organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o208-o209

[2,7-Dihy­dr­oxy-8-(4-phen­­oxy­benzo­yl)naphthalen-1-yl](4-phen­­oxy­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184.8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 8 December 2012; accepted 29 December 2012; online 9 January 2013)

In the title compound, C36H24O6, the benzoyl groups at the 1- and 8-positions of the naphthalene system are in an anti orientation. Both carbonyl groups form intra­molecular O—H⋯O hydrogen bonds with hy­droxy groups affording six-membered rings. The benzene rings of the benzoyl groups make dihedral angles of 59.26 (13) and 59.09 (13)° with the naphthalene ring system. Zigzag C—H⋯O chains and ladder C—H⋯O chains between the phenoxybenzoyl groups along the ab diagonals form an undulating checkered sheet. The molecules are further connected into a three-dimensional network by C—H⋯π interactions.

Related literature

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.], 2013[Okamoto, A., Hijikata, D., Sakai, N. & Yonezawa, N. (2013). Polym. J. In the press. doi:10.1038/pj.2012.135.]). For the structures of (2,7-dimeth­oxy­naphthalene-1,8-di­yl)bis­(4-fluoro­phen­yl)di­meth­anone and 2,7-dimeth­oxy-1,8-bis­(4-phen­oxy­benzo­yl)naphthalene, see: Watanabe et al. (2010[Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.]) andr Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C36H24O6

  • Mr = 552.55

  • Monoclinic, C c

  • a = 16.0313 (3) Å

  • b = 18.4956 (3) Å

  • c = 12.1238 (2) Å

  • β = 131.389 (1)°

  • V = 2696.95 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 193 K

  • 0.60 × 0.55 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.661, Tmax = 0.929

  • 22236 measured reflections

  • 4868 independent reflections

  • 4527 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.096

  • S = 1.08

  • 4868 reflections

  • 382 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2389 Friedel pairs

  • Flack parameter: 0.05 (19)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C25—C30 and C31—C36 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1 0.84 1.83 2.560 (3) 145
O6—H6A⋯O2 0.84 1.88 2.563 (3) 138
C26—H26⋯O4i 0.95 2.48 3.377 (4) 157
C27—H27⋯O1i 0.95 2.51 3.269 (4) 137
C32—H32⋯O3ii 0.95 2.49 3.382 (4) 156
C33—H33⋯O2ii 0.95 2.51 3.270 (4) 137
C14—H14⋯Cg1iii 0.95 2.80 3.740 (2) 171
C21—H21⋯Cg2iv 0.95 2.80 3.740 (2) 171
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). As one of the applications of peri-aroylnaphthalene synthetic studies, the authors have integrated the resulting molecular unit to the poly(ether ketone) backbone via nucleophilic aromatic substitution polycondensation (Okamoto et al., 2013). The poly(ether ketone)s composed of 1,8-diaroylenenaphthalene units show unique thermal properties and solubility for organic solvents. These notable properties could arise from the structural features of the 1,8-diaroylene naphthalene units. Under these circumstances, the authors have undertaken the X-ray crystal structural study of several 1,8-diaroylated naphthalene analogues exemplified by (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone (Watanabe et al., 2010) and 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010). These molecules have essentially the same non-coplanar features. The two aroyl groups are twisted so they are almost perpendicular to the naphthalene rings.

The molecular structure of the title compound is displayed in Fig. 1. Two benzoyl groups are on the 1,8-positions of the naphthalene ring and are in an anti orientation relative to one another. The benzene rings of the benzoyl groups make dihedral angles with the naphthalene ring of 59.26 (13) and 59.09 (13)°, respectively. The dihedral angles between the benzene rings of the benzoyl groups and those of the phenoxy groups are 69.05 (13) and 69.02 (13)°. Both carbonyl groups form intramolecular O—H···O hydrogen bonds with hydroxy groups affording six-membered rings. (Fig. 1, Table 1).

In the crystal structure, the molecular packing of the title compound is stabilized mainly by C—H···O and C—H···π interactions. The aromatic hydrogen atoms of the phenoxy groups form two types of intermolecular C—H···O interactions with the ethereal oxygen atom of the phenoxy groups(C26—H26···O4i= 2.48 Å, C32—H32···O3ii= 2.49 Å; Fig. 2 and Table 1) and the carbonyl oxygen atom (C27—H27···O1i= 2.51 Å, C33—H33···O2ii= 2.51 Å; Fig. 2 and Table 1). Intermolecular C—H···π interactions between the aromatic hydrogen atom of the benzoyl group and the centroid of the benzene ring of the phenoxy group (C14—H14···Cg1iii= 2.80 Å, C21—H21···Cg2iv= 2.80 Å; Fig. 3 and Table 1) are observed.

Related literature top

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011, 2013). For the structures of the closely related compounds (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone and 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene, see: Watanabe et al. (2010) andr Hijikata et al. (2010), respectively.

Experimental top

To a stirring solution of 1,8-bis(4-phenoxybenzoyl)-2,7-dimethoxynaphthalene (1.0 mmol, 580 mg) in dichloromethane (1.0 ml) at 0°C was added 1.0 M boron tribromide solution in dichloromethane (4.4 ml) slowly, and the reaction mixture was allowed to reach the room temperature. After the reaction mixture had been stirred at room temperature for 48 h, the reaction mixture was cooled to 0 oC and very slowly quenched with water and extracted with CHCl3. The organic layer thus obtained was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake. The crude product was purified by column chromatography (silica gel, CHCl3) to give the title compound (isolated yield 88%). Single crystals suitable for X-ray diffraction were obtained by crystallization from Et2O-hexane (v/v = 1:2).

1H NMR δ (300 MHz, CDCl3): 6.82–6.84 (4H, m), 7.08–7.26 (10H, m), 7.40 (4H, t, J=7.9 Hz) 7.86 (2H, d, J=8.9 Hz), 11.29 (2H, s) p.p.m.

13C NMR δ (75 MHz, CDCl3): 115.13, 117.03, 117.28, 120.02, 122.02, 124.46, 130.00, 130.68, 133.79, 136.09, 155.58, 161.74, 195.80 p.p.m.

IR (KBr): 3396(O—H), 1620 (C=O), 1608, 1583, 1487 (Ar, naphthalene) cm-1.

HRMS (m/z): [M + H]+ calcd for C36H25O6, 553.1651 found, 553.1637.

m.p. 464.6–465.9 K.

Refinement top

All the H atoms could be located in difference Fourier maps. All the H atoms were subsequently refined as riding atoms, with O5—H5A = 0.84, O6—H6A = 0.84, C—H = 0.95 (aromatic) Å, Uiso(H) = 1.2Ueq(O) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids. The intramolecular O—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A partial crystal packing diagram of title compound. The intermolecular C—H···O interactions are shown as dashed lines.
[Figure 3] Fig. 3. A partial crystal packing diagram of title compound. The intermolecular C—H···π interactions are shown as dashed lines.
[2,7-Dihydroxy-8-(4-phenoxybenzoyl)naphthalen-1-yl](4-phenoxyphenyl)methanone top
Crystal data top
C36H24O6F(000) = 1152
Mr = 552.55Dx = 1.361 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54187 Å
Hall symbol: C -2ycCell parameters from 14515 reflections
a = 16.0313 (3) Åθ = 4.4–68.1°
b = 18.4956 (3) ŵ = 0.75 mm1
c = 12.1238 (2) ÅT = 193 K
β = 131.389 (1)°Block, yellow
V = 2696.95 (9) Å30.60 × 0.55 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4868 independent reflections
Radiation source: rotating anode4527 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.000 pixels mm-1θmax = 68.1°, θmin = 4.4°
ω scansh = 1919
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2222
Tmin = 0.661, Tmax = 0.929l = 1414
22236 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0414P)2 + 1.2872P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.20 e Å3
4868 reflectionsΔρmin = 0.21 e Å3
382 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.00222 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2389 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (19)
Crystal data top
C36H24O6V = 2696.95 (9) Å3
Mr = 552.55Z = 4
Monoclinic, CcCu Kα radiation
a = 16.0313 (3) ŵ = 0.75 mm1
b = 18.4956 (3) ÅT = 193 K
c = 12.1238 (2) Å0.60 × 0.55 × 0.10 mm
β = 131.389 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4868 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4527 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.929Rint = 0.033
22236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.20 e Å3
S = 1.08Δρmin = 0.21 e Å3
4868 reflectionsAbsolute structure: Flack (1983), 2389 Friedel pairs
382 parametersAbsolute structure parameter: 0.05 (19)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46616 (15)0.24827 (8)0.4776 (2)0.0586 (5)
O20.36810 (15)0.00189 (8)0.4778 (2)0.0589 (5)
O30.78626 (13)0.00972 (9)0.69269 (17)0.0540 (4)
O40.26329 (13)0.25987 (9)0.69275 (17)0.0540 (4)
O50.3598 (2)0.31569 (12)0.2334 (3)0.0889 (7)
H5A0.40280.31170.32520.107*
O60.2301 (2)0.06560 (12)0.2333 (3)0.0887 (7)
H6A0.28810.06520.32260.106*
C10.33277 (19)0.18893 (13)0.2506 (2)0.0461 (5)
C20.3049 (3)0.25255 (17)0.1699 (3)0.0664 (8)
C30.2213 (3)0.2516 (3)0.0165 (4)0.0985 (15)
H30.20200.29500.03740.118*
C40.1684 (3)0.1906 (3)0.0546 (3)0.1016 (16)
H40.11540.19090.15910.122*
C50.1337 (2)0.0591 (3)0.0547 (3)0.1027 (16)
H50.08220.05870.15920.123*
C60.1529 (3)0.0033 (3)0.0189 (4)0.1012 (15)
H60.11900.04710.03390.121*
C70.2216 (2)0.00274 (17)0.1702 (3)0.0661 (8)
C80.27453 (17)0.06111 (13)0.2507 (2)0.0460 (5)
C90.26698 (17)0.12502 (15)0.1775 (2)0.0487 (5)
C100.1889 (2)0.1250 (2)0.0211 (3)0.0757 (9)
C110.43775 (19)0.19208 (11)0.4067 (2)0.0426 (5)
C120.51884 (16)0.13161 (11)0.4748 (2)0.0369 (4)
C130.59891 (17)0.12824 (12)0.6275 (2)0.0422 (5)
H130.59360.15990.68430.051*
C140.68556 (17)0.07991 (13)0.6977 (2)0.0452 (5)
H140.73750.07640.80190.054*
C150.69610 (16)0.03646 (11)0.6145 (2)0.0399 (4)
C160.61693 (17)0.03743 (12)0.4626 (2)0.0413 (5)
H160.62400.00650.40660.050*
C170.52707 (17)0.08406 (12)0.3929 (2)0.0405 (5)
H170.47070.08360.28880.049*
C180.32565 (17)0.05816 (11)0.4067 (2)0.0427 (5)
C190.31261 (16)0.11833 (11)0.4748 (2)0.0368 (4)
C200.38516 (17)0.12173 (12)0.6276 (2)0.0421 (5)
H200.44710.08990.68440.050*
C210.36894 (18)0.17017 (13)0.6976 (2)0.0458 (5)
H210.42150.17380.80180.055*
C220.27547 (17)0.21371 (11)0.6151 (2)0.0399 (4)
C230.20247 (17)0.21294 (12)0.4623 (2)0.0412 (5)
H230.13970.24410.40630.049*
C240.22251 (17)0.16599 (12)0.3928 (2)0.0402 (5)
H240.17460.16620.28860.048*
C250.83934 (16)0.02601 (13)0.6401 (2)0.0449 (5)
C260.87387 (19)0.09629 (14)0.6575 (3)0.0530 (6)
H260.85650.13170.69640.064*
C270.9345 (2)0.11477 (15)0.6174 (3)0.0567 (6)
H270.95770.16340.62740.068*
C280.9614 (2)0.06375 (15)0.5636 (3)0.0553 (6)
H281.00360.07690.53720.066*
C290.92693 (19)0.00719 (15)0.5477 (3)0.0532 (6)
H290.94570.04280.51080.064*
C300.86529 (18)0.02621 (13)0.5855 (2)0.0480 (5)
H300.84100.07470.57400.058*
C310.15740 (18)0.27605 (13)0.6400 (2)0.0447 (5)
C320.1402 (2)0.34624 (14)0.6574 (3)0.0536 (6)
H320.19660.38150.69660.064*
C330.0399 (2)0.36505 (15)0.6174 (3)0.0565 (6)
H330.02680.41370.62740.068*
C340.0414 (2)0.31361 (15)0.5632 (3)0.0553 (6)
H340.10980.32670.53700.066*
C350.0229 (2)0.24338 (15)0.5473 (3)0.0536 (6)
H350.07880.20790.50970.064*
C360.0773 (2)0.22397 (13)0.5859 (2)0.0480 (5)
H360.09020.17540.57510.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0674 (11)0.0398 (8)0.0723 (11)0.0032 (8)0.0477 (10)0.0045 (8)
O20.0679 (12)0.0406 (9)0.0727 (11)0.0090 (8)0.0484 (10)0.0052 (8)
O30.0489 (9)0.0693 (11)0.0468 (8)0.0229 (8)0.0329 (8)0.0118 (7)
O40.0441 (9)0.0691 (11)0.0456 (8)0.0075 (8)0.0284 (7)0.0114 (7)
O50.1121 (19)0.0656 (13)0.1298 (19)0.0416 (13)0.0974 (18)0.0511 (13)
O60.0801 (15)0.0650 (13)0.1276 (19)0.0250 (11)0.0715 (14)0.0503 (13)
C10.0473 (12)0.0584 (14)0.0462 (12)0.0211 (10)0.0368 (11)0.0146 (10)
C20.0748 (18)0.0779 (19)0.0782 (18)0.0407 (15)0.0640 (17)0.0389 (15)
C30.081 (2)0.161 (4)0.080 (2)0.077 (3)0.064 (2)0.080 (3)
C40.0517 (18)0.217 (5)0.0412 (15)0.054 (3)0.0328 (14)0.038 (2)
C50.0345 (14)0.219 (5)0.0422 (15)0.004 (2)0.0201 (13)0.042 (2)
C60.0496 (17)0.167 (4)0.082 (2)0.031 (2)0.0411 (18)0.083 (3)
C70.0424 (13)0.080 (2)0.0774 (18)0.0113 (13)0.0403 (14)0.0387 (15)
C80.0302 (10)0.0581 (14)0.0470 (12)0.0028 (9)0.0244 (9)0.0147 (10)
C90.0329 (11)0.0798 (15)0.0347 (10)0.0158 (11)0.0230 (9)0.0004 (11)
C100.0336 (12)0.159 (3)0.0319 (11)0.0234 (16)0.0206 (10)0.0003 (16)
C110.0501 (12)0.0401 (11)0.0516 (12)0.0021 (9)0.0396 (11)0.0009 (9)
C120.0329 (10)0.0386 (10)0.0411 (10)0.0010 (8)0.0252 (9)0.0009 (8)
C130.0372 (11)0.0491 (11)0.0418 (10)0.0025 (9)0.0269 (10)0.0094 (9)
C140.0351 (11)0.0609 (13)0.0352 (10)0.0035 (9)0.0213 (9)0.0013 (9)
C150.0341 (10)0.0437 (11)0.0426 (10)0.0057 (9)0.0257 (9)0.0040 (9)
C160.0405 (11)0.0445 (11)0.0421 (10)0.0030 (9)0.0287 (9)0.0050 (8)
C170.0346 (10)0.0504 (12)0.0362 (10)0.0050 (9)0.0232 (9)0.0013 (8)
C180.0355 (10)0.0386 (11)0.0523 (12)0.0013 (9)0.0283 (10)0.0003 (9)
C190.0377 (10)0.0384 (10)0.0410 (10)0.0008 (8)0.0289 (9)0.0017 (8)
C200.0385 (11)0.0489 (11)0.0418 (10)0.0101 (9)0.0278 (9)0.0092 (9)
C210.0400 (11)0.0627 (13)0.0346 (10)0.0052 (10)0.0247 (9)0.0016 (9)
C220.0392 (11)0.0460 (11)0.0404 (10)0.0016 (9)0.0289 (9)0.0025 (9)
C230.0379 (10)0.0450 (11)0.0405 (10)0.0104 (9)0.0259 (9)0.0054 (8)
C240.0350 (11)0.0509 (12)0.0360 (10)0.0034 (9)0.0241 (9)0.0008 (8)
C250.0310 (10)0.0608 (14)0.0350 (10)0.0065 (9)0.0184 (9)0.0036 (9)
C260.0390 (12)0.0598 (14)0.0540 (13)0.0056 (10)0.0281 (11)0.0001 (11)
C270.0425 (12)0.0593 (15)0.0600 (14)0.0066 (11)0.0303 (11)0.0098 (12)
C280.0370 (11)0.0753 (16)0.0529 (12)0.0033 (11)0.0294 (11)0.0173 (12)
C290.0395 (12)0.0713 (16)0.0431 (12)0.0088 (11)0.0248 (10)0.0100 (11)
C300.0368 (11)0.0516 (13)0.0411 (11)0.0009 (9)0.0196 (10)0.0073 (9)
C310.0428 (11)0.0600 (14)0.0358 (10)0.0109 (10)0.0280 (10)0.0043 (9)
C320.0589 (15)0.0611 (14)0.0552 (13)0.0054 (11)0.0439 (13)0.0000 (11)
C330.0672 (16)0.0597 (15)0.0581 (14)0.0193 (13)0.0481 (13)0.0102 (11)
C340.0507 (13)0.0771 (17)0.0521 (12)0.0203 (13)0.0400 (11)0.0176 (12)
C350.0514 (14)0.0697 (16)0.0444 (12)0.0038 (12)0.0336 (11)0.0090 (11)
C360.0547 (13)0.0530 (13)0.0417 (11)0.0106 (10)0.0342 (11)0.0075 (9)
Geometric parameters (Å, º) top
O1—C111.228 (3)C16—H160.9500
O2—C181.230 (3)C17—H170.9500
O3—C151.380 (2)C18—C191.481 (3)
O3—C251.392 (3)C19—C201.393 (3)
O4—C221.377 (2)C19—C241.397 (3)
O4—C311.395 (3)C20—C211.372 (3)
O5—C21.355 (4)C20—H200.9500
O5—H5A0.8400C21—C221.383 (3)
O6—C71.348 (4)C21—H210.9500
O6—H6A0.8400C22—C231.391 (3)
C1—C21.401 (3)C23—C241.387 (3)
C1—C91.435 (4)C23—H230.9500
C1—C111.485 (3)C24—H240.9500
C2—C31.399 (5)C25—C261.373 (3)
C3—C41.329 (6)C25—C301.382 (3)
C3—H30.9500C26—C271.387 (4)
C4—C101.423 (6)C26—H260.9500
C4—H40.9500C27—C281.370 (4)
C5—C61.364 (6)C27—H270.9500
C5—C101.428 (6)C28—C291.387 (4)
C5—H50.9500C28—H280.9500
C6—C71.381 (5)C29—C301.381 (3)
C6—H60.9500C29—H290.9500
C7—C81.404 (3)C30—H300.9500
C8—C91.435 (4)C31—C321.372 (3)
C8—C181.484 (3)C31—C361.376 (3)
C9—C101.422 (3)C32—C331.383 (4)
C11—C121.484 (3)C32—H320.9500
C12—C131.392 (3)C33—C341.379 (4)
C12—C171.396 (3)C33—H330.9500
C13—C141.375 (3)C34—C351.374 (4)
C13—H130.9500C34—H340.9500
C14—C151.385 (3)C35—C361.390 (3)
C14—H140.9500C35—H350.9500
C15—C161.383 (3)C36—H360.9500
C16—C171.387 (3)
C15—O3—C25119.93 (16)O2—C18—C8120.5 (2)
C22—O4—C31119.97 (16)C19—C18—C8121.35 (18)
C2—O5—H5A109.5C20—C19—C24118.61 (18)
C7—O6—H6A109.5C20—C19—C18118.29 (18)
C2—C1—C9119.7 (2)C24—C19—C18122.58 (18)
C2—C1—C11115.2 (2)C21—C20—C19121.27 (19)
C9—C1—C11124.8 (2)C21—C20—H20119.4
O5—C2—C3117.3 (3)C19—C20—H20119.4
O5—C2—C1122.7 (3)C20—C21—C22119.41 (19)
C3—C2—C1120.0 (3)C20—C21—H21120.3
C4—C3—C2120.9 (3)C22—C21—H21120.3
C4—C3—H3119.6O4—C22—C21116.27 (18)
C2—C3—H3119.6O4—C22—C23122.82 (18)
C3—C4—C10121.9 (3)C21—C22—C23120.80 (18)
C3—C4—H4119.1C24—C23—C22119.10 (19)
C10—C4—H4119.1C24—C23—H23120.4
C6—C5—C10121.7 (3)C22—C23—H23120.4
C6—C5—H5119.2C23—C24—C19120.58 (18)
C10—C5—H5119.2C23—C24—H24119.7
C5—C6—C7120.0 (3)C19—C24—H24119.7
C5—C6—H6120.0C26—C25—C30121.1 (2)
C7—C6—H6120.0C26—C25—O3116.2 (2)
O6—C7—C6116.1 (3)C30—C25—O3122.5 (2)
O6—C7—C8122.9 (3)C25—C26—C27119.0 (2)
C6—C7—C8121.0 (4)C25—C26—H26120.5
C7—C8—C9119.8 (2)C27—C26—H26120.5
C7—C8—C18115.2 (2)C28—C27—C26120.8 (2)
C9—C8—C18124.7 (2)C28—C27—H27119.6
C10—C9—C8117.7 (3)C26—C27—H27119.6
C10—C9—C1117.6 (3)C27—C28—C29119.7 (2)
C8—C9—C1124.71 (18)C27—C28—H28120.2
C9—C10—C4119.0 (3)C29—C28—H28120.2
C9—C10—C5118.9 (3)C30—C29—C28120.2 (2)
C4—C10—C5122.1 (3)C30—C29—H29119.9
O1—C11—C12117.7 (2)C28—C29—H29119.9
O1—C11—C1120.6 (2)C29—C30—C25119.3 (2)
C12—C11—C1121.13 (18)C29—C30—H30120.4
C13—C12—C17118.70 (18)C25—C30—H30120.4
C13—C12—C11118.15 (18)C32—C31—C36121.1 (2)
C17—C12—C11122.61 (18)C32—C31—O4116.1 (2)
C14—C13—C12121.21 (19)C36—C31—O4122.6 (2)
C14—C13—H13119.4C31—C32—C33119.3 (2)
C12—C13—H13119.4C31—C32—H32120.3
C13—C14—C15119.11 (19)C33—C32—H32120.3
C13—C14—H14120.4C34—C33—C32120.4 (2)
C15—C14—H14120.4C34—C33—H33119.8
O3—C15—C16123.03 (18)C32—C33—H33119.8
O3—C15—C14115.80 (18)C35—C34—C33119.7 (2)
C16—C15—C14121.08 (18)C35—C34—H34120.1
C15—C16—C17119.23 (19)C33—C34—H34120.1
C15—C16—H16120.4C34—C35—C36120.3 (2)
C17—C16—H16120.4C34—C35—H35119.8
C16—C17—C12120.47 (18)C36—C35—H35119.8
C16—C17—H17119.8C31—C36—C35119.1 (2)
C12—C17—H17119.8C31—C36—H36120.5
O2—C18—C19117.5 (2)C35—C36—H36120.5
C9—C1—C2—O5176.4 (2)O3—C15—C16—C17178.0 (2)
C11—C1—C2—O59.4 (3)C14—C15—C16—C171.6 (3)
C9—C1—C2—C37.1 (3)C15—C16—C17—C122.6 (3)
C11—C1—C2—C3167.1 (2)C13—C12—C17—C163.8 (3)
O5—C2—C3—C4175.7 (3)C11—C12—C17—C16167.6 (2)
C1—C2—C3—C41.0 (4)C7—C8—C18—O234.8 (3)
C2—C3—C4—C104.1 (5)C9—C8—C18—O2151.6 (2)
C10—C5—C6—C74.3 (5)C7—C8—C18—C19135.9 (2)
C5—C6—C7—O6175.6 (3)C9—C8—C18—C1937.8 (3)
C5—C6—C7—C81.4 (4)O2—C18—C19—C2026.1 (3)
O6—C7—C8—C9176.5 (2)C8—C18—C19—C20163.0 (2)
C6—C7—C8—C96.7 (3)O2—C18—C19—C24145.5 (2)
O6—C7—C8—C189.5 (3)C8—C18—C19—C2425.5 (3)
C6—C7—C8—C18167.4 (2)C24—C19—C20—C210.5 (3)
C7—C8—C9—C1011.6 (3)C18—C19—C20—C21171.4 (2)
C18—C8—C9—C10161.8 (2)C19—C20—C21—C223.6 (3)
C7—C8—C9—C1168.3 (2)C31—O4—C22—C21146.0 (2)
C18—C8—C9—C118.3 (3)C31—O4—C22—C2337.7 (3)
C2—C1—C9—C1011.7 (3)C20—C21—C22—O4178.6 (2)
C11—C1—C9—C10161.8 (2)C20—C21—C22—C235.0 (3)
C2—C1—C9—C8168.4 (2)O4—C22—C23—C24178.3 (2)
C11—C1—C9—C818.0 (3)C21—C22—C23—C242.1 (3)
C8—C9—C10—C4171.4 (2)C22—C23—C24—C192.1 (3)
C1—C9—C10—C48.7 (3)C20—C19—C24—C233.5 (3)
C8—C9—C10—C58.7 (3)C18—C19—C24—C23168.1 (2)
C1—C9—C10—C5171.2 (2)C15—O3—C25—C26140.9 (2)
C3—C4—C10—C90.9 (4)C15—O3—C25—C3044.7 (3)
C3—C4—C10—C5178.9 (3)C30—C25—C26—C270.8 (3)
C6—C5—C10—C90.9 (4)O3—C25—C26—C27175.3 (2)
C6—C5—C10—C4179.2 (3)C25—C26—C27—C281.1 (4)
C2—C1—C11—O134.9 (3)C26—C27—C28—C290.5 (4)
C9—C1—C11—O1151.3 (2)C27—C28—C29—C300.3 (3)
C2—C1—C11—C12136.1 (2)C28—C29—C30—C250.5 (3)
C9—C1—C11—C1237.7 (3)C26—C25—C30—C290.0 (3)
O1—C11—C12—C1326.0 (3)O3—C25—C30—C29174.1 (2)
C1—C11—C12—C13162.8 (2)C22—O4—C31—C32141.1 (2)
O1—C11—C12—C17145.5 (2)C22—O4—C31—C3644.7 (3)
C1—C11—C12—C1725.8 (3)C36—C31—C32—C331.2 (3)
C17—C12—C13—C140.8 (3)O4—C31—C32—C33175.38 (19)
C11—C12—C13—C14171.0 (2)C31—C32—C33—C341.2 (3)
C12—C13—C14—C153.3 (3)C32—C33—C34—C350.7 (4)
C25—O3—C15—C1637.3 (3)C33—C34—C35—C360.2 (3)
C25—O3—C15—C14146.1 (2)C32—C31—C36—C350.6 (3)
C13—C14—C15—O3178.8 (2)O4—C31—C36—C35174.45 (19)
C13—C14—C15—C164.5 (3)C34—C35—C36—C310.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C25—C30 and C31—C36 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O5—H5A···O10.841.832.560 (3)145
O6—H6A···O20.841.882.563 (3)138
C26—H26···O4i0.952.483.377 (4)157
C27—H27···O1i0.952.513.269 (4)137
C32—H32···O3ii0.952.493.382 (4)156
C33—H33···O2ii0.952.513.270 (4)137
C14—H14···Cg1iii0.952.803.740 (2)171
C21—H21···Cg2iv0.952.803.740 (2)171
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y+1/2, z; (iii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC36H24O6
Mr552.55
Crystal system, space groupMonoclinic, Cc
Temperature (K)193
a, b, c (Å)16.0313 (3), 18.4956 (3), 12.1238 (2)
β (°) 131.389 (1)
V3)2696.95 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.75
Crystal size (mm)0.60 × 0.55 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.661, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
22236, 4868, 4527
Rint0.033
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.08
No. of reflections4868
No. of parameters382
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21
Absolute structureFlack (1983), 2389 Friedel pairs
Absolute structure parameter0.05 (19)

Computer programs: PROCESS-AUTO (Rigaku, 1998), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C25—C30 and C31—C36 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O5—H5A···O10.841.832.560 (3)145
O6—H6A···O20.841.882.563 (3)138
C26—H26···O4i0.952.483.377 (4)157
C27—H27···O1i0.952.513.269 (4)137
C32—H32···O3ii0.952.493.382 (4)156
C33—H33···O2ii0.952.513.270 (4)137
C14—H14···Cg1iii0.952.803.740 (2)171
C21—H21···Cg2iv0.952.803.740 (2)171
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y+1/2, z; (iii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors would like to express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for his technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkamoto, A., Hijikata, D., Sakai, N. & Yonezawa, N. (2013). Polym. J. In the press. doi:10.1038/pj.2012.135.  Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o208-o209
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds