organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(4-Chloro­benzyl­­idene)-2-meth­­oxy­benzohydrazide

aAtta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E. Malaysia, bFaculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor D. E. Malaysia, cDepartment of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Puncak Alam, Selangor D. E., Malaysia, and dH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 12 January 2013; accepted 17 January 2013; online 23 January 2013)

In the title hydrazone derivative, C15H13ClN2O2, the dihedral angle between the benzene rings is 2.36 (2)°. An intra­molecular N—H⋯O hydrogen bond is present. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into chains running parallel to the b axis.

Related literature

For applications and biological activity of hydrazone derivatives, see: Khan et al. (2011[Khan, K. M., Shah, Z., Ahmad, V. U., Khan, M., Taha, M., Rahim, F., Jahan, H., Perveen, S. & Choudhary, M. I. (2011). Med. Chem. 7, 572-580.], 2012[Khan, K. M., Taha, M., Naz, F., Siddiqui, S., Ali, S., Rahim, F., Perveen, S. & Choudhary, M. I. (2012). Med. Chem. 8, 705-710.]); Kūçūkgūzel et al. (1999[Kūçūkgūzel, Ş. G., Rollas, S., Kūçūkgūzel, I. & Kiraz, M. (1999). Eur. J. Med. Chem. 34, 1093-1100.]); Patel et al. (1984[Patel, J. M., Dave, M. P., Langalia, N. A. & Thaker, K. A. (1984). J. Indian Chem. Soc. 61, 718-720.]); Wilder (1967[Wilder, S. A. E. (1967). Arzneimittelforschung, 17, 1150-1156.]); Glasser & Doughty (1962[Glasser, A. C. & Doughty, R. M. (1962). J. Pharm. Sci. 51, 1031-1033.]). For a related structure, see: Cao (2009[Cao, G.-B. (2009). Acta Cryst. E65, o2650.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN2O2

  • Mr = 288.72

  • Orthorhombic, P b c a

  • a = 12.5830 (7) Å

  • b = 9.8335 (5) Å

  • c = 23.6377 (13) Å

  • V = 2924.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 273 K

  • 0.48 × 0.27 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.974

  • 16194 measured reflections

  • 2713 independent reflections

  • 2021 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.06

  • 2713 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.76 (2) 2.04 (2) 2.632 (2) 135.7 (19)
N1—H1A⋯O1i 0.76 (2) 2.58 (2) 3.163 (3) 135.5 (19)
C8—H8A⋯O1i 0.93 2.42 3.127 (3) 132
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organic compounds based on the hydrazone moiety are well known due to their wide range of applications both in structural and medicinal chemistry (Khan et al., 2011, 2012; Kūçūkgūzel et al., 1999; Patel et al., 1984; Wilder, 1967; Glasser & Doughty, 1962). The title compound is a hydrazone derivative synthesized in order to evaluate its biological activities.

The structure of title compound (Fig. 1) is similar to that of the previously published compound (E)-N'-(2-chlorobenzylidene)-2-methoxybenzohydrazide (Cao, 2009) with the difference that the 2-chlorobenzene ring is replaced by a 4-chlorobenzene ring (C9–19 C14). The bond lengths and angles were found to be similar to those observed in the structurally related phenyl hydrazone (Cao, 2009). The azomethine double bond adopts an E configuration (CN, 1.270 (3) Å). The molecular conformation is stablized by an intramolecular N1—H1A···O2 hydrogen bond (Table 1) to generate an S6 graph set ring motif. N1—H1A···O1 and C8—H8A···O1 hydrogen bonds play important roles in stabilizing the crystal structure by forming chains running parallel to the b axis (Fig. 2).

Related literature top

For applications and biological activity of hydrazone derivatives, see: Khan et al. (2011, 2012); Kūçūkgūzel et al. (1999); Patel et al. (1984); Wilder (1967); Glasser & Doughty (1962). For a related structure, see: Cao (2009).

Experimental top

The title compound was synthesized by refluxing in methanol a mixture of 2-methoxybenzohydrazide (0.332 g, 2 mmol), 4-chlorobenzaldehyde (0.281 g, 2 mmol) and a catalytical amount of acetic acid for 3 h. The progress of reaction was monitored by TLC. After completion of the reaction, the solvent was evaporated by vacuum to afford the crude product which was further recrystallized in methanol to obtain colourless crystals (0.467 g, 81% yield). All chemicals were purchased by sigma Aldrich, Germany.

Refinement top

H atoms on methyl, phenyl and methine carbon atoms were positioned geometrically with C—H = 0.96 (CH3) and 0.93 Å (CH) and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(CH3) or 1.2Ueq(CH). The H atoms on the nitrogen (N–H = 0.76 (2) Å) and oxygen (O–H = 0.84 (2)–0.93 (2) Å) atoms were located in a difference Fourier map and refined isotropically. A rotating group model was applied to the methyl group.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. An intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the a axis. Only hydrogen atoms involved in hydrogen bonding are shown.
(E)-N'-(4-Chlorobenzylidene)-2-methoxybenzohydrazide top
Crystal data top
C15H13ClN2O2F(000) = 1200
Mr = 288.72Dx = 1.311 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3504 reflections
a = 12.5830 (7) Åθ = 2.4–24.1°
b = 9.8335 (5) ŵ = 0.26 mm1
c = 23.6377 (13) ÅT = 273 K
V = 2924.8 (3) Å3Block, colourless
Z = 80.48 × 0.27 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2713 independent reflections
Radiation source: fine-focus sealed tube2021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scanθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1415
Tmin = 0.884, Tmax = 0.974k = 1111
16194 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.7724P]
where P = (Fo2 + 2Fc2)/3
2713 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C15H13ClN2O2V = 2924.8 (3) Å3
Mr = 288.72Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.5830 (7) ŵ = 0.26 mm1
b = 9.8335 (5) ÅT = 273 K
c = 23.6377 (13) Å0.48 × 0.27 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2713 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2021 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.974Rint = 0.030
16194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.32 e Å3
2713 reflectionsΔρmin = 0.35 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01370 (6)0.06519 (7)0.64198 (3)0.0891 (3)
O10.18055 (13)0.53482 (16)0.95365 (6)0.0713 (4)
O20.43399 (11)0.28997 (14)0.99795 (6)0.0659 (4)
N10.27223 (15)0.3462 (2)0.93138 (7)0.0582 (5)
H1A0.3141 (16)0.295 (2)0.9402 (8)0.048 (6)*
N20.21338 (13)0.32469 (18)0.88327 (7)0.0578 (5)
C10.2839 (2)0.5735 (2)1.05402 (9)0.0710 (6)
H1B0.22550.62671.04430.085*
C20.3375 (2)0.5997 (3)1.10386 (11)0.0896 (8)
H2B0.31550.67021.12740.108*
C30.4228 (3)0.5217 (4)1.11831 (11)0.0981 (9)
H3A0.45870.53931.15190.118*
C40.4567 (2)0.4175 (3)1.08405 (10)0.0800 (7)
H4A0.51500.36521.09450.096*
C50.40351 (16)0.3906 (2)1.03376 (8)0.0562 (5)
C60.31540 (16)0.4690 (2)1.01800 (8)0.0536 (5)
C70.25085 (17)0.4537 (2)0.96504 (8)0.0532 (5)
C80.23811 (16)0.2194 (2)0.85504 (8)0.0607 (6)
H8A0.29350.16450.86750.073*
C90.18113 (16)0.1828 (2)0.80327 (8)0.0567 (5)
C100.09208 (18)0.2521 (2)0.78495 (9)0.0645 (6)
H10A0.06630.32460.80620.077*
C110.04081 (19)0.2156 (2)0.73582 (9)0.0678 (6)
H11A0.01910.26320.72400.081*
C120.07826 (18)0.1091 (2)0.70448 (8)0.0645 (6)
C130.1646 (2)0.0373 (3)0.72182 (11)0.0889 (8)
H13A0.18890.03590.70060.107*
C140.2162 (2)0.0741 (3)0.77145 (11)0.0843 (8)
H14A0.27510.02470.78340.101*
C150.51850 (19)0.2009 (2)1.01362 (11)0.0751 (7)
H15A0.52570.13070.98570.113*
H15B0.50310.16061.04970.113*
H15C0.58360.25151.01600.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1105 (6)0.0983 (6)0.0586 (4)0.0205 (4)0.0205 (3)0.0091 (3)
O10.0817 (11)0.0609 (10)0.0711 (10)0.0121 (8)0.0116 (8)0.0011 (7)
O20.0701 (9)0.0635 (10)0.0640 (9)0.0090 (7)0.0198 (7)0.0044 (8)
N10.0554 (11)0.0685 (12)0.0506 (10)0.0102 (10)0.0114 (8)0.0033 (9)
N20.0566 (10)0.0696 (12)0.0472 (9)0.0031 (8)0.0080 (7)0.0016 (8)
C10.0811 (16)0.0689 (15)0.0631 (13)0.0042 (12)0.0063 (11)0.0067 (11)
C20.109 (2)0.092 (2)0.0677 (15)0.0094 (17)0.0051 (15)0.0277 (14)
C30.109 (2)0.122 (2)0.0634 (16)0.011 (2)0.0229 (15)0.0227 (17)
C40.0838 (16)0.0930 (19)0.0632 (14)0.0032 (14)0.0199 (12)0.0054 (13)
C50.0597 (12)0.0579 (13)0.0510 (11)0.0119 (10)0.0057 (9)0.0025 (10)
C60.0600 (12)0.0528 (12)0.0481 (10)0.0093 (10)0.0017 (9)0.0026 (9)
C70.0565 (12)0.0529 (12)0.0501 (11)0.0034 (10)0.0005 (9)0.0048 (9)
C80.0565 (12)0.0751 (15)0.0504 (11)0.0103 (11)0.0054 (9)0.0000 (11)
C90.0601 (12)0.0651 (13)0.0449 (10)0.0040 (10)0.0014 (9)0.0003 (9)
C100.0707 (14)0.0663 (14)0.0564 (12)0.0058 (11)0.0077 (10)0.0072 (10)
C110.0705 (14)0.0718 (15)0.0610 (13)0.0018 (12)0.0149 (11)0.0016 (11)
C120.0735 (14)0.0731 (15)0.0468 (11)0.0122 (12)0.0056 (10)0.0004 (10)
C130.1018 (19)0.095 (2)0.0701 (15)0.0180 (16)0.0084 (14)0.0314 (14)
C140.0852 (17)0.097 (2)0.0708 (15)0.0272 (15)0.0162 (13)0.0182 (14)
C150.0708 (15)0.0766 (17)0.0778 (16)0.0116 (12)0.0149 (12)0.0070 (13)
Geometric parameters (Å, º) top
Cl1—C121.740 (2)C5—C61.401 (3)
O1—C71.221 (2)C6—C71.500 (3)
O2—C51.357 (2)C8—C91.463 (3)
O2—C151.427 (2)C8—H8A0.9300
N1—C71.350 (3)C9—C141.380 (3)
N1—N21.374 (2)C9—C101.381 (3)
N1—H1A0.76 (2)C10—C111.376 (3)
N2—C81.270 (3)C10—H10A0.9300
C1—C21.382 (3)C11—C121.366 (3)
C1—C61.392 (3)C11—H11A0.9300
C1—H1B0.9300C12—C131.359 (3)
C2—C31.363 (4)C13—C141.389 (3)
C2—H2B0.9300C13—H13A0.9300
C3—C41.374 (4)C14—H14A0.9300
C3—H3A0.9300C15—H15A0.9600
C4—C51.390 (3)C15—H15B0.9600
C4—H4A0.9300C15—H15C0.9600
C5—O2—C15119.75 (16)N2—C8—H8A119.3
C7—N1—N2120.07 (19)C9—C8—H8A119.3
C7—N1—H1A119.8 (16)C14—C9—C10118.1 (2)
N2—N1—H1A119.9 (16)C14—C9—C8119.3 (2)
C8—N2—N1115.37 (18)C10—C9—C8122.58 (19)
C2—C1—C6121.3 (2)C11—C10—C9121.1 (2)
C2—C1—H1B119.3C11—C10—H10A119.5
C6—C1—H1B119.3C9—C10—H10A119.5
C3—C2—C1119.5 (3)C12—C11—C10119.7 (2)
C3—C2—H2B120.2C12—C11—H11A120.1
C1—C2—H2B120.2C10—C11—H11A120.1
C2—C3—C4121.1 (2)C13—C12—C11120.7 (2)
C2—C3—H3A119.5C13—C12—Cl1120.00 (19)
C4—C3—H3A119.5C11—C12—Cl1119.31 (18)
C3—C4—C5119.8 (3)C12—C13—C14119.6 (2)
C3—C4—H4A120.1C12—C13—H13A120.2
C5—C4—H4A120.1C14—C13—H13A120.2
O2—C5—C4122.5 (2)C9—C14—C13120.8 (2)
O2—C5—C6117.33 (17)C9—C14—H14A119.6
C4—C5—C6120.2 (2)C13—C14—H14A119.6
C1—C6—C5118.0 (2)O2—C15—H15A109.5
C1—C6—C7115.5 (2)O2—C15—H15B109.5
C5—C6—C7126.51 (19)H15A—C15—H15B109.5
O1—C7—N1121.7 (2)O2—C15—H15C109.5
O1—C7—C6120.70 (19)H15A—C15—H15C109.5
N1—C7—C6117.56 (19)H15B—C15—H15C109.5
N2—C8—C9121.32 (19)
C7—N1—N2—C8178.62 (19)C5—C6—C7—O1174.3 (2)
C6—C1—C2—C30.2 (4)C1—C6—C7—N1174.05 (19)
C1—C2—C3—C40.2 (5)C5—C6—C7—N16.8 (3)
C2—C3—C4—C50.0 (4)N1—N2—C8—C9179.13 (18)
C15—O2—C5—C44.9 (3)N2—C8—C9—C14174.7 (2)
C15—O2—C5—C6175.69 (19)N2—C8—C9—C106.1 (3)
C3—C4—C5—O2179.3 (2)C14—C9—C10—C111.2 (3)
C3—C4—C5—C60.2 (4)C8—C9—C10—C11179.5 (2)
C2—C1—C6—C50.1 (3)C9—C10—C11—C120.0 (4)
C2—C1—C6—C7179.1 (2)C10—C11—C12—C131.1 (4)
O2—C5—C6—C1179.35 (18)C10—C11—C12—Cl1179.24 (18)
C4—C5—C6—C10.1 (3)C11—C12—C13—C141.0 (4)
O2—C5—C6—C70.2 (3)Cl1—C12—C13—C14179.3 (2)
C4—C5—C6—C7179.2 (2)C10—C9—C14—C131.3 (4)
N2—N1—C7—O10.9 (3)C8—C9—C14—C13179.4 (2)
N2—N1—C7—C6177.96 (17)C12—C13—C14—C90.2 (4)
C1—C6—C7—O14.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.76 (2)2.04 (2)2.632 (2)135.7 (19)
N1—H1A···O1i0.76 (2)2.58 (2)3.163 (3)135.5 (19)
C8—H8A···O1i0.932.423.127 (3)132
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC15H13ClN2O2
Mr288.72
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)273
a, b, c (Å)12.5830 (7), 9.8335 (5), 23.6377 (13)
V3)2924.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.48 × 0.27 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.884, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
16194, 2713, 2021
Rint0.030
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.06
No. of reflections2713
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.35

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.76 (2)2.04 (2)2.632 (2)135.7 (19)
N1—H1A···O1i0.76 (2)2.58 (2)3.163 (3)135.5 (19)
C8—H8A···O1i0.93002.42003.127 (3)132.3
Symmetry code: (i) x+1/2, y1/2, z.
 

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G.-B. (2009). Acta Cryst. E65, o2650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlasser, A. C. & Doughty, R. M. (1962). J. Pharm. Sci. 51, 1031–1033.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKhan, K. M., Shah, Z., Ahmad, V. U., Khan, M., Taha, M., Rahim, F., Jahan, H., Perveen, S. & Choudhary, M. I. (2011). Med. Chem. 7, 572–580.  Web of Science CAS PubMed Google Scholar
First citationKhan, K. M., Taha, M., Naz, F., Siddiqui, S., Ali, S., Rahim, F., Perveen, S. & Choudhary, M. I. (2012). Med. Chem. 8, 705–710.  Web of Science CAS PubMed Google Scholar
First citationKūçūkgūzel, Ş. G., Rollas, S., Kūçūkgūzel, I. & Kiraz, M. (1999). Eur. J. Med. Chem. 34, 1093–1100.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPatel, J. M., Dave, M. P., Langalia, N. A. & Thaker, K. A. (1984). J. Indian Chem. Soc. 61, 718–720.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilder, S. A. E. (1967). Arzneimittelforschung, 17, 1150–1156.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds