organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Meth­­oxy-N′-(2,4,6-trihy­dr­oxy­benzyl­­idene)benzohydrazide

aAtta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E. Malaysia, bFaculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor D. E. Malaysia, cDepartment of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Puncak Alam, Selangor D. E., Malaysia, and dH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 11 January 2013; accepted 17 January 2013; online 23 January 2013)

In the title hydrazone derivative, C15H14N2O5, the benzene rings are twisted by 7.55 (8)° with respect to each other. The azomethine double bond adopts an E conformation. The mol­ecular structure is stabilized by intra­molecular O—H⋯N and N—H⋯O hydrogen bonds, generating S6 ring motifs. In the crystal, mol­ecules are linked into a three-dimensional network by O—H⋯O hydrogen bonds.

Related literature

For applications and biological activity of Schiff bases, see: Khan et al. (2011[Khan, K. M., Shah, Z., Ahmad, V. U., Khan, M., Taha, M., Rahim, F., Jahan, H., Perveen, S. & Choudhary, M. I. (2011). Med. Chem. 7, 572-580.], 2012[Khan, K. M., Taha, M., Naz, F., Siddiqui, S., Ali, S., Rahim, F., Perveen, S. & Choudhary, M. I. (2012). Med. Chem. 8, 705-710.]); Rada & Leto (2008[Rada, B. & Leto, T. (2008). Contrib. Microbiol. 15, 164-187.]); Almasirad et al. (2006[Almasirad, A., Hosseini, R., Jalalizadeh, H., Rahimi-Moghaddam, Z., Abaeian, N., Janafrooz, M., Abbaspour, M., Ziaee, V., Dalvandi, A. & Shafiee, A. (2006). Biol. Pharm. Bull. 29, 1180-1185.]). For related structures, see: Taha et al. (2012[Taha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Yousuf, S. (2012). Acta Cryst. E68, o2846.]); Shen et al. (2012[Shen, T., Li, G. & Zheng, B. (2012). Acta Cryst. E68, o2034.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O5

  • Mr = 302.28

  • Orthorhombic, P 21 21 21

  • a = 6.4580 (4) Å

  • b = 13.4772 (8) Å

  • c = 16.3169 (9) Å

  • V = 1420.15 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 273 K

  • 0.34 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.978

  • 8414 measured reflections

  • 2643 independent reflections

  • 2481 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.07

  • 2643 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.84 (3) 1.88 (2) 2.6243 (18) 147 (2)
N2—H2A⋯O5 0.851 (19) 1.923 (19) 2.5981 (18) 135.4 (17)
O3—H2B⋯O4i 0.86 (2) 1.79 (2) 2.6452 (17) 175 (2)
O2—H3A⋯O1ii 0.93 (3) 1.92 (3) 2.8513 (18) 172 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazone derivatives represent an important class of organic compounds. Due to their biological activities (Khan et al., 2011, 2012; Rada & Leto, 2008; Almasirad et al., 2006) the research for this class of compounds is an area of great interest. The title compound is a hydrazone derivatives synthesized as a part of our ongoing research to establish a library of bioactive hydrazone derivatives.

The structure of the title compound (Fig. 1) is similar to that of the previously published compound N'-(3,4-dihydroxybenzylidene)-2- methoxybenzohydrazide (Shen et al., 2012) with the difference that the 3,4-dihydroxy benzene ring is replaced by a 2,4,6-trihydroxy benzene ring (C1–C6). The dihedral angle between the two benzene rings is 7.55 (8)°. The bond lengths and angles were found to be similar to those observed in structurally related benzohydrazide derivatives (Taha et al., 2012; Shen et al., 2012). Intramolecular O1—H1A···N1 and N2—H2A···O5 hydrogen bonds play an important role to stabilize the E configuration of the azomethine olefinic bond (Table 1). The crystal structure (Fig. 2) is stabilized by intermolecular O3—H2B···O4 and O2—H3A···O1 interactions to form a three-dimensional network.

Related literature top

For applications and biological activity of Schiff bases, see: Khan et al. (2011, 2012); Rada & Leto (2008); Almasirad et al. (2006). For related structures, see: Taha et al. (2012); Shen et al. (2012).

Experimental top

The title compound was synthesized by refluxing a mixture of 2-methoxybenzohydrazide (0.332 g, 2 mmol) and 2,4,6-trihydroxy-5-methoxybenzaldehyde (0.304 g, 2 mmol) in methanol along with a catalytical amount of acetic acid for 3 h. The progress of reaction was monitored by TLC. After completion of the reaction, the solvent was evaporated by vacuum to afford the crude product which was recrystallized by dissolving in methanol at room temperature. Needle-shaped crystals were obtained on slow evaporation of the solvent (0.496 g, 82% yield). All chemicals were purchased by Sigma Aldrich, Germany.

Refinement top

H atoms on methyl, phenyl and methine carbon atoms were positioned geometrically with C—H = 0.96 Å (CH3) and 0.93 Å (CH) and constrained to ride on their parent atoms with Uiso(H)= 1.5Ueq(CH3) or 1.2Ueq(CH). The H atoms on the nitrogen (N–H= 0.835 (17) Å) and oxygen (O–H= 0.84 (2)–0.93(2 Å) atoms were located in a difference Fourier map and refined isotropically. A rotating group model was applied to the methyl group.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the a axis. Only hydrogen atoms involved in hydrogen bonding are shown.
(E)-2-Methoxy-N'-(2,4,6-trihydroxybenzylidene)benzohydrazide top
Crystal data top
C15H14N2O5F(000) = 632
Mr = 302.28Dx = 1.414 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3988 reflections
a = 6.4580 (4) Åθ = 2.5–27.8°
b = 13.4772 (8) ŵ = 0.11 mm1
c = 16.3169 (9) ÅT = 273 K
V = 1420.15 (14) Å3Block, colourless
Z = 40.34 × 0.23 × 0.21 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2643 independent reflections
Radiation source: fine-focus sealed tube2481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scanθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 67
Tmin = 0.964, Tmax = 0.978k = 1616
8414 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.1141P]
where P = (Fo2 + 2Fc2)/3
2643 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C15H14N2O5V = 1420.15 (14) Å3
Mr = 302.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4580 (4) ŵ = 0.11 mm1
b = 13.4772 (8) ÅT = 273 K
c = 16.3169 (9) Å0.34 × 0.23 × 0.21 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2643 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2481 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.978Rint = 0.019
8414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.13 e Å3
2643 reflectionsΔρmin = 0.13 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5330 (2)0.22125 (9)0.11606 (8)0.0543 (3)
O21.1070 (2)0.40655 (9)0.02009 (8)0.0578 (3)
H3A1.091 (5)0.3604 (19)0.0222 (16)0.100 (8)*
O30.6905 (2)0.53380 (9)0.23545 (7)0.0511 (3)
H2B0.785 (3)0.5781 (16)0.2396 (12)0.065 (7)*
O40.0021 (2)0.16307 (8)0.25569 (7)0.0518 (3)
O50.0653 (2)0.42748 (8)0.38286 (8)0.0578 (3)
N10.2953 (2)0.30535 (10)0.22647 (8)0.0421 (3)
N20.1262 (2)0.31688 (11)0.27673 (8)0.0436 (3)
H2A0.111 (3)0.3735 (14)0.2990 (11)0.054 (5)*
C10.6522 (2)0.30443 (11)0.12072 (9)0.0403 (3)
C20.8209 (3)0.31059 (12)0.06945 (10)0.0447 (4)
H2C0.85080.25940.03310.054*
C30.9454 (3)0.39399 (11)0.07272 (9)0.0419 (4)
C40.9087 (2)0.46946 (11)0.12866 (9)0.0410 (3)
H4A0.99730.52380.13180.049*
C50.7383 (2)0.46267 (10)0.17972 (9)0.0382 (3)
C60.6031 (2)0.38110 (11)0.17590 (9)0.0377 (3)
C70.4203 (3)0.37914 (12)0.22646 (9)0.0411 (3)
H7A0.39220.43310.26020.049*
C80.0127 (2)0.24489 (11)0.28886 (9)0.0385 (3)
C90.1900 (2)0.26844 (11)0.34441 (9)0.0376 (3)
C100.3409 (3)0.19578 (12)0.35197 (10)0.0448 (4)
H10A0.32560.13680.32310.054*
C110.5130 (3)0.20830 (14)0.40098 (10)0.0521 (4)
H11A0.61110.15810.40550.063*
C120.5376 (3)0.29535 (14)0.44283 (10)0.0550 (5)
H12A0.65370.30430.47580.066*
C130.3922 (3)0.37023 (14)0.43680 (10)0.0512 (4)
H13A0.41190.42950.46500.061*
C140.2165 (3)0.35718 (12)0.38868 (9)0.0431 (4)
C150.0887 (4)0.52036 (14)0.42409 (13)0.0725 (6)
H15A0.02140.56420.40820.109*
H15B0.08370.50990.48230.109*
H15C0.21940.54940.40960.109*
H1A0.432 (4)0.2267 (18)0.1484 (15)0.094 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0576 (8)0.0517 (7)0.0535 (7)0.0166 (6)0.0105 (6)0.0109 (5)
O20.0546 (8)0.0572 (7)0.0615 (7)0.0047 (6)0.0220 (7)0.0072 (6)
O30.0522 (8)0.0449 (7)0.0562 (7)0.0059 (6)0.0124 (6)0.0104 (5)
O40.0498 (7)0.0414 (6)0.0640 (7)0.0035 (5)0.0084 (6)0.0035 (5)
O50.0560 (8)0.0481 (6)0.0692 (8)0.0065 (6)0.0153 (7)0.0140 (6)
N10.0348 (7)0.0485 (7)0.0429 (7)0.0014 (6)0.0043 (6)0.0031 (6)
N20.0360 (7)0.0438 (7)0.0509 (8)0.0004 (6)0.0083 (6)0.0015 (6)
C10.0416 (9)0.0404 (7)0.0388 (7)0.0034 (7)0.0035 (7)0.0019 (6)
C20.0500 (10)0.0429 (8)0.0411 (8)0.0020 (8)0.0065 (7)0.0041 (6)
C30.0387 (9)0.0456 (8)0.0416 (8)0.0031 (7)0.0052 (7)0.0058 (6)
C40.0411 (9)0.0375 (7)0.0444 (8)0.0031 (7)0.0017 (7)0.0022 (6)
C50.0405 (8)0.0375 (7)0.0365 (7)0.0049 (7)0.0005 (7)0.0021 (6)
C60.0362 (8)0.0416 (8)0.0354 (7)0.0020 (7)0.0004 (7)0.0043 (6)
C70.0388 (9)0.0448 (8)0.0396 (8)0.0021 (7)0.0009 (7)0.0021 (6)
C80.0355 (8)0.0398 (8)0.0401 (7)0.0060 (7)0.0030 (7)0.0061 (6)
C90.0341 (8)0.0421 (8)0.0366 (7)0.0034 (6)0.0015 (6)0.0057 (6)
C100.0418 (9)0.0471 (8)0.0453 (8)0.0014 (7)0.0017 (7)0.0050 (7)
C110.0427 (10)0.0657 (11)0.0480 (9)0.0100 (9)0.0030 (8)0.0080 (8)
C120.0410 (10)0.0777 (12)0.0462 (9)0.0026 (9)0.0109 (8)0.0080 (8)
C130.0520 (11)0.0583 (10)0.0433 (8)0.0049 (9)0.0070 (8)0.0027 (7)
C140.0408 (9)0.0484 (8)0.0403 (8)0.0006 (7)0.0002 (7)0.0037 (7)
C150.0877 (16)0.0541 (11)0.0757 (12)0.0109 (11)0.0154 (12)0.0200 (9)
Geometric parameters (Å, º) top
O1—C11.3622 (18)C4—H4A0.9300
O1—H1A0.84 (3)C5—C61.405 (2)
O2—C31.362 (2)C6—C71.440 (2)
O2—H3A0.93 (3)C7—H7A0.9300
O3—C51.3569 (18)C8—C91.494 (2)
O3—H2B0.86 (2)C9—C101.387 (2)
O4—C81.2321 (19)C9—C141.408 (2)
O5—C141.364 (2)C10—C111.379 (2)
O5—C151.429 (2)C10—H10A0.9300
N1—C71.281 (2)C11—C121.367 (3)
N1—N21.3742 (18)C11—H11A0.9300
N2—C81.336 (2)C12—C131.382 (3)
N2—H2A0.851 (19)C12—H12A0.9300
C1—C21.376 (2)C13—C141.391 (2)
C1—C61.407 (2)C13—H13A0.9300
C2—C31.383 (2)C15—H15A0.9600
C2—H2C0.9300C15—H15B0.9600
C3—C41.387 (2)C15—H15C0.9600
C4—C51.384 (2)
C1—O1—H1A109.3 (17)C6—C7—H7A119.0
C3—O2—H3A107.3 (17)O4—C8—N2122.19 (14)
C5—O3—H2B112.6 (14)O4—C8—C9121.05 (14)
C14—O5—C15120.00 (14)N2—C8—C9116.75 (13)
C7—N1—N2114.39 (13)C10—C9—C14117.96 (14)
C8—N2—N1122.66 (13)C10—C9—C8116.26 (13)
C8—N2—H2A120.7 (14)C14—C9—C8125.78 (14)
N1—N2—H2A116.6 (14)C11—C10—C9122.09 (16)
O1—C1—C2117.59 (14)C11—C10—H10A119.0
O1—C1—C6120.85 (14)C9—C10—H10A119.0
C2—C1—C6121.56 (14)C12—C11—C10119.24 (16)
C1—C2—C3119.07 (14)C12—C11—H11A120.4
C1—C2—H2C120.5C10—C11—H11A120.4
C3—C2—H2C120.5C11—C12—C13120.80 (16)
O2—C3—C2121.47 (14)C11—C12—H12A119.6
O2—C3—C4117.05 (14)C13—C12—H12A119.6
C2—C3—C4121.47 (14)C12—C13—C14120.14 (16)
C5—C4—C3118.93 (14)C12—C13—H13A119.9
C5—C4—H4A120.5C14—C13—H13A119.9
C3—C4—H4A120.5O5—C14—C13122.37 (15)
O3—C5—C4122.54 (14)O5—C14—C9117.88 (14)
O3—C5—C6116.16 (13)C13—C14—C9119.75 (15)
C4—C5—C6121.29 (13)O5—C15—H15A109.5
C5—C6—C1117.57 (13)O5—C15—H15B109.5
C5—C6—C7119.87 (13)H15A—C15—H15B109.5
C1—C6—C7122.55 (14)O5—C15—H15C109.5
N1—C7—C6122.06 (14)H15A—C15—H15C109.5
N1—C7—H7A119.0H15B—C15—H15C109.5
C7—N1—N2—C8175.22 (14)N1—N2—C8—O40.1 (2)
O1—C1—C2—C3179.90 (15)N1—N2—C8—C9179.32 (13)
C6—C1—C2—C30.4 (2)O4—C8—C9—C103.9 (2)
C1—C2—C3—O2176.07 (15)N2—C8—C9—C10175.56 (14)
C1—C2—C3—C42.6 (2)O4—C8—C9—C14176.47 (15)
O2—C3—C4—C5175.90 (14)N2—C8—C9—C144.1 (2)
C2—C3—C4—C52.8 (2)C14—C9—C10—C110.0 (2)
C3—C4—C5—O3179.30 (14)C8—C9—C10—C11179.71 (14)
C3—C4—C5—C60.1 (2)C9—C10—C11—C120.8 (2)
O3—C5—C6—C1177.87 (13)C10—C11—C12—C130.3 (3)
C4—C5—C6—C12.7 (2)C11—C12—C13—C140.9 (3)
O3—C5—C6—C73.1 (2)C15—O5—C14—C132.9 (2)
C4—C5—C6—C7176.29 (13)C15—O5—C14—C9177.58 (16)
O1—C1—C6—C5177.32 (14)C12—C13—C14—O5177.81 (16)
C2—C1—C6—C52.9 (2)C12—C13—C14—C91.7 (2)
O1—C1—C6—C73.7 (2)C10—C9—C14—O5178.31 (14)
C2—C1—C6—C7176.02 (15)C8—C9—C14—O52.0 (2)
N2—N1—C7—C6178.41 (13)C10—C9—C14—C131.2 (2)
C5—C6—C7—N1178.30 (14)C8—C9—C14—C13178.45 (14)
C1—C6—C7—N12.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.84 (3)1.88 (2)2.6243 (18)147 (2)
N2—H2A···O50.851 (19)1.923 (19)2.5981 (18)135.4 (17)
O3—H2B···O4i0.86 (2)1.79 (2)2.6452 (17)175 (2)
O2—H3A···O1ii0.93 (3)1.92 (3)2.8513 (18)172 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H14N2O5
Mr302.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)6.4580 (4), 13.4772 (8), 16.3169 (9)
V3)1420.15 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.34 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.964, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
8414, 2643, 2481
Rint0.019
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.07
No. of reflections2643
No. of parameters216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.84 (3)1.88 (2)2.6243 (18)147 (2)
N2—H2A···O50.851 (19)1.923 (19)2.5981 (18)135.4 (17)
O3—H2B···O4i0.86 (2)1.79 (2)2.6452 (17)175 (2)
O2—H3A···O1ii0.93 (3)1.92 (3)2.8513 (18)172 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z.
 

References

First citationAlmasirad, A., Hosseini, R., Jalalizadeh, H., Rahimi-Moghaddam, Z., Abaeian, N., Janafrooz, M., Abbaspour, M., Ziaee, V., Dalvandi, A. & Shafiee, A. (2006). Biol. Pharm. Bull. 29, 1180–1185.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhan, K. M., Shah, Z., Ahmad, V. U., Khan, M., Taha, M., Rahim, F., Jahan, H., Perveen, S. & Choudhary, M. I. (2011). Med. Chem. 7, 572–580.  Web of Science CAS PubMed Google Scholar
First citationKhan, K. M., Taha, M., Naz, F., Siddiqui, S., Ali, S., Rahim, F., Perveen, S. & Choudhary, M. I. (2012). Med. Chem. 8, 705–710.  Web of Science CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRada, B. & Leto, T. (2008). Contrib. Microbiol. 15, 164–187.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, T., Li, G. & Zheng, B. (2012). Acta Cryst. E68, o2034.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Yousuf, S. (2012). Acta Cryst. E68, o2846.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds