organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl­naphthalene-2,7-diyl dibenzoate

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 18 December 2012; accepted 29 December 2012; online 9 January 2013)

In the title compound, C31H20O5, the phenyl rings of the benzo­yloxy and benzoyl groups are twisted away from the naphthalene ring system by 64.27 (6), 73.62 (5) and 80.41 (6)°. In the crystal, C—H⋯O hydrogen bonds and C—H⋯π inter­actions link the mol­ecules, forming tubular chains parallel to the b axis. The chains are further connected into a three-dimensional network by C—H⋯π inter­actions and ππ stacking contacts [centroid–centroid distances = 3.622 (10)–3.866 (12) Å].

Related literature

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For structures of closely related compounds, see: Kato et al. (2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.]); Muto et al. (2011[Muto, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2040.]); Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Sakamoto et al. (2012[Sakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2454.]); Watanabe et al. (2010[Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.]).

[Scheme 1]

Experimental

Crystal data
  • C31H20O5

  • Mr = 472.47

  • Monoclinic, P 21 /n

  • a = 16.1318 (3) Å

  • b = 7.18561 (13) Å

  • c = 20.7333 (4) Å

  • β = 99.180 (1)°

  • V = 2372.56 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 193 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.759, Tmax = 0.811

  • 40057 measured reflections

  • 4282 independent reflections

  • 3753 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.07

  • 4282 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C26–C31 and C5–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.30 3.2183 (16) 164
C14—H14⋯O5ii 0.95 2.60 3.520 (2) 164
C29—H29⋯Cg1iii 0.95 2.72 3.6396 (18) 162
C15—H15⋯Cg2ii 0.95 2.78 3.6397 (19) 150
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of the naphthalene core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylnaphthalenes, e.g., 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008). The two aroyl groups at 1,8-positions of the naphthalene ring in these compounds are perpendicularly attached to the naphthalene ring and oriented in opposite directions. Furthermore, we have also clarified the crystal structures of 1-monoaroylated naphthalene compounds such as (2,7-dimethoxynaphthalene-1-yl)-(phenyl)methanone (Kato et al., 2010) and 2,7-dimethoxy-1-(4-nitrobenzoyl)naphthalene (Watanabe et al., 2010). These compounds also exhibit essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes. Besides, the crystal structures of the aroylnaphthalene derivatives bearing benzoic ester moiety at the 2- or 2,7-positions on the naphthalene ring, 7-methoxy-1-(4-nitrobenzoyl)naphthalene-2-yl 4-nitrobenzoate (Muto et al., 2011) and 1,8-dibenzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2012) have been revealed.

The molecular structure of the title compound is displayed in Fig 1. The benzene ring of the benzoyl group is almost orthogonal to the naphthalene ring system forming a dihedral angle of 80.41 (6)° [C10—C1—C11—O1 torsion angle = 83.35 (15)°]. The two carbonyl moieties of the benzoyloxy groups at the 2,7-positions of the naphthalene ring system are in opposite directions relative to one another, as observed in the homologous compound 1,8-dibenzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2012). The phenyl ring of the benzoyloxy group at the 7-position is inclined to form a narrower dihedral angle with the naphthalene ring system [64.27 (6)° and O5—C25—C26—C27 torsion angle = -21.8 (2)°] than the phenyl ring of the benzoyloxy group at the 2-position adjacent to the benzoyl group [73.62 (5)° and O3—C18—C19—C24 torsion angle = -2.1 (2)°]. In the crystal, C–H···O hydrogen bonds between an hydrogen atom of the phenyl ring of the benzoyl group and a carbonyl oxygen of the benzoyloxy group and between an hydrogen atom of the naphthalene ring system and a carbonyl oxygen of the benzoyl group, and weak C–H···π interactions (Table 1) link the molecules into tubular chains running parallel to the b axis (Fig. 2 and 3). Furthermore, the chains are connected into a three-dimensional network by weak C–H···π interactions [C15–H15···Cg2 = 2.78 Å; Cg2 is the centroids of the C5–C10 ring] and ππ contacts [Cg2iii···Cg3, 3.622 (10) Å; Cg4···Cg4iv = 3.821 (12) Å; Cg4···Cg4v = 3.866 (12) Å; Cg3 and Cg4 are the centroids of the C1/C4-C9-C10 and C19/C24 rings, respectively; symmetry codes: (iii) 1-x, 1-y, 1-z; (iv) -x, 1-y, 1-z; (v) -x, 2-y, 1-z).

Related literature top

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For structures of closely related compounds, see: Kato et al. (2010); Muto et al. (2011); Nakaema et al. (2008); Sakamoto et al. (2012); Watanabe et al. (2010).

Experimental top

The title compound was prepared via condensation reaction of 1-benzoyl-2,7-dihydroxynaphthalene (0.2 mmol, 52.86 mg) obtained by ethyl ether cleavage reaction of 1-benzoyl-2,7-diethoxynaphthalene, benzoyl chloride (0.4 mmol, 0.046 ml), and triethylamine (0.4 mmol, 0.056 ml) in dichloromethane (2.5 ml). After the reaction mixture was stirred at rt for 2 h, it was poured into water (30 ml) and the mixture was extracted with CHCl3 (10 ml×3). The combined extracts were washed with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by recrystallization from ethyl acetate–hexane (3:1 v/v) and colorless single crystals suitable for X-ray diffraction were obtained (isolated yield 36%).

Spectroscopic data: 1H NMR δ (400 MHz, CDCl3): 7.24–7.38 (4H, m), 7.45–7.54 (6H, m), 7.59 (1H, d, J = 2.4 Hz), 7.63 (1H, t, J = 14.8 Hz), 7.74 (2H, d, J = 7.6 Hz), 7.85 (2H, d, J = 7.2 Hz), 8.02 (1H, d, J = 9.2 Hz), 8.08 (1H, d, J = 9.2 Hz), 8.18 (2H, d, J = 7.2 Hz) p.p.m.. 13C NMR δ (75 MHz, CDCl3): 116.33, 121.37, 121.93, 127.64, 128.26, 128.38, 128.51, 128.61, 129.10, 129.52, 129.59, 129.76, 129.87, 130.13, 130.86, 132.06, 133.59, 133.66, 133.76, 137.49, 146.53, 150.09, 164.18, 164.95, 195.32 p.p.m.. IR (KBr): 1739 (OC=O), 1658 (C=O), 1596,1582, 1510 (Ar) cm-1. m.p. = 422.0–422.8 K. HRMS (m/z): [M+H]+ calcd. for C31H20O5, 473.1390, found, 473.1384.

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C–H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial crystal packing of the title compound showing C—H···O and C—H···π interactions as dashed lines.
[Figure 3] Fig. 3. C–H···O interaction (dashed line) between naphthalene ring and ketonic carbonyl group.
1-Benzoylnaphthalene-2,7-diyl dibenzoate top
Crystal data top
C31H20O5F(000) = 984
Mr = 472.47Dx = 1.323 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ynCell parameters from 33959 reflections
a = 16.1318 (3) Åθ = 3.2–68.2°
b = 7.18561 (13) ŵ = 0.73 mm1
c = 20.7333 (4) ÅT = 193 K
β = 99.180 (1)°Block, colorless
V = 2372.56 (7) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4282 independent reflections
Radiation source: fine-focus sealed tube3753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.2°
ω scansh = 1919
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 88
Tmin = 0.759, Tmax = 0.811l = 2424
40057 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.4366P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4282 reflectionsΔρmax = 0.18 e Å3
326 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (2)
Crystal data top
C31H20O5V = 2372.56 (7) Å3
Mr = 472.47Z = 4
Monoclinic, P21/nCu Kα radiation
a = 16.1318 (3) ŵ = 0.73 mm1
b = 7.18561 (13) ÅT = 193 K
c = 20.7333 (4) Å0.40 × 0.40 × 0.30 mm
β = 99.180 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4282 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3753 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.811Rint = 0.027
40057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.07Δρmax = 0.18 e Å3
4282 reflectionsΔρmin = 0.16 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26313 (6)0.21093 (12)0.46194 (4)0.0438 (2)
O20.20361 (5)0.66287 (13)0.43467 (4)0.0425 (2)
O30.21367 (7)0.6819 (2)0.54365 (5)0.0750 (4)
O40.56034 (6)0.12325 (13)0.37018 (4)0.0434 (2)
O50.52644 (9)0.19992 (17)0.26435 (5)0.0712 (4)
C10.32080 (7)0.47803 (17)0.42157 (6)0.0336 (3)
C20.29093 (8)0.64552 (18)0.43808 (6)0.0378 (3)
C30.34234 (9)0.80265 (18)0.45251 (6)0.0424 (3)
H30.31950.91720.46440.051*
C40.42574 (9)0.78701 (17)0.44913 (6)0.0405 (3)
H40.46130.89170.45960.049*
C50.54650 (8)0.60238 (19)0.42507 (6)0.0409 (3)
H50.58280.70560.43620.049*
C60.57842 (8)0.4414 (2)0.40428 (6)0.0426 (3)
H60.63620.43260.40050.051*
C70.52458 (8)0.28923 (18)0.38861 (6)0.0376 (3)
C80.44177 (8)0.29459 (17)0.39456 (6)0.0350 (3)
H80.40740.18780.38450.042*
C90.46055 (8)0.61883 (17)0.43044 (6)0.0354 (3)
C100.40728 (7)0.46095 (16)0.41582 (5)0.0327 (3)
C110.26389 (7)0.31006 (17)0.41439 (6)0.0341 (3)
C120.21077 (8)0.27099 (18)0.35081 (6)0.0386 (3)
C130.16406 (9)0.1071 (2)0.34343 (7)0.0495 (3)
H130.16920.01910.37800.059*
C140.11042 (10)0.0725 (3)0.28590 (8)0.0637 (5)
H140.07850.03910.28090.076*
C150.10333 (11)0.1994 (3)0.23606 (8)0.0713 (5)
H150.06520.17680.19700.086*
C160.15089 (12)0.3593 (3)0.24206 (8)0.0729 (5)
H160.14660.44460.20670.088*
C170.20496 (10)0.3964 (2)0.29958 (7)0.0544 (4)
H170.23770.50680.30380.065*
C180.17106 (9)0.68610 (19)0.49101 (7)0.0450 (3)
C190.07915 (8)0.71619 (18)0.47694 (7)0.0413 (3)
C200.03506 (8)0.72662 (19)0.41374 (7)0.0433 (3)
H200.06370.71080.37750.052*
C210.05051 (9)0.7600 (2)0.40370 (8)0.0506 (4)
H210.08070.76790.36050.061*
C220.09207 (9)0.7819 (2)0.45659 (8)0.0556 (4)
H220.15070.80590.44970.067*
C230.04879 (10)0.7690 (2)0.51924 (8)0.0560 (4)
H230.07780.78260.55540.067*
C240.03664 (10)0.7363 (2)0.52965 (7)0.0505 (4)
H240.06640.72760.57300.061*
C250.56198 (8)0.0984 (2)0.30540 (6)0.0439 (3)
C260.61134 (8)0.06865 (19)0.29340 (6)0.0415 (3)
C270.59531 (11)0.1511 (2)0.23219 (8)0.0579 (4)
H270.55430.09930.19910.069*
C280.63909 (12)0.3084 (2)0.21950 (9)0.0670 (5)
H280.62770.36550.17770.080*
C290.69917 (10)0.3831 (2)0.26699 (8)0.0577 (4)
H290.72870.49210.25810.069*
C300.71647 (9)0.2999 (2)0.32736 (8)0.0500 (4)
H300.75870.35050.35980.060*
C310.67265 (8)0.1426 (2)0.34107 (7)0.0440 (3)
H310.68450.08570.38290.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0459 (5)0.0411 (5)0.0436 (5)0.0008 (4)0.0050 (4)0.0052 (4)
O20.0361 (5)0.0463 (5)0.0443 (5)0.0103 (4)0.0037 (4)0.0065 (4)
O30.0498 (6)0.1293 (12)0.0434 (6)0.0096 (7)0.0000 (5)0.0035 (6)
O40.0428 (5)0.0494 (5)0.0397 (5)0.0133 (4)0.0120 (4)0.0041 (4)
O50.1021 (9)0.0679 (7)0.0420 (6)0.0397 (7)0.0066 (6)0.0050 (5)
C10.0337 (6)0.0344 (6)0.0314 (6)0.0018 (5)0.0014 (5)0.0007 (5)
C20.0354 (6)0.0390 (7)0.0376 (6)0.0052 (5)0.0020 (5)0.0014 (5)
C30.0509 (8)0.0329 (6)0.0413 (7)0.0048 (5)0.0015 (6)0.0033 (5)
C40.0486 (8)0.0346 (7)0.0359 (6)0.0053 (5)0.0009 (5)0.0003 (5)
C50.0384 (7)0.0480 (7)0.0351 (6)0.0088 (6)0.0022 (5)0.0047 (5)
C60.0334 (6)0.0551 (8)0.0398 (7)0.0001 (6)0.0074 (5)0.0081 (6)
C70.0379 (7)0.0433 (7)0.0320 (6)0.0068 (5)0.0063 (5)0.0042 (5)
C80.0348 (6)0.0366 (6)0.0330 (6)0.0007 (5)0.0037 (5)0.0006 (5)
C90.0387 (7)0.0372 (6)0.0291 (6)0.0037 (5)0.0013 (5)0.0027 (5)
C100.0338 (6)0.0356 (6)0.0276 (6)0.0004 (5)0.0016 (5)0.0016 (5)
C110.0299 (6)0.0349 (6)0.0379 (6)0.0056 (5)0.0067 (5)0.0023 (5)
C120.0328 (6)0.0457 (7)0.0380 (7)0.0004 (5)0.0074 (5)0.0069 (5)
C130.0448 (8)0.0523 (8)0.0518 (8)0.0068 (6)0.0090 (6)0.0134 (7)
C140.0525 (9)0.0782 (11)0.0598 (10)0.0155 (8)0.0068 (7)0.0281 (9)
C150.0553 (10)0.1101 (15)0.0453 (9)0.0065 (10)0.0017 (7)0.0271 (10)
C160.0739 (12)0.1018 (15)0.0393 (8)0.0034 (11)0.0025 (8)0.0056 (9)
C170.0519 (8)0.0668 (10)0.0429 (8)0.0090 (7)0.0031 (6)0.0021 (7)
C180.0459 (8)0.0463 (7)0.0427 (7)0.0049 (6)0.0062 (6)0.0003 (6)
C190.0418 (7)0.0378 (7)0.0448 (7)0.0010 (5)0.0080 (6)0.0022 (5)
C200.0412 (7)0.0434 (7)0.0459 (7)0.0023 (6)0.0086 (6)0.0019 (6)
C210.0415 (7)0.0532 (8)0.0559 (9)0.0024 (6)0.0045 (6)0.0015 (7)
C220.0404 (8)0.0544 (9)0.0736 (10)0.0009 (6)0.0138 (7)0.0081 (8)
C230.0528 (9)0.0593 (9)0.0610 (9)0.0033 (7)0.0246 (7)0.0117 (7)
C240.0519 (8)0.0538 (8)0.0470 (8)0.0025 (7)0.0118 (7)0.0054 (6)
C250.0435 (7)0.0481 (7)0.0406 (7)0.0051 (6)0.0085 (6)0.0029 (6)
C260.0393 (7)0.0436 (7)0.0440 (7)0.0022 (6)0.0141 (6)0.0034 (6)
C270.0674 (10)0.0573 (9)0.0478 (8)0.0123 (8)0.0061 (7)0.0009 (7)
C280.0854 (13)0.0589 (10)0.0574 (10)0.0143 (9)0.0130 (9)0.0116 (8)
C290.0600 (9)0.0462 (8)0.0724 (11)0.0096 (7)0.0273 (8)0.0001 (7)
C300.0385 (7)0.0516 (8)0.0625 (9)0.0070 (6)0.0156 (7)0.0083 (7)
C310.0370 (7)0.0489 (8)0.0480 (8)0.0009 (6)0.0130 (6)0.0029 (6)
Geometric parameters (Å, º) top
O1—C111.2180 (15)C14—H140.9500
O2—C181.3653 (17)C15—C161.377 (3)
O2—C21.4047 (15)C15—H150.9500
O3—C181.1938 (17)C16—C171.386 (2)
O4—C251.3594 (16)C16—H160.9500
O4—C71.4041 (15)C17—H170.9500
O5—C251.1957 (16)C18—C191.4805 (19)
C1—C21.3602 (17)C19—C241.387 (2)
C1—C101.4243 (17)C19—C201.3897 (19)
C1—C111.5093 (17)C20—C211.3837 (19)
C2—C31.4046 (18)C20—H200.9500
C3—C41.363 (2)C21—C221.382 (2)
C3—H30.9500C21—H210.9500
C4—C91.4126 (18)C22—C231.376 (2)
C4—H40.9500C22—H220.9500
C5—C61.363 (2)C23—C241.381 (2)
C5—C91.4136 (18)C23—H230.9500
C5—H50.9500C24—H240.9500
C6—C71.4021 (19)C25—C261.4832 (19)
C6—H60.9500C26—C271.387 (2)
C7—C81.3616 (18)C26—C311.3876 (18)
C8—C101.4182 (17)C27—C281.381 (2)
C8—H80.9500C27—H270.9500
C9—C101.4262 (17)C28—C291.375 (2)
C11—C121.4800 (17)C28—H280.9500
C12—C171.384 (2)C29—C301.375 (2)
C12—C131.3934 (19)C29—H290.9500
C13—C141.380 (2)C30—C311.386 (2)
C13—H130.9500C30—H300.9500
C14—C151.369 (3)C31—H310.9500
C18—O2—C2119.17 (10)C15—C16—H16119.9
C25—O4—C7117.01 (10)C17—C16—H16119.9
C2—C1—C10119.22 (11)C12—C17—C16119.43 (15)
C2—C1—C11119.88 (11)C12—C17—H17120.3
C10—C1—C11120.75 (10)C16—C17—H17120.3
C1—C2—C3122.96 (12)O3—C18—O2122.35 (13)
C1—C2—O2117.29 (11)O3—C18—C19126.61 (14)
C3—C2—O2119.51 (11)O2—C18—C19111.04 (11)
C4—C3—C2118.48 (12)C24—C19—C20119.62 (13)
C4—C3—H3120.8C24—C19—C18117.73 (13)
C2—C3—H3120.8C20—C19—C18122.65 (13)
C3—C4—C9121.57 (12)C21—C20—C19119.96 (13)
C3—C4—H4119.2C21—C20—H20120.0
C9—C4—H4119.2C19—C20—H20120.0
C6—C5—C9121.36 (12)C22—C21—C20119.92 (14)
C6—C5—H5119.3C22—C21—H21120.0
C9—C5—H5119.3C20—C21—H21120.0
C5—C6—C7118.93 (12)C23—C22—C21120.25 (14)
C5—C6—H6120.5C23—C22—H22119.9
C7—C6—H6120.5C21—C22—H22119.9
C8—C7—C6122.50 (12)C22—C23—C24120.17 (15)
C8—C7—O4120.02 (11)C22—C23—H23119.9
C6—C7—O4117.35 (11)C24—C23—H23119.9
C7—C8—C10119.43 (11)C23—C24—C19120.08 (14)
C7—C8—H8120.3C23—C24—H24120.0
C10—C8—H8120.3C19—C24—H24120.0
C4—C9—C5122.07 (11)O5—C25—O4122.70 (13)
C4—C9—C10119.10 (11)O5—C25—C26125.71 (13)
C5—C9—C10118.82 (11)O4—C25—C26111.58 (11)
C8—C10—C1122.46 (11)C27—C26—C31119.74 (13)
C8—C10—C9118.92 (11)C27—C26—C25118.19 (12)
C1—C10—C9118.60 (11)C31—C26—C25122.08 (12)
O1—C11—C12122.06 (11)C28—C27—C26119.85 (15)
O1—C11—C1118.18 (11)C28—C27—H27120.1
C12—C11—C1119.75 (11)C26—C27—H27120.1
C17—C12—C13119.77 (13)C29—C28—C27120.41 (16)
C17—C12—C11121.24 (12)C29—C28—H28119.8
C13—C12—C11118.96 (12)C27—C28—H28119.8
C14—C13—C12120.03 (15)C30—C29—C28119.99 (14)
C14—C13—H13120.0C30—C29—H29120.0
C12—C13—H13120.0C28—C29—H29120.0
C15—C14—C13119.88 (16)C29—C30—C31120.33 (14)
C15—C14—H14120.1C29—C30—H30119.8
C13—C14—H14120.1C31—C30—H30119.8
C14—C15—C16120.63 (15)C30—C31—C26119.66 (14)
C14—C15—H15119.7C30—C31—H31120.2
C16—C15—H15119.7C26—C31—H31120.2
C15—C16—C17120.21 (17)
C10—C1—C2—C32.69 (19)C1—C11—C12—C13174.58 (12)
C11—C1—C2—C3172.90 (11)C17—C12—C13—C141.8 (2)
C10—C1—C2—O2171.67 (10)C11—C12—C13—C14176.31 (13)
C11—C1—C2—O212.74 (17)C12—C13—C14—C150.1 (2)
C18—O2—C2—C1112.74 (13)C13—C14—C15—C161.7 (3)
C18—O2—C2—C372.69 (16)C14—C15—C16—C171.8 (3)
C1—C2—C3—C40.7 (2)C13—C12—C17—C161.7 (2)
O2—C2—C3—C4173.51 (11)C11—C12—C17—C16176.40 (14)
C2—C3—C4—C91.19 (19)C15—C16—C17—C120.1 (3)
C9—C5—C6—C70.61 (19)C2—O2—C18—O34.3 (2)
C5—C6—C7—C81.32 (19)C2—O2—C18—C19175.60 (11)
C5—C6—C7—O4177.23 (11)O3—C18—C19—C242.1 (2)
C25—O4—C7—C892.97 (14)O2—C18—C19—C24178.03 (12)
C25—O4—C7—C691.01 (14)O3—C18—C19—C20177.25 (16)
C6—C7—C8—C101.59 (18)O2—C18—C19—C202.63 (18)
O4—C7—C8—C10177.40 (10)C24—C19—C20—C211.1 (2)
C3—C4—C9—C5178.27 (12)C18—C19—C20—C21178.25 (13)
C3—C4—C9—C101.06 (18)C19—C20—C21—C220.4 (2)
C6—C5—C9—C4177.17 (12)C20—C21—C22—C230.5 (2)
C6—C5—C9—C102.16 (18)C21—C22—C23—C240.8 (2)
C7—C8—C10—C1178.38 (11)C22—C23—C24—C190.0 (2)
C7—C8—C10—C90.03 (17)C20—C19—C24—C230.9 (2)
C2—C1—C10—C8175.64 (11)C18—C19—C24—C23178.49 (14)
C11—C1—C10—C88.81 (17)C7—O4—C25—O58.6 (2)
C2—C1—C10—C92.72 (17)C7—O4—C25—C26172.23 (11)
C11—C1—C10—C9172.83 (10)O5—C25—C26—C2721.8 (2)
C4—C9—C10—C8177.51 (10)O4—C25—C26—C27157.33 (13)
C5—C9—C10—C81.84 (16)O5—C25—C26—C31157.80 (16)
C4—C9—C10—C10.91 (16)O4—C25—C26—C3123.11 (18)
C5—C9—C10—C1179.74 (10)C31—C26—C27—C281.4 (2)
C2—C1—C11—O192.16 (14)C25—C26—C27—C28179.01 (15)
C10—C1—C11—O183.36 (14)C26—C27—C28—C290.6 (3)
C2—C1—C11—C1287.46 (14)C27—C28—C29—C300.6 (3)
C10—C1—C11—C1297.02 (13)C28—C29—C30—C311.1 (2)
O1—C11—C12—C17172.31 (13)C29—C30—C31—C260.3 (2)
C1—C11—C12—C177.30 (18)C27—C26—C31—C300.9 (2)
O1—C11—C12—C135.81 (18)C25—C26—C31—C30179.50 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C26–C31 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.303.2183 (16)164
C14—H14···O5ii0.952.603.520 (2)164
C29—H29···Cg1iii0.952.723.6396 (18)162
C15—H15···Cg2ii0.952.783.6397 (19)150
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC31H20O5
Mr472.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)16.1318 (3), 7.18561 (13), 20.7333 (4)
β (°) 99.180 (1)
V3)2372.56 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.73
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.759, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
40057, 4282, 3753
Rint0.027
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.07
No. of reflections4282
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C26–C31 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.303.2183 (16)164
C14—H14···O5ii0.952.603.520 (2)164
C29—H29···Cg1iii0.952.723.6396 (18)162
C15—H15···Cg2ii0.952.783.6397 (19)150
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors would like to express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2454.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds