134 (9)0.0158 (10)0.0059 (8)0.0049 (8)0.0017 (7)
C20.0139 (10)0.0138 (9)0.0148 (10)0.0054 (8)0.0038 (8)0.0010 (7)
C30.0136 (10)0.0149 (9)0.0153 (10)0.0035 (8)0.0042 (8)0.0005 (8)
C40.0191 (10)0.0127 (9)0.0153 (10)0.0062 (8)0.0034 (8)0.0001 (7)
C50.0177 (10)0.0170 (10)0.0187 (10)0.0082 (8)0.0067 (8)0.0007 (8)
C60.0137 (10)0.0173 (10)0.0199 (11)0.0050 (8)0.0050 (8)0.0000 (8)
C70.0195 (11)0.0152 (9)0.0159 (10)0.0055 (8)0.0030 (8)0.0006 (8)
C80.0151 (10)0.0181 (10)0.0209 (11)0.0062 (8)0.0064 (8)0.0013 (8)
C90.0139 (10)0.0158 (10)0.0207 (11)0.0031 (8)0.0027 (8)0.0011 (8)
C100.0180 (10)0.0138 (9)0.0151 (10)0.0054 (8)0.0023 (8)0.0000 (8)
C110.0207 (11)0.0207 (10)0.0176 (11)0.0079 (9)0.0002 (9)0.0046 (8)
C120.0167 (10)0.0174 (10)0.0164 (10)0.0071 (8)0.0042 (8)0.0018 (8)
C150.0600 (19)0.0260 (13)0.0336 (15)0.0043 (13)0.0032 (14)0.0031 (11)
C160.0285 (13)0.0451 (15)0.0223 (12)0.0123 (11)0.0022 (10)0.0053 (11)
C180.116 (3)0.0361 (16)0.0334 (16)0.0372 (18)0.0143 (18)0.0073 (13)
C190.0318 (13)0.0209 (11)0.0236 (12)0.0049 (10)0.0021 (10)0.0068 (9)
C200.0328 (15)0.0567 (18)0.0327 (15)0.0025 (13)0.0144 (12)0.0170 (13)
C21A0.0257 (12)0.0203 (11)0.0270 (12)0.0070 (9)0.0061 (10)0.0068 (9)
O6A0.035 (2)0.0194 (19)0.020 (2)0.0058 (16)0.0081 (16)0.0050 (14)
C21B0.0257 (12)0.0203 (11)0.0270 (12)0.0070 (9)0.0061 (10)0.0068 (9)
O6B0.0358 (18)0.0216 (15)0.0283 (17)0.0037 (13)0.0062 (13)0.0056 (12)
N10.0125 (8)0.0136 (8)0.0165 (8)0.0046 (6)0.0047 (7)0.0003 (6)
N20.0132 (8)0.0138 (8)0.0152 (8)0.0047 (7)0.0040 (7)0.0001 (6)
N40.0333 (12)0.0327 (11)0.0208 (10)0.0114 (9)0.0017 (9)0.0097 (8)
N210.0223 (10)0.0221 (9)0.0213 (10)0.0068 (8)0.0020 (8)0.0032 (7)
O10.0317 (9)0.0262 (8)0.0302 (9)0.0137 (7)0.0056 (7)0.0114 (7)
O20.0210 (9)0.0259 (8)0.0344 (9)0.0000 (7)0.0033 (7)0.0114 (7)
O30.0269 (9)0.0170 (7)0.0219 (8)0.0014 (6)0.0053 (7)0.0074 (6)
O40.0239 (9)0.0420 (10)0.0379 (10)0.0025 (8)0.0100 (8)0.0239 (8)
O50.0581 (12)0.0210 (8)0.0189 (8)0.0089 (8)0.0109 (8)0.0028 (7)
Cl10.0153 (2)0.0184 (2)0.0249 (3)0.00683 (19)0.0069 (2)0.00293 (19)
Cl20.0120 (2)0.0202 (2)0.0173 (2)0.00488 (19)0.00233 (18)0.00277 (19)
Cu10.01079 (13)0.01549 (12)0.01676 (13)0.00388 (9)0.00401 (9)0.00304 (9)
Geometric parameters (Å, º) top
C1—N11.355 (3)C15—H15C0.9600
C1—C81.386 (3)C16—N211.453 (3)
C1—C21.478 (3)C16—H16A0.9600
C2—N21.355 (3)C16—H16B0.9600
C2—C61.388 (3)C16—H16C0.9600
C3—N21.333 (3)C18—N41.439 (3)
C3—C41.391 (3)C18—H18A0.9600
C3—H3A0.9300C18—H18B0.9600
C4—C51.382 (3)C18—H18C0.9600
C4—C71.495 (3)C19—O51.242 (3)
C5—C61.388 (3)C19—N41.315 (3)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—N41.456 (3)
C7—O11.261 (3)C20—H20A0.9600
C7—O21.264 (3)C20—H20B0.9600
C8—C91.385 (3)C20—H20C0.9600
C8—H80.9300C21A—O6A1.241 (4)
C9—C101.381 (3)C21A—N211.315 (3)
C9—H90.9300C21A—H21A0.9300
C10—C121.386 (3)N1—Cu12.0337 (18)
C10—C111.501 (3)N2—Cu12.0361 (17)
C11—O41.209 (3)O1—H10.8200
C11—O31.311 (3)O2—H20.8200
C12—N11.339 (3)O3—H30.8200
C12—H120.9300Cl1—Cu12.2525 (10)
C15—N211.451 (3)Cl2—Cu1i2.2804 (10)
C15—H15A0.9600Cl2—Cu12.7183 (12)
C15—H15B0.9600
N1—C1—C8121.94 (18)H16A—C16—H16C109.5
N1—C1—C2114.49 (17)H16B—C16—H16C109.5
C8—C1—C2123.57 (18)N4—C18—H18A109.5
N2—C2—C6122.18 (18)N4—C18—H18B109.5
N2—C2—C1114.96 (16)H18A—C18—H18B109.5
C6—C2—C1122.83 (18)N4—C18—H18C109.5
N2—C3—C4122.29 (19)H18A—C18—H18C109.5
N2—C3—H3A118.9H18B—C18—H18C109.5
C4—C3—H3A118.9O5—C19—N4125.3 (2)
C5—C4—C3118.91 (18)O5—C19—H19117.3
C5—C4—C7120.96 (18)N4—C19—H19117.3
C3—C4—C7120.13 (18)N4—C20—H20A109.5
C4—C5—C6119.42 (18)N4—C20—H20B109.5
C4—C5—H5120.3H20A—C20—H20B109.5
C6—C5—H5120.3N4—C20—H20C109.5
C5—C6—C2118.45 (19)H20A—C20—H20C109.5
C5—C6—H6120.8H20B—C20—H20C109.5
C2—C6—H6120.8O6A—C21A—N21125.4 (3)
O1—C7—O2125.27 (19)O6A—C21A—H21A117.3
O1—C7—C4117.40 (18)N21—C21A—H21A117.3
O2—C7—C4117.32 (18)C12—N1—C1118.42 (17)
C9—C8—C1119.05 (19)C12—N1—Cu1126.23 (14)
C9—C8—H8120.5C1—N1—Cu1115.10 (13)
C1—C8—H8120.5C3—N2—C2118.75 (17)
C10—C9—C8118.98 (19)C3—N2—Cu1126.29 (14)
C10—C9—H9120.5C2—N2—Cu1114.96 (13)
C8—C9—H9120.5C19—N4—C18121.5 (2)
C9—C10—C12119.08 (18)C19—N4—C20121.4 (2)
C9—C10—C11122.74 (18)C18—N4—C20117.0 (2)
C12—C10—C11118.17 (18)C21A—N21—C15121.8 (2)
O4—C11—O3124.97 (19)C21A—N21—C16122.4 (2)
O4—C11—C10121.63 (19)C15—N21—C16115.8 (2)
O3—C11—C10113.39 (18)C7—O1—H1109.5
N1—C12—C10122.42 (18)C7—O2—H2109.5
N1—C12—H12118.8C11—O3—H3109.5
C10—C12—H12118.8Cu1i—Cl2—Cu190.20 (4)
N21—C15—H15A109.5N1—Cu1—N279.91 (8)
N21—C15—H15B109.5N1—Cu1—Cl192.97 (6)
H15A—C15—H15B109.5N2—Cu1—Cl1166.75 (5)
N21—C15—H15C109.5N1—Cu1—Cl2i171.33 (5)
H15A—C15—H15C109.5N2—Cu1—Cl2i93.45 (7)
H15B—C15—H15C109.5Cl1—Cu1—Cl2i92.41 (5)
N21—C16—H16A109.5N1—Cu1—Cl296.09 (5)
N21—C16—H16B109.5N2—Cu1—Cl293.10 (6)
H16A—C16—H16B109.5Cl1—Cu1—Cl298.80 (4)
N21—C16—H16C109.5Cl2i—Cu1—Cl289.80 (4)
N1—C1—C2—N24.8 (2)C8—C1—N1—Cu1171.55 (15)
C8—C1—C2—N2174.95 (18)C2—C1—N1—Cu18.2 (2)
N1—C1—C2—C6173.40 (18)C4—C3—N2—C20.1 (3)
C8—C1—C2—C66.9 (3)C4—C3—N2—Cu1179.64 (14)
N2—C3—C4—C50.4 (3)C6—C2—N2—C30.6 (3)
N2—C3—C4—C7178.92 (17)C1—C2—N2—C3178.81 (16)
C3—C4—C5—C60.3 (3)C6—C2—N2—Cu1179.13 (15)
C7—C4—C5—C6179.00 (18)C1—C2—N2—Cu10.9 (2)
C4—C5—C6—C20.2 (3)O5—C19—N4—C180.3 (4)
N2—C2—C6—C50.7 (3)O5—C19—N4—C20176.4 (2)
C1—C2—C6—C5178.74 (18)O6A—C21A—N21—C152.5 (4)
C5—C4—C7—O12.5 (3)O6A—C21A—N21—C16178.3 (3)
C3—C4—C7—O1178.22 (18)C12—N1—Cu1—N2179.08 (17)
C5—C4—C7—O2176.55 (19)C1—N1—Cu1—N26.78 (13)
C3—C4—C7—O22.7 (3)C12—N1—Cu1—Cl112.18 (16)
N1—C1—C8—C90.9 (3)C1—N1—Cu1—Cl1161.96 (13)
C2—C1—C8—C9179.35 (18)C12—N1—Cu1—Cl287.00 (16)
C1—C8—C9—C102.2 (3)C1—N1—Cu1—Cl298.86 (14)
C8—C9—C10—C123.1 (3)C3—N2—Cu1—N1175.67 (17)
C8—C9—C10—C11178.12 (19)C2—N2—Cu1—N14.05 (13)
C9—C10—C11—O4166.9 (2)C3—N2—Cu1—Cl1126.0 (2)
C12—C10—C11—O414.3 (3)C2—N2—Cu1—Cl154.2 (3)
C9—C10—C11—O314.0 (3)C3—N2—Cu1—Cl2i9.96 (16)
C12—C10—C11—O3164.78 (18)C2—N2—Cu1—Cl2i170.32 (13)
C9—C10—C12—N10.9 (3)C3—N2—Cu1—Cl280.03 (16)
C11—C10—C12—N1179.79 (18)C2—N2—Cu1—Cl299.69 (13)
C10—C12—N1—C12.2 (3)Cu1i—Cl2—Cu1—N1173.62 (5)
C10—C12—N1—Cu1171.82 (14)Cu1i—Cl2—Cu1—N293.44 (6)
C8—C1—N1—C123.1 (3)Cu1i—Cl2—Cu1—Cl192.40 (5)
C2—C1—N1—C12177.18 (16)Cu1i—Cl2—Cu1—Cl2i0.0
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6Bii0.821.722.515 (3)161
O1—H1···O6Aiii0.821.752.536 (4)161
O3—H3···O50.821.722.541 (2)177
C21A—H21A···O2iv0.932.713.591 (3)158
C21B—H21B···O1iii0.932.723.603 (3)159
Symmetry codes: (ii) x+1, y1, z1; (iii) x+1, y+1, z+1; (iv) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2Cl4(C12H8N2O4)2]·4C3H7NO
Mr1049.66
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.917 (5), 11.030 (6), 12.179 (7)
α, β, γ (°)83.171 (6), 73.903 (6), 68.332 (6)
V3)1069.4 (11)
Z1
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.20 × 0.15 × 0.02
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.789, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
9231, 4824, 3969
Rint0.021
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.068, 1.02
No. of reflections4824
No. of parameters295
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.37

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006) and Materials Studio (Accelrys, 2010), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
N1—Cu12.0337 (18)Cl2—Cu1i2.2804 (10)
N2—Cu12.0361 (17)Cl2—Cu12.7183 (12)
Cl1—Cu12.2525 (10)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6Bii0.821.722.515 (3)161.4
O1—H1···O6Aiii0.821.752.536 (4)160.5
O3—H3···O50.821.722.541 (2)177.4
C21A—H21A···O2iv0.932.713.591 (3)157.8
C21B—H21B···O1iii0.932.723.603 (3)159.1
Symmetry codes: (ii) x+1, y1, z1; (iii) x+1, y+1, z+1; (iv) x1, y+1, z+1.
 

Acknowledgements

This work is part of the inGAP and CLIMIT, which receive financial support from the Norwegian Research Council under contract Nos. 174893 and 215735, respectively.

References

First citationAccelrys (2010). Materials Studio. Accelrys Inc., San Diego, California, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoddard, R., Hemalatha, B. & Rajasekharan, M. V. (1990). Acta Cryst. C46, 33–35.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHan, K.-F., Wu, H.-Y., Wang, Z.-M. & Guo, H.-Y. (2008). Acta Cryst. E64, m1607–m1608.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, Y.-F., Rong, D.-F., Xia, H.-T. & Wang, D.-Q. (2009). Acta Cryst. E65, m1492.  Web of Science CrossRef IUCr Journals Google Scholar
First citationQi, Z.-P., Wang, A.-D., Zhang, H. & Wang, X.-X. (2009). Acta Cryst. E65, m1507–m1508.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTynan, E., Jensen, P., Lees, A. C., Moubaraki, B., Murray, K. S. & Kruger, P. E. (2005). CrystEngComm, 7, 90–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y.-Q., Bi, W.-H., Li, X. & Cao, R. (2004). Acta Cryst. E60, m876–m877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, J., Shi, D., Cheng, H., Chen, L., Ma, P. & Niu, J. (2010). Inorg. Chem. Commun. 13, 822–827.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m73-m74
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds