metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m122-m123

Bis(4,4′′-di­fluoro-1,1′:3′,1′′-terphenyl-2′-carboxyl­ato-κO)tetra­kis­(methanol-κO)calcium methanol tetra­solvate

aDepartment of Bio & Nano Chemistry, College of Natural Sciences, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Republic of Korea, and bDepartment of Physics, College of Natural Sciences, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Republic of Korea.
*Correspondence e-mail: yoona@kookmin.ac.kr, crpark@kookmin.ac.kr

(Received 21 November 2012; accepted 2 January 2013; online 23 January 2013)

In the title compound, [Ca(C19H11F2O2)2(CH3OH)4]·4CH3OH, the Ca2+ ion is located on an inversion centre and is hexa­coordinated by two O atoms of two 4,4′′-difluoro-1,1′:3′,1′′-terphenyl-2′-carboxyl­ate ligands and four O atoms of four methanol ligands, forming a CaO6 polyhedron with a slightly distorted octa­hedral coordination geometry. The Ca—O—C angle between the carboxyl­ate group and the calcium ion is 171.8 (2)°. Two types of inter­molecular hydrogen-bond inter­actions (C=O⋯H and O—H⋯O) between the carboxyl­ate ligand, the methanol solvent mol­ecules and the coordinating methanol ligands generate a two-dimensional network parallel to (001).

Related literature

For background to metal complexes with 4,4′′-difluoro-1,1′:3′,1′′-terphenyl-2′-carboxyl­ate ligands, see: Kannan et al. (2011[Kannan, S., Venkatachalam, G., Lee, H.-J., Kim, W., Koo, E., Do, Y. R. & Yoon, S. (2011). Polyhedron, 30, 340-346.]); Chavez et al. (2001[Chavez, F. A., Que, L. & Tolman, W. B. (2001). Chem. Commun. pp. 111-112.]). For mononuclear calcium complexes with carboxyl­ate ligands, see: Perrin et al. (2009[Perrin, C. L., Lau, J. S., Kim, Y.-J., Karri, P., Moore, C. & Rheingold, A. L. (2009). J. Am. Chem. Soc. 131, 13548-13554.]); Godino Salido et al. (2004[Godino Salido, M. L., Arranz Mascarós, P., López Garzón, R., Gutiérrez Valero, M. D., Low, J. N., Gallagher, J. F. & Glidewell, C. (2004). Acta Cryst. B60, 46-64.]); Huang et al. (2010[Huang, L., Zhong, A. G., Chen, D. B., Qiu, D. & Liang, H. D. (2010). J. Mol. Struct. 984, 39-50.]). For their polymerization behavior, see: Jisha et al. (2010[Jisha, K. R., Suma, S. & Sudarsanakumar, M. R. (2010). Polyhedron, 29, 3164-3169.]); Murugavel & Banerjee (2003[Murugavel, R. & Banerjee, S. (2003). Inorg. Chem. Commun. 6, 810-814.]); Yang et al. (2004[Yang, Y.-Y., Huang, Z.-Q., Szeto, L. & Wong, W. T. (2004). Appl. Organomet. Chem. 18, 97-98.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca(C19H11F2O2)2(CH4O)4]·4CH4O

  • Mr = 914.97

  • Orthorhombic, P b c a

  • a = 15.4611 (19) Å

  • b = 14.2436 (18) Å

  • c = 20.886 (3) Å

  • V = 4599.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 200 K

  • 0.32 × 0.23 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.521, Tmax = 1.00

  • 32627 measured reflections

  • 5709 independent reflections

  • 2624 reflections with I > 2σ(I)

  • Rint = 0.143

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.165

  • S = 0.98

  • 5709 reflections

  • 300 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Ca1—O1 2.2693 (19)
Ca1—O4 2.325 (2)
Ca1—O3 2.346 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O6ii 0.89 (4) 1.78 (4) 2.636 (3) 162 (4)
O4—H2⋯O5iii 0.91 (4) 1.76 (4) 2.660 (3) 172 (4)
O6—H6A⋯O2iv 0.84 1.96 2.804 (3) 177
O5—H5A⋯O2v 0.84 1.92 2.755 (3) 170
Symmetry codes: (ii) x, y-1, z; (iii) x+1, y-1, z; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (v) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Octahedral mononuclear transition metal complexes with ligated carboxylates are well known structure for basic of inorganic chemistry (Chavez et al., 2001; Kannan et al., 2011). Few mononuclear calcium complexes with carboxylate ligands (Perrin et al., 2009; Godino Salido et al., 2004; Huang et al., 2010) are reported possible due to easy polymerization behavior (Murugavel et al., 2003; Jisha et al., 2010; Yang et al., 2004). Here, we report the structure of an octahedrally coordinated Ca2+ complex which crystallizes in the orthorhombic space group Pbca with one half molecule in the asymmetric unit. The selected bond distances and angles of [Ca(C19H11O2F2)2(CH4O)4] are given in Table 1 with the structure of the molecule shown, in Fig 1, and its crystal packing involving strong intermolecular C=O···H, O—H···O interactions are detailed in Fig 2 and Table 2.

Related literature top

For background to metal complexes with 4,4''-difluoro-1,1':3',1''-terphenyl-2'-carboxylate ligands, see: Kannan et al. (2011); Chavez et al. (2001). For mononuclear calcium complexes with carboxylate ligands, see: Perrin et al. (2009); Godino Salido et al. (2004); Huang et al. (2010). For their polymerization behavior, see: Jisha et al. (2010); Murugavel & Banerjee (2003); Yang et al. (2004).

Experimental top

To a solution of sodium 4,4''-difluoro-1,1':3',1''-terphenyl-2'-carboxylate (0.200 g, 0.602 mmol) in 15 ml of methanol, Ca(CF3SO3)2 (0.204 g, 0.602 mmol) was added at room temperature. After stirring for 30 min, colorless block type crystals were collected from slow evaporization. Yield = 51%, (0.281 g).

Refinement top

H atoms were placed at calculated positions and refined as riding with C–H(aromatic) = 0.95 Å, C–H(CH3) = 0.98 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl groups. The O-bound H atoms of methanol were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound, showing the hydrogen bonds and with displacement ellipsoids drawn at the 50% probability level.
Bis(4,4''-difluoro-1,1':3',1''-terphenyl-2'-carboxylato- κO)tetrakis(methanol-κO)calcium methanol tetrasolvate top
Crystal data top
[Ca(C19H11F2O2)2(CH4O)4]·4CH4OF(000) = 1928
Mr = 914.97Dx = 1.321 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ac 2abCell parameters from 2898 reflections
a = 15.4611 (19) Åθ = 2.2–22.0°
b = 14.2436 (18) ŵ = 0.21 mm1
c = 20.886 (3) ÅT = 200 K
V = 4599.5 (10) Å3Block, colorless
Z = 40.32 × 0.23 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5709 independent reflections
Radiation source: fine-focus sealed tube2624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.143
phi and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1420
Tmin = 0.521, Tmax = 1.00k = 1818
32627 measured reflectionsl = 2327
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0644P)2]
where P = (Fo2 + 2Fc2)/3
5709 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Ca(C19H11F2O2)2(CH4O)4]·4CH4OV = 4599.5 (10) Å3
Mr = 914.97Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 15.4611 (19) ŵ = 0.21 mm1
b = 14.2436 (18) ÅT = 200 K
c = 20.886 (3) Å0.32 × 0.23 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5709 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2624 reflections with I > 2σ(I)
Tmin = 0.521, Tmax = 1.00Rint = 0.143
32627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.43 e Å3
5709 reflectionsΔρmin = 0.45 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca11.00000.00000.50000.0296 (2)
O20.79691 (12)0.20766 (14)0.46541 (10)0.0359 (5)
O10.92097 (13)0.12979 (14)0.47660 (10)0.0382 (6)
O30.94225 (15)0.07389 (16)0.40917 (11)0.0416 (6)
O41.12075 (14)0.04631 (15)0.44165 (11)0.0436 (6)
F21.02858 (13)0.35764 (16)0.71251 (10)0.0657 (6)
F10.68180 (14)0.03347 (16)0.22211 (11)0.0698 (7)
C150.7834 (2)0.2459 (2)0.27894 (15)0.0414 (8)
H150.77660.31200.27540.050*
C10.87736 (19)0.1973 (2)0.45564 (14)0.0293 (7)
C80.99166 (19)0.3377 (2)0.51732 (15)0.0349 (8)
C20.92369 (18)0.27084 (19)0.41636 (15)0.0297 (7)
C60.9544 (2)0.3437 (2)0.31427 (17)0.0439 (9)
H60.94600.34760.26930.053*
C140.8506 (2)0.2098 (2)0.31613 (15)0.0353 (8)
C30.97877 (18)0.3349 (2)0.44720 (16)0.0327 (8)
C70.91018 (19)0.2756 (2)0.35003 (15)0.0344 (8)
C51.0100 (2)0.4050 (2)0.34434 (17)0.0455 (9)
H51.04070.45010.31970.055*
C90.9219 (2)0.3391 (2)0.56012 (16)0.0368 (8)
H90.86470.33510.54360.044*
C131.0747 (2)0.3425 (2)0.54382 (17)0.0400 (8)
H131.12350.34140.51610.048*
C190.8596 (2)0.1135 (2)0.31971 (16)0.0451 (9)
H190.90490.08760.34480.054*
C100.9335 (2)0.3462 (2)0.62520 (16)0.0428 (8)
H100.88550.34790.65350.051*
C41.0216 (2)0.4017 (2)0.40898 (18)0.0426 (9)
H41.05950.44550.42870.051*
C111.0168 (2)0.3508 (2)0.64801 (17)0.0454 (9)
C121.0876 (2)0.3486 (2)0.60847 (17)0.0439 (9)
H121.14440.35120.62560.053*
C170.7379 (2)0.0923 (3)0.25238 (17)0.0479 (9)
C211.1492 (2)0.1374 (2)0.42276 (18)0.0514 (10)
H21A1.10190.17030.40110.077*
H21B1.19840.13140.39340.077*
H21C1.16690.17300.46070.077*
C200.9850 (2)0.1026 (3)0.35239 (19)0.0562 (10)
H20A1.01030.04770.33120.084*
H20B0.94330.13270.32360.084*
H20C1.03090.14740.36320.084*
C180.8036 (2)0.0540 (2)0.28735 (17)0.0503 (10)
H180.81080.01220.28950.060*
C160.7266 (2)0.1872 (3)0.24715 (16)0.0472 (9)
H160.68080.21230.22220.057*
O50.24558 (14)0.91787 (15)0.43929 (12)0.0451 (6)
H5A0.23730.88280.47110.068*
O60.78040 (14)0.86827 (15)0.41295 (12)0.0483 (6)
H6A0.75760.81920.42750.073*
C230.7269 (2)0.9463 (2)0.42684 (19)0.0504 (10)
H23A0.70590.94170.47100.076*
H23B0.67750.94680.39740.076*
H23C0.76011.00440.42170.076*
C220.2469 (2)0.8631 (3)0.38278 (18)0.0554 (10)
H22A0.25030.90450.34540.083*
H22B0.19400.82540.38030.083*
H22C0.29740.82150.38350.083*
H21.163 (2)0.003 (3)0.4370 (19)0.078 (13)*
H10.892 (3)0.104 (3)0.4134 (19)0.084 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0215 (4)0.0302 (4)0.0370 (5)0.0015 (4)0.0028 (4)0.0044 (4)
O20.0218 (12)0.0384 (12)0.0474 (15)0.0003 (9)0.0029 (9)0.0063 (11)
O10.0323 (13)0.0324 (12)0.0498 (15)0.0075 (10)0.0001 (10)0.0092 (11)
O30.0317 (14)0.0506 (15)0.0424 (15)0.0045 (12)0.0031 (10)0.0080 (11)
O40.0311 (13)0.0363 (13)0.0635 (17)0.0029 (11)0.0164 (11)0.0084 (12)
F20.0575 (14)0.0938 (17)0.0456 (15)0.0085 (12)0.0073 (10)0.0017 (12)
F10.0726 (16)0.0703 (15)0.0663 (16)0.0189 (12)0.0069 (12)0.0205 (12)
C150.049 (2)0.0419 (19)0.034 (2)0.0009 (17)0.0049 (16)0.0006 (16)
C10.0267 (18)0.0323 (16)0.0289 (18)0.0018 (14)0.0024 (13)0.0011 (14)
C80.0302 (18)0.0283 (16)0.046 (2)0.0047 (14)0.0023 (15)0.0028 (14)
C20.0221 (16)0.0286 (16)0.039 (2)0.0030 (13)0.0053 (13)0.0005 (14)
C60.046 (2)0.048 (2)0.038 (2)0.0018 (17)0.0053 (16)0.0051 (17)
C140.038 (2)0.0380 (18)0.0298 (19)0.0003 (15)0.0071 (14)0.0016 (15)
C30.0244 (17)0.0344 (17)0.039 (2)0.0024 (14)0.0027 (14)0.0016 (15)
C70.0326 (19)0.0334 (17)0.037 (2)0.0036 (14)0.0092 (14)0.0017 (15)
C50.050 (2)0.0404 (19)0.046 (2)0.0122 (17)0.0131 (17)0.0055 (17)
C90.0301 (19)0.0355 (18)0.045 (2)0.0006 (14)0.0005 (15)0.0024 (15)
C130.0250 (18)0.0425 (19)0.052 (2)0.0040 (15)0.0025 (15)0.0006 (17)
C190.055 (2)0.0374 (19)0.043 (2)0.0013 (17)0.0025 (17)0.0010 (16)
C100.036 (2)0.047 (2)0.045 (2)0.0004 (15)0.0014 (16)0.0009 (17)
C40.035 (2)0.0391 (19)0.053 (2)0.0065 (15)0.0053 (16)0.0005 (17)
C110.050 (2)0.049 (2)0.038 (2)0.0034 (17)0.0063 (17)0.0002 (17)
C120.032 (2)0.051 (2)0.049 (2)0.0045 (16)0.0059 (16)0.0017 (18)
C170.049 (2)0.056 (2)0.039 (2)0.0108 (19)0.0065 (17)0.015 (2)
C210.051 (2)0.044 (2)0.060 (3)0.0037 (18)0.0096 (18)0.0131 (18)
C200.053 (2)0.053 (2)0.062 (3)0.0039 (19)0.0097 (19)0.011 (2)
C180.065 (3)0.037 (2)0.049 (2)0.0060 (19)0.0053 (19)0.0065 (18)
C160.047 (2)0.059 (2)0.036 (2)0.0054 (18)0.0005 (17)0.0051 (18)
O50.0352 (13)0.0449 (14)0.0553 (17)0.0028 (11)0.0104 (12)0.0055 (12)
O60.0331 (14)0.0410 (13)0.0710 (18)0.0088 (11)0.0044 (11)0.0040 (13)
C230.045 (2)0.039 (2)0.067 (3)0.0086 (17)0.0080 (18)0.0013 (18)
C220.054 (2)0.060 (2)0.052 (3)0.006 (2)0.0038 (18)0.001 (2)
Geometric parameters (Å, º) top
Ca1—O1i2.2692 (19)C9—C101.375 (4)
Ca1—O12.2693 (19)C9—H90.9500
Ca1—O4i2.325 (2)C13—C121.368 (4)
Ca1—O42.325 (2)C13—H130.9500
Ca1—O32.346 (2)C19—C181.388 (4)
Ca1—O3i2.346 (2)C19—H190.9500
O2—C11.269 (3)C10—C111.375 (5)
O1—C11.253 (3)C10—H100.9500
O3—C201.418 (4)C4—H40.9500
O3—H10.89 (4)C11—C121.371 (5)
O4—C211.425 (4)C12—H120.9500
O4—H20.91 (4)C17—C181.364 (5)
F2—C111.363 (4)C17—C161.367 (5)
F1—C171.362 (4)C21—H21A0.9800
C15—C161.382 (5)C21—H21B0.9800
C15—C141.395 (4)C21—H21C0.9800
C15—H150.9500C20—H20A0.9800
C1—C21.511 (4)C20—H20B0.9800
C8—C131.400 (4)C20—H20C0.9800
C8—C91.401 (4)C18—H180.9500
C8—C31.479 (4)C16—H160.9500
C2—C71.403 (4)O5—C221.415 (4)
C2—C31.404 (4)O5—H5A0.8400
C6—C51.377 (5)O6—C231.416 (4)
C6—C71.403 (4)O6—H6A0.8400
C6—H60.9500C23—H23A0.9800
C14—C191.380 (4)C23—H23B0.9800
C14—C71.492 (4)C23—H23C0.9800
C3—C41.408 (4)C22—H22A0.9800
C5—C41.363 (5)C22—H22B0.9800
C5—H50.9500C22—H22C0.9800
O1i—Ca1—O1180.00 (8)C12—C13—H13119.1
O1i—Ca1—O4i95.07 (8)C8—C13—H13119.1
O1—Ca1—O4i84.93 (8)C14—C19—C18121.2 (3)
O1i—Ca1—O484.93 (8)C14—C19—H19119.4
O1—Ca1—O495.07 (8)C18—C19—H19119.4
O4i—Ca1—O4180.0C9—C10—C11117.9 (3)
O1i—Ca1—O390.78 (8)C9—C10—H10121.0
O1—Ca1—O389.22 (8)C11—C10—H10121.0
O4i—Ca1—O389.48 (8)C5—C4—C3121.5 (3)
O4—Ca1—O390.52 (8)C5—C4—H4119.2
O1i—Ca1—O3i89.22 (8)C3—C4—H4119.2
O1—Ca1—O3i90.78 (8)F2—C11—C12119.4 (3)
O4i—Ca1—O3i90.52 (8)F2—C11—C10118.1 (3)
O4—Ca1—O3i89.48 (8)C12—C11—C10122.5 (3)
O3—Ca1—O3i180.0C13—C12—C11118.7 (3)
C1—O1—Ca1171.8 (2)C13—C12—H12120.6
C20—O3—Ca1128.9 (2)C11—C12—H12120.6
C20—O3—H1110 (3)F1—C17—C18118.4 (3)
Ca1—O3—H1118 (3)F1—C17—C16119.3 (3)
C21—O4—Ca1130.6 (2)C18—C17—C16122.2 (3)
C21—O4—H2112 (2)O4—C21—H21A109.5
Ca1—O4—H2116 (2)O4—C21—H21B109.5
C16—C15—C14121.2 (3)H21A—C21—H21B109.5
C16—C15—H15119.4O4—C21—H21C109.5
C14—C15—H15119.4H21A—C21—H21C109.5
O1—C1—O2124.1 (3)H21B—C21—H21C109.5
O1—C1—C2117.8 (3)O3—C20—H20A109.5
O2—C1—C2118.1 (3)O3—C20—H20B109.5
C13—C8—C9117.0 (3)H20A—C20—H20B109.5
C13—C8—C3121.1 (3)O3—C20—H20C109.5
C9—C8—C3121.9 (3)H20A—C20—H20C109.5
C7—C2—C3120.8 (3)H20B—C20—H20C109.5
C7—C2—C1119.9 (3)C17—C18—C19118.7 (3)
C3—C2—C1119.3 (3)C17—C18—H18120.6
C5—C6—C7120.0 (3)C19—C18—H18120.6
C5—C6—H6120.0C17—C16—C15118.6 (3)
C7—C6—H6120.0C17—C16—H16120.7
C19—C14—C15118.1 (3)C15—C16—H16120.7
C19—C14—C7122.4 (3)C22—O5—H5A109.5
C15—C14—C7119.5 (3)C23—O6—H6A109.5
C2—C3—C4117.7 (3)O6—C23—H23A109.5
C2—C3—C8123.6 (3)O6—C23—H23B109.5
C4—C3—C8118.7 (3)H23A—C23—H23B109.5
C6—C7—C2119.1 (3)O6—C23—H23C109.5
C6—C7—C14118.9 (3)H23A—C23—H23C109.5
C2—C7—C14122.0 (3)H23B—C23—H23C109.5
C4—C5—C6120.8 (3)O5—C22—H22A109.5
C4—C5—H5119.6O5—C22—H22B109.5
C6—C5—H5119.6H22A—C22—H22B109.5
C10—C9—C8122.1 (3)O5—C22—H22C109.5
C10—C9—H9119.0H22A—C22—H22C109.5
C8—C9—H9119.0H22B—C22—H22C109.5
C12—C13—C8121.8 (3)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O6ii0.89 (4)1.78 (4)2.636 (3)162 (4)
O4—H2···O5iii0.91 (4)1.76 (4)2.660 (3)172 (4)
O6—H6A···O2iv0.841.962.804 (3)177
O5—H5A···O2v0.841.922.755 (3)170
Symmetry codes: (ii) x, y1, z; (iii) x+1, y1, z; (iv) x+3/2, y+1/2, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ca(C19H11F2O2)2(CH4O)4]·4CH4O
Mr914.97
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)15.4611 (19), 14.2436 (18), 20.886 (3)
V3)4599.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.32 × 0.23 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.521, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
32627, 5709, 2624
Rint0.143
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.165, 0.98
No. of reflections5709
No. of parameters300
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.45

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick,2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ca1—O1i2.2692 (19)Ca1—O42.325 (2)
Ca1—O12.2693 (19)Ca1—O32.346 (2)
Ca1—O4i2.325 (2)Ca1—O3i2.346 (2)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O6ii0.89 (4)1.78 (4)2.636 (3)162 (4)
O4—H2···O5iii0.91 (4)1.76 (4)2.660 (3)172 (4)
O6—H6A···O2iv0.841.962.804 (3)177.3
O5—H5A···O2v0.841.922.755 (3)169.9
Symmetry codes: (ii) x, y1, z; (iii) x+1, y1, z; (iv) x+3/2, y+1/2, z; (v) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Inter­national Collaborative R&D Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by Korea Government Ministry of Knowledge Economy (20118520010020).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChavez, F. A., Que, L. & Tolman, W. B. (2001). Chem. Commun. pp. 111–112.  Web of Science CSD CrossRef Google Scholar
First citationGodino Salido, M. L., Arranz Mascarós, P., López Garzón, R., Gutiérrez Valero, M. D., Low, J. N., Gallagher, J. F. & Glidewell, C. (2004). Acta Cryst. B60, 46–64.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHuang, L., Zhong, A. G., Chen, D. B., Qiu, D. & Liang, H. D. (2010). J. Mol. Struct. 984, 39–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationJisha, K. R., Suma, S. & Sudarsanakumar, M. R. (2010). Polyhedron, 29, 3164–3169.  Web of Science CSD CrossRef CAS Google Scholar
First citationKannan, S., Venkatachalam, G., Lee, H.-J., Kim, W., Koo, E., Do, Y. R. & Yoon, S. (2011). Polyhedron, 30, 340–346.  Web of Science CSD CrossRef CAS Google Scholar
First citationMurugavel, R. & Banerjee, S. (2003). Inorg. Chem. Commun. 6, 810–814.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerrin, C. L., Lau, J. S., Kim, Y.-J., Karri, P., Moore, C. & Rheingold, A. L. (2009). J. Am. Chem. Soc. 131, 13548–13554.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y.-Y., Huang, Z.-Q., Szeto, L. & Wong, W. T. (2004). Appl. Organomet. Chem. 18, 97–98.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m122-m123
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds