metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m79-m80

(4′-Ethynyl-2,2′:6′,2′′-terpyridine)(2,2′:6′,2′′-terpyridine)­ruthenium(II) bis­­(hexa­fluoridophosphate) aceto­nitrile disolvate

aLos Alamos National Laboratory, Los Alamos, NM 87545, USA
*Correspondence e-mail: rcrocha@lanl.gov

(Received 6 December 2012; accepted 18 December 2012; online 9 January 2013)

The title heteroleptic bis­-terpyridine complex, [Ru(C15H11N3)(C17H11N3)](PF6)2·2CH3CN, crystallized from an acetonitrile solution as a salt containing two hexa­fluoridophosphate counter-ions and two acetonitrile solvent mol­ecules. The RuII atom has a distorted octa­hedral geometry due to the restricted bite angle [157.7 (3)°] of the two mer-arranged N,N′,N′′-tridendate ligands, viz. 2,2′:6′,2′′-terpyridine (tpy) and 4′-ethynyl-2,2′:6′,2′′-terpyridine (tpy′), which are essentially perpendicular to each other, with a dihedral angle of 87.75 (12)° between their terpyridyl planes. The rod-like acetyl­ene group lies in the same plane as its adjacent terpyridyl moiety, with a maximum deviation of only 0.071 (11) Å from coplanarity with the pyridine rings. The mean Ru—N bond length involving the outer N atoms trans to each other is 2.069 (6) Å at tpy and 2.070 (6) Å at tpy′. The Ru—N bond length involving the central N atom is 1.964 (6) Å at tpy and 1.967 (6) Å at tpy′. Two of the three counter anions were refined as half-occupied.

Related literature

For the crystal structure of a RuII–terpyridine complex containing the {Ru(tpy–C≡C)} fragment, see: Ruben et al. (2008[Ruben, M., Landa, A., Lörtscher, E., Riel, H., Mayor, M., Görls, H., Weber, H. B., Arnold, A. & Evers, F. (2008). Small, 4, 2229-2235.]). For a comparative discussion, see the Comment section in the Supplementary materials. For bond lengths and angles in related tpy complexes, see: Lashgari et al. (1999[Lashgari, K., Kritikos, M., Norrestam, R. & Norrby, T. (1999). Acta Cryst. C55, 64-67.]); Scudder et al. (2005[Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). CrystEngComm, 7, 642-649.]). For the preparation of the starting materials, see: Benniston et al. (2005[Benniston, A. C., Harriman, A., Li, P. & Sams, C. A. (2005). J. Am. Chem. Soc. 127, 2553-2564.]); Grosshenny et al. (1997[Grosshenny, V., Romero, F. M. & Ziessel, R. (1997). J. Org. Chem. 62, 1491-1500.]); Sullivan et al. (1980[Sullivan, B. P., Calvert, J. M. & Meyer, T. J. (1980). Inorg. Chem. 19, 1404-1407.]); Ziessel et al. (2004[Ziessel, R., Grosshenny, V., Hissler, M. & Stroh, C. (2004). Inorg. Chem. 43, 4262-4271.]). For general properties of this complex and related systems, see: Grosshenny et al. (1996[Grosshenny, V., Harriman, A., Gisselbrecht, J.-P. & Ziessel, R. (1996). J. Am. Chem. Soc. 118, 10315-10316.]); Hammarström & Johansson (2010[Hammarström, L. & Johansson, O. (2010). Coord. Chem. Rev. 254, 2546-2559.]); Ruther et al. (2011[Ruther, R. E., Rigsby, M. L., Gerken, J. B., Hogendoorn, S. R., Landis, E. C., Stahl, S. S. & Hamers, R. J. (2011). J. Am. Chem. Soc. 133, 5692-5694.]); Ziessel et al. (2004[Ziessel, R., Grosshenny, V., Hissler, M. & Stroh, C. (2004). Inorg. Chem. 43, 4262-4271.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C15H11N3)(C17H11N3)](PF6)2·2C2H3N

  • Mr = 963.67

  • Triclinic, [P \overline 1]

  • a = 8.704 (2) Å

  • b = 8.860 (2) Å

  • c = 27.277 (7) Å

  • α = 96.876 (4)°

  • β = 95.619 (3)°

  • γ = 93.023 (3)°

  • V = 2073.9 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 140 K

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Bruker D8 with APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.968

  • 19870 measured reflections

  • 7496 independent reflections

  • 5137 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.228

  • S = 1.25

  • 7496 reflections

  • 596 parameters

  • H-atom parameters constrained

  • Δρmax = 1.75 e Å−3

  • Δρmin = −0.94 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The compound [RuII(tpy)(tpy')](PF6)2×2MeCN crystallized in the triclinic space group (P1) from an acetonitrile solution. The crystal structure of its dication [Ru(tpy)(tpy')]2+ (I) is reported here for the first time, despite its well demonstrated relevance as a metallo-synthon unit into the construction of alkyne-bridged polyad arrays with optical/electronic applications (for example, see: Benniston et al., 2005; Grosshenny et al., 1996; Ziessel et al., 2004) and, more recently, as interesting precursors to optically/electrochemically active interfacial assemblies via surface click chemistry at the alkynyl group (for example, see: Ruther et al., 2011).

The only other crystallographically characterized compound featuring the {Ru(tpy–CC)} fragment is the homoleptic complex [RuII(tpy")2](PF6)2 (II; tpy" = S-(4-[2,2':6',2"]terpyridin-4'-ylethynyl-phenyl ester), which was applied in studies of molecular electronics involving charge transport through single molecules (II) in break-junction configurations (Ruben et al., 2008). In this case, the compound also crystallized in the triclinic space group (P1). In II, the two elongated ligands pointed along the long axis of the complex, with only slight distortion across the metal center (N–Ru–N angle: 178.9 (4)°). The mean Ru—N bond distances (1.966 (8) Å for the central nitrogen and 2.066 (10) Å for the outer nitrogen atoms trans to each other) as well as the tpy" bite angles (158.3 (4)°) are very similar to those observed for I.

These distances and angles are also in very good agreement with typical values reported for [Ru(tpy)2]2+ (e.g., Lashgari et al., 1999; Scudder et al., 2005). The bite angle of terpyridines is well known to be far from the ideal 180° due to the unfavorable N,N,N geometric configuration of the mer-terdentate ligand (Hammarström & Johansson, 2010). In I, the two terpyridyl ligands are approximately planar, with only a slight bending towards the outer ring atoms (maximum deviation from planarity: 0.093 (10) Å for atom C13 at tpy and 0.110 (8) Å for atom C30 at tpy'). The acetylenic group (–C31C32–H32) lies along the main axis passing through the metal center as well as in the same plane as its adjacent terpyridyl moiety, with a maximum deviation of only 0.071 (11) Å (C32) from coplanarity. The length of the triple bond between C31 and C32 is 1.175 (13) Å.

Related literature top

For the crystal structure of a RuII–terpyridine complex containing the {Ru(tpy–CC)} fragment, see: Ruben et al. (2008). For a comparative discussion, see the Comment section in the Supplementary materials. For bond distances and angles in related tpy complexes, see: Lashgari et al. (1999); Scudder et al. (2005). For the preparation of the starting materials, see: Benniston et al. (2005); Grosshenny et al. (1997); Sullivan et al. (1980); Ziessel et al. (2004). For general properties of this complex and related systems, see: Grosshenny et al. (1996); Hammarström & Johansson (2010); Ruther et al. (2011); Ziessel et al. (2004).

Experimental top

The compound [Ru(tpy)(tpy')](PF6)2 was prepared from the precursor [Ru(tpy)(tpy'-TMS)](PF6)2 (tpy'-TMS = 4'-trimethylsilylethynyl-(2,2':6',2"-terpy)) as described in the literature (Benniston et al., 2005). Also synthesized according to reported procedures were the starting materials Ru(tpy)Cl3 (Sullivan et al., 1980) and tpy'-TMS (Grosshenny et al., 1997). The identity of the cation [Ru(tpy)(tpy')]2+ (I) in solution was also confirmed by electrochemical and spectroscopic methods. Single crystals suitable for X-ray analysis were grown by slow diffusion of Et2O into MeCN solutions of [Ru(tpy)(tpy')](PF6)2 in a long thin tube.

Refinement top

The structure was solved by using direct methods and difference Fourier techniques. All hydrogen atom positions were idealized, and rode on the atom they were attached to. The final refinement included anisotropic temperature factors on all non-hydrogen atoms.

Two of the hexafluorophosphate anions had very large temperature factors when compared to the third. Other characterization by nuclear magnetic resonance, electronic absorption spectroscopy, and electrochemical techniques clearly support the oxidation state +2 for the Ru center. As a result, the two hexafluorophosphate anions were refined at one-half occupancy.

Structure description top

The compound [RuII(tpy)(tpy')](PF6)2×2MeCN crystallized in the triclinic space group (P1) from an acetonitrile solution. The crystal structure of its dication [Ru(tpy)(tpy')]2+ (I) is reported here for the first time, despite its well demonstrated relevance as a metallo-synthon unit into the construction of alkyne-bridged polyad arrays with optical/electronic applications (for example, see: Benniston et al., 2005; Grosshenny et al., 1996; Ziessel et al., 2004) and, more recently, as interesting precursors to optically/electrochemically active interfacial assemblies via surface click chemistry at the alkynyl group (for example, see: Ruther et al., 2011).

The only other crystallographically characterized compound featuring the {Ru(tpy–CC)} fragment is the homoleptic complex [RuII(tpy")2](PF6)2 (II; tpy" = S-(4-[2,2':6',2"]terpyridin-4'-ylethynyl-phenyl ester), which was applied in studies of molecular electronics involving charge transport through single molecules (II) in break-junction configurations (Ruben et al., 2008). In this case, the compound also crystallized in the triclinic space group (P1). In II, the two elongated ligands pointed along the long axis of the complex, with only slight distortion across the metal center (N–Ru–N angle: 178.9 (4)°). The mean Ru—N bond distances (1.966 (8) Å for the central nitrogen and 2.066 (10) Å for the outer nitrogen atoms trans to each other) as well as the tpy" bite angles (158.3 (4)°) are very similar to those observed for I.

These distances and angles are also in very good agreement with typical values reported for [Ru(tpy)2]2+ (e.g., Lashgari et al., 1999; Scudder et al., 2005). The bite angle of terpyridines is well known to be far from the ideal 180° due to the unfavorable N,N,N geometric configuration of the mer-terdentate ligand (Hammarström & Johansson, 2010). In I, the two terpyridyl ligands are approximately planar, with only a slight bending towards the outer ring atoms (maximum deviation from planarity: 0.093 (10) Å for atom C13 at tpy and 0.110 (8) Å for atom C30 at tpy'). The acetylenic group (–C31C32–H32) lies along the main axis passing through the metal center as well as in the same plane as its adjacent terpyridyl moiety, with a maximum deviation of only 0.071 (11) Å (C32) from coplanarity. The length of the triple bond between C31 and C32 is 1.175 (13) Å.

For the crystal structure of a RuII–terpyridine complex containing the {Ru(tpy–CC)} fragment, see: Ruben et al. (2008). For a comparative discussion, see the Comment section in the Supplementary materials. For bond distances and angles in related tpy complexes, see: Lashgari et al. (1999); Scudder et al. (2005). For the preparation of the starting materials, see: Benniston et al. (2005); Grosshenny et al. (1997); Sullivan et al. (1980); Ziessel et al. (2004). For general properties of this complex and related systems, see: Grosshenny et al. (1996); Hammarström & Johansson (2010); Ruther et al. (2011); Ziessel et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Figure 1. The single-crystal structure of the cation (I) in [RuII(tpy)(tpy')](PF6)2×2MeCN. Displacement ellipsoids are drawn at the 50% probability level. Except for H32, H atoms are omitted for clarity.
(4'-Ethynyl-2,2':6',2''-terpyridine)(2,2':6',2''-terpyridine)ruthenium(II) bis(hexafluoridophosphate) acetonitrile disolvate top
Crystal data top
[Ru(C15H11N3)(C17H11N3)](PF6)2·2C2H3NZ = 2
Mr = 963.67F(000) = 964
Triclinic, P1Dx = 1.543 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.704 (2) ÅCell parameters from 1822 reflections
b = 8.860 (2) Åθ = 4.7–41.0°
c = 27.277 (7) ŵ = 0.55 mm1
α = 96.876 (4)°T = 140 K
β = 95.619 (3)°Block, orange
γ = 93.023 (3)°0.10 × 0.08 × 0.06 mm
V = 2073.9 (10) Å3
Data collection top
Bruker D8 with APEXII CCD
diffractometer
7496 independent reflections
Radiation source: fine-focus sealed tube5137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ω scansθmax = 25.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.947, Tmax = 0.968k = 1010
19870 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
7496 reflections(Δ/σ)max < 0.001
596 parametersΔρmax = 1.75 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Ru(C15H11N3)(C17H11N3)](PF6)2·2C2H3Nγ = 93.023 (3)°
Mr = 963.67V = 2073.9 (10) Å3
Triclinic, P1Z = 2
a = 8.704 (2) ÅMo Kα radiation
b = 8.860 (2) ŵ = 0.55 mm1
c = 27.277 (7) ÅT = 140 K
α = 96.876 (4)°0.10 × 0.08 × 0.06 mm
β = 95.619 (3)°
Data collection top
Bruker D8 with APEXII CCD
diffractometer
7496 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
5137 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.968Rint = 0.081
19870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.228H-atom parameters constrained
S = 1.25Δρmax = 1.75 e Å3
7496 reflectionsΔρmin = 0.94 e Å3
596 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Note: Two of the hexafluorophosphate anions had very large temperature factors when compared to the third. Other characterization by nuclear magnetic resonance, electronic absorption spectroscopy, and electrochemical techniques clearly support the oxidation state +2 for the Ru center. As a result, the two hexafluorophosphate anions were refined at one-half occupancy.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.60446 (7)0.66280 (7)0.71976 (2)0.0229 (2)
P10.5105 (3)0.2494 (3)0.86893 (9)0.0406 (6)
P20.0665 (4)0.3760 (5)0.58567 (15)0.0223 (9)0.50
P30.3376 (7)0.9331 (5)0.52521 (18)0.0460 (13)0.50
F10.4111 (7)0.3779 (7)0.8487 (2)0.0662 (17)
F20.3720 (7)0.1889 (8)0.8960 (2)0.083 (2)
F30.6136 (8)0.1235 (7)0.8895 (3)0.087 (2)
F40.6488 (6)0.3082 (6)0.8399 (2)0.0627 (16)
F50.5731 (8)0.3658 (7)0.9169 (2)0.080 (2)
F60.4524 (7)0.1353 (6)0.8207 (2)0.0699 (18)
F70.2344 (13)0.4242 (15)0.5732 (4)0.071 (4)0.50
F80.0213 (12)0.3542 (11)0.5289 (3)0.048 (3)0.50
F90.0984 (14)0.3277 (16)0.5993 (4)0.074 (4)0.50
F100.1149 (13)0.3953 (11)0.6387 (3)0.048 (3)0.50
F110.0255 (16)0.5450 (15)0.5929 (5)0.086 (4)0.50
F120.1067 (14)0.2015 (14)0.5798 (5)0.078 (4)0.50
F130.2819 (11)0.7699 (11)0.5355 (4)0.052 (3)0.50
F140.4594 (13)0.9411 (12)0.5740 (4)0.055 (3)0.50
F150.2102 (13)0.9903 (13)0.5575 (4)0.061 (3)0.50
F160.3906 (14)1.1053 (11)0.5201 (4)0.051 (3)0.50
F170.2281 (13)0.9269 (11)0.4820 (5)0.066 (4)0.50
F180.4732 (18)0.8751 (13)0.4927 (5)0.080 (4)0.50
N10.6951 (6)0.8758 (7)0.7100 (2)0.0218 (14)
N20.6314 (7)0.6327 (6)0.6487 (2)0.0223 (14)
N30.5163 (7)0.4394 (7)0.7002 (3)0.0306 (16)
N40.8136 (7)0.5925 (6)0.7502 (2)0.0212 (14)
N50.5824 (7)0.6975 (6)0.7912 (2)0.0241 (14)
N60.3870 (7)0.7435 (7)0.7184 (3)0.0273 (15)
N70.9608 (12)0.0287 (12)0.8456 (4)0.082 (3)
N80.0331 (14)0.6614 (13)0.9563 (4)0.088 (3)
C10.7199 (8)1.0006 (9)0.7444 (3)0.0273 (18)
H10.69420.99360.77640.033*
C20.7826 (9)1.1392 (9)0.7334 (3)0.032 (2)
H20.79691.22360.75750.039*
C30.8230 (9)1.1495 (8)0.6865 (3)0.032 (2)
H30.86921.23960.67880.039*
C40.7941 (9)1.0242 (9)0.6506 (3)0.0291 (19)
H40.81651.03140.61830.035*
C50.7316 (8)0.8874 (8)0.6628 (3)0.0234 (17)
C60.6973 (9)0.7496 (9)0.6277 (3)0.0251 (17)
C70.7184 (11)0.7255 (10)0.5781 (3)0.042 (2)
H70.76160.80500.56350.050*
C80.6785 (13)0.5893 (11)0.5496 (3)0.056 (3)
H80.69590.57540.51630.067*
C90.6102 (12)0.4699 (10)0.5717 (3)0.048 (3)
H90.58080.37580.55330.058*
C100.5881 (9)0.4966 (8)0.6215 (3)0.0294 (19)
C110.5205 (9)0.3899 (9)0.6516 (3)0.034 (2)
C120.4598 (11)0.2427 (9)0.6311 (4)0.051 (3)
H120.46320.20990.59760.061*
C130.3950 (11)0.1473 (10)0.6612 (4)0.061 (3)
H130.35280.05030.64840.073*
C140.3951 (10)0.2002 (10)0.7107 (4)0.050 (3)
H140.35510.13690.73190.059*
C150.4541 (9)0.3471 (9)0.7297 (4)0.038 (2)
H150.45050.38150.76310.046*
C160.9277 (8)0.5350 (8)0.7264 (3)0.0251 (17)
H160.92010.52970.69200.030*
C171.0570 (9)0.4828 (9)0.7508 (3)0.0312 (19)
H171.13340.44130.73280.037*
C181.0729 (9)0.4920 (9)0.8014 (3)0.036 (2)
H181.16000.45860.81840.043*
C190.9558 (9)0.5523 (9)0.8265 (3)0.033 (2)
H190.96350.55990.86100.040*
C200.8264 (8)0.6019 (8)0.8006 (3)0.0252 (18)
C210.6948 (10)0.6671 (9)0.8251 (3)0.0304 (19)
C220.6838 (11)0.6954 (9)0.8747 (3)0.038 (2)
H220.76310.67230.89750.045*
C230.5526 (12)0.7590 (9)0.8908 (3)0.041 (2)
C240.4340 (11)0.7933 (9)0.8559 (3)0.041 (2)
H240.34630.83780.86620.049*
C250.4506 (9)0.7593 (9)0.8058 (3)0.033 (2)
C260.3421 (9)0.7893 (9)0.7645 (3)0.032 (2)
C270.2062 (9)0.8608 (9)0.7703 (4)0.042 (2)
H270.18080.89620.80180.051*
C280.1083 (10)0.8787 (10)0.7282 (4)0.053 (3)
H280.01610.92570.73120.063*
C290.1501 (9)0.8255 (9)0.6820 (4)0.041 (2)
H290.08540.83570.65360.049*
C300.2887 (9)0.7569 (9)0.6782 (4)0.035 (2)
H300.31440.71910.64700.042*
C310.5415 (13)0.7943 (11)0.9431 (4)0.058 (3)
C320.5330 (16)0.8213 (12)0.9860 (4)0.072 (4)
H320.52630.84271.01990.087*
C330.9607 (15)0.0376 (19)0.8804 (5)0.104 (6)
C340.958 (2)0.113 (4)0.9314 (8)0.36 (3)
H34A0.88970.05440.94860.541*
H34B0.92170.21320.93030.541*
H34C1.06030.12070.94850.541*
C350.1365 (14)0.5885 (14)0.9648 (4)0.063 (3)
C360.2593 (15)0.4921 (15)0.9767 (5)0.084 (4)
H36A0.34380.55230.99620.126*
H36B0.29410.44500.94650.126*
H36C0.22200.41480.99520.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0183 (3)0.0179 (3)0.0337 (4)0.0009 (2)0.0022 (3)0.0091 (3)
P10.0455 (14)0.0296 (13)0.0456 (15)0.0006 (11)0.0040 (11)0.0080 (11)
P20.0167 (19)0.025 (2)0.027 (2)0.0045 (16)0.0036 (16)0.0105 (17)
P30.072 (4)0.029 (3)0.035 (3)0.003 (2)0.010 (3)0.005 (2)
F10.055 (4)0.064 (4)0.086 (4)0.028 (3)0.006 (3)0.025 (3)
F20.067 (4)0.104 (6)0.080 (5)0.027 (4)0.019 (3)0.029 (4)
F30.072 (5)0.057 (4)0.134 (6)0.011 (3)0.018 (4)0.044 (4)
F40.054 (4)0.055 (4)0.083 (4)0.006 (3)0.013 (3)0.021 (3)
F50.111 (6)0.068 (4)0.052 (4)0.030 (4)0.008 (4)0.002 (3)
F60.092 (5)0.045 (4)0.065 (4)0.021 (3)0.003 (3)0.007 (3)
F70.055 (8)0.095 (10)0.067 (8)0.012 (7)0.004 (6)0.038 (7)
F80.076 (8)0.055 (7)0.009 (5)0.040 (6)0.004 (4)0.008 (4)
F90.062 (8)0.101 (10)0.077 (9)0.020 (7)0.026 (7)0.056 (8)
F100.083 (8)0.033 (6)0.036 (6)0.015 (5)0.047 (5)0.001 (4)
F110.085 (10)0.062 (9)0.099 (10)0.021 (7)0.043 (8)0.001 (7)
F120.067 (8)0.060 (8)0.098 (10)0.021 (7)0.024 (7)0.008 (7)
F130.035 (6)0.041 (6)0.072 (8)0.027 (5)0.016 (5)0.023 (5)
F140.073 (8)0.049 (7)0.047 (7)0.030 (6)0.006 (6)0.006 (5)
F150.049 (7)0.059 (8)0.073 (8)0.004 (6)0.006 (6)0.013 (6)
F160.080 (9)0.035 (6)0.035 (6)0.021 (6)0.003 (6)0.002 (5)
F170.060 (7)0.020 (5)0.109 (10)0.015 (5)0.032 (7)0.019 (6)
F180.113 (12)0.050 (8)0.070 (9)0.029 (8)0.033 (8)0.021 (6)
N10.014 (3)0.018 (3)0.034 (4)0.006 (2)0.001 (3)0.003 (3)
N20.017 (3)0.013 (3)0.036 (4)0.001 (2)0.008 (3)0.008 (3)
N30.023 (4)0.025 (4)0.043 (4)0.009 (3)0.007 (3)0.015 (3)
N40.019 (3)0.011 (3)0.032 (4)0.001 (2)0.002 (3)0.001 (3)
N50.026 (3)0.011 (3)0.037 (4)0.004 (3)0.009 (3)0.007 (3)
N60.015 (3)0.020 (3)0.048 (4)0.004 (3)0.001 (3)0.012 (3)
N70.078 (7)0.084 (8)0.079 (8)0.020 (6)0.031 (6)0.024 (6)
N80.096 (9)0.098 (9)0.065 (7)0.019 (7)0.022 (6)0.009 (6)
C10.022 (4)0.022 (4)0.036 (5)0.003 (3)0.002 (3)0.000 (4)
C20.035 (5)0.024 (5)0.037 (5)0.013 (4)0.002 (4)0.001 (4)
C30.029 (4)0.010 (4)0.055 (6)0.004 (3)0.007 (4)0.007 (4)
C40.025 (4)0.028 (5)0.036 (5)0.001 (3)0.000 (4)0.016 (4)
C50.020 (4)0.021 (4)0.030 (4)0.003 (3)0.004 (3)0.004 (3)
C60.026 (4)0.023 (4)0.026 (4)0.002 (3)0.000 (3)0.005 (3)
C70.063 (6)0.024 (5)0.039 (5)0.005 (4)0.004 (5)0.016 (4)
C80.100 (9)0.043 (6)0.022 (5)0.004 (6)0.002 (5)0.000 (4)
C90.080 (7)0.021 (5)0.037 (6)0.003 (5)0.023 (5)0.003 (4)
C100.035 (5)0.014 (4)0.037 (5)0.003 (3)0.013 (4)0.006 (3)
C110.030 (5)0.014 (4)0.057 (6)0.012 (3)0.015 (4)0.018 (4)
C120.059 (6)0.018 (5)0.070 (7)0.007 (4)0.031 (5)0.012 (4)
C130.056 (6)0.024 (5)0.096 (9)0.025 (5)0.045 (6)0.035 (5)
C140.041 (6)0.027 (5)0.079 (8)0.015 (4)0.021 (5)0.031 (5)
C150.017 (4)0.033 (5)0.066 (6)0.011 (4)0.010 (4)0.027 (4)
C160.023 (4)0.011 (4)0.041 (5)0.005 (3)0.006 (4)0.003 (3)
C170.017 (4)0.020 (4)0.056 (6)0.002 (3)0.004 (4)0.004 (4)
C180.018 (4)0.029 (5)0.059 (6)0.005 (3)0.007 (4)0.003 (4)
C190.037 (5)0.028 (5)0.033 (5)0.005 (4)0.003 (4)0.000 (4)
C200.021 (4)0.013 (4)0.043 (5)0.000 (3)0.001 (4)0.009 (3)
C210.038 (5)0.024 (4)0.028 (5)0.006 (4)0.000 (4)0.006 (3)
C220.052 (6)0.027 (5)0.035 (5)0.002 (4)0.002 (4)0.011 (4)
C230.071 (7)0.020 (4)0.036 (5)0.000 (4)0.019 (5)0.006 (4)
C240.049 (6)0.027 (5)0.053 (6)0.004 (4)0.028 (5)0.012 (4)
C250.028 (4)0.021 (4)0.053 (6)0.001 (3)0.015 (4)0.010 (4)
C260.030 (4)0.020 (4)0.049 (5)0.004 (3)0.015 (4)0.013 (4)
C270.026 (5)0.024 (5)0.081 (7)0.000 (4)0.015 (5)0.015 (5)
C280.024 (5)0.030 (5)0.111 (9)0.003 (4)0.017 (6)0.025 (6)
C290.019 (4)0.021 (5)0.085 (7)0.008 (3)0.008 (5)0.033 (5)
C300.026 (4)0.015 (4)0.066 (6)0.003 (3)0.000 (4)0.017 (4)
C310.083 (8)0.039 (6)0.058 (7)0.019 (6)0.028 (6)0.011 (5)
C320.134 (12)0.046 (7)0.047 (7)0.035 (7)0.036 (7)0.013 (5)
C330.055 (8)0.147 (15)0.089 (11)0.011 (9)0.007 (7)0.058 (10)
C340.15 (2)0.60 (6)0.23 (3)0.16 (3)0.099 (19)0.33 (3)
C350.072 (8)0.077 (8)0.036 (6)0.026 (7)0.009 (5)0.003 (5)
C360.082 (10)0.085 (10)0.085 (9)0.004 (8)0.004 (7)0.013 (7)
Geometric parameters (Å, º) top
Ru1—N21.964 (6)C8—C91.411 (13)
Ru1—N51.967 (6)C9—C101.385 (12)
Ru1—N62.057 (6)C10—C111.461 (11)
Ru1—N12.064 (6)C11—C121.410 (11)
Ru1—N32.073 (6)C12—C131.384 (13)
Ru1—N42.083 (6)C13—C141.374 (14)
P1—F21.577 (6)C14—C151.394 (12)
P1—F61.583 (6)C16—C171.381 (10)
P1—F11.585 (6)C17—C181.364 (11)
P1—F31.588 (6)C18—C191.378 (11)
P1—F51.596 (6)C19—C201.389 (11)
P1—F41.602 (6)C20—C211.489 (11)
P2—F101.453 (11)C21—C221.360 (11)
P2—F81.547 (9)C22—C231.386 (12)
P2—F111.551 (13)C23—C241.404 (13)
P2—F91.568 (12)C23—C311.438 (13)
P2—F71.581 (12)C24—C251.388 (11)
P2—F121.597 (12)C25—C261.457 (12)
P3—F171.435 (12)C26—C271.385 (11)
P3—F151.551 (13)C27—C281.390 (13)
P3—F131.567 (11)C28—C291.381 (13)
P3—F161.597 (11)C29—C301.387 (11)
P3—F141.610 (12)C31—C321.175 (13)
P3—F181.613 (15)C33—C341.47 (2)
F16—F18i1.278 (16)C35—C361.439 (16)
F18—F16i1.278 (16)C1—H10.93
N1—C11.355 (9)C2—H20.93
N1—C51.370 (9)C3—H30.93
N2—C101.353 (9)C4—H40.93
N2—C61.368 (9)C7—H70.93
N3—C151.344 (10)C8—H80.93
N3—C111.350 (10)C9—H90.93
N4—C161.330 (9)C12—H120.93
N4—C201.361 (9)C13—H130.93
N5—C211.338 (10)C14—H140.93
N5—C251.370 (10)C15—H150.93
N6—C301.344 (10)C16—H160.93
N6—C261.373 (10)C17—H170.93
N7—C331.054 (13)C18—H180.93
N8—C351.157 (14)C19—H190.93
C1—C21.395 (11)C22—H220.93
C2—C31.371 (11)C24—H240.93
C3—C41.383 (11)C27—H270.93
C4—C51.392 (10)C28—H280.93
C5—C61.456 (10)C29—H290.93
C6—C71.376 (11)C30—H300.93
C7—C81.363 (12)C32—H320.93
N2—Ru1—N5178.3 (3)N2—C6—C7118.3 (7)
N2—Ru1—N6101.3 (3)N2—C6—C5112.5 (6)
N5—Ru1—N679.4 (3)C7—C6—C5129.1 (7)
N2—Ru1—N179.0 (2)C8—C7—C6122.4 (8)
N5—Ru1—N199.5 (2)C7—C8—C9118.6 (9)
N6—Ru1—N189.9 (2)C10—C9—C8118.2 (8)
N2—Ru1—N378.8 (3)N2—C10—C9121.4 (7)
N5—Ru1—N3102.6 (3)N2—C10—C11111.3 (7)
N6—Ru1—N392.4 (2)C9—C10—C11127.3 (7)
N1—Ru1—N3157.7 (3)N3—C11—C12121.0 (8)
N2—Ru1—N4100.9 (2)N3—C11—C10117.0 (7)
N5—Ru1—N478.3 (2)C12—C11—C10122.1 (9)
N6—Ru1—N4157.7 (3)C13—C12—C11119.6 (10)
N1—Ru1—N494.5 (2)C14—C13—C12118.0 (9)
N3—Ru1—N491.7 (2)C13—C14—C15121.1 (9)
F2—P1—F690.3 (4)N3—C15—C14120.6 (9)
F2—P1—F191.5 (4)N4—C16—C17122.4 (8)
F6—P1—F190.6 (4)C18—C17—C16120.1 (8)
F2—P1—F389.5 (4)C17—C18—C19118.0 (8)
F6—P1—F390.3 (4)C18—C19—C20120.4 (8)
F1—P1—F3178.7 (4)N4—C20—C19120.6 (7)
F2—P1—F591.2 (4)N4—C20—C21115.9 (6)
F6—P1—F5178.4 (4)C19—C20—C21123.5 (7)
F1—P1—F589.4 (4)N5—C21—C22122.1 (8)
F3—P1—F589.7 (4)N5—C21—C20110.8 (7)
F2—P1—F4178.3 (4)C22—C21—C20127.0 (8)
F6—P1—F488.0 (3)C21—C22—C23119.0 (8)
F1—P1—F488.2 (3)C22—C23—C24119.8 (8)
F3—P1—F490.8 (4)C22—C23—C31119.7 (9)
F5—P1—F490.4 (4)C24—C23—C31120.5 (9)
F10—P2—F8177.8 (6)C25—C24—C23118.6 (8)
F10—P2—F1186.5 (6)N5—C25—C24120.0 (8)
F8—P2—F1194.6 (7)N5—C25—C26113.5 (7)
F10—P2—F986.5 (6)C24—C25—C26126.4 (8)
F8—P2—F995.4 (6)N6—C26—C27121.9 (8)
F11—P2—F989.2 (8)N6—C26—C25114.4 (7)
F10—P2—F792.1 (6)C27—C26—C25123.7 (8)
F8—P2—F785.9 (6)C26—C27—C28118.8 (9)
F11—P2—F791.1 (8)C29—C28—C27119.0 (8)
F9—P2—F7178.6 (6)C28—C29—C30119.9 (9)
F10—P2—F1292.2 (6)N6—C30—C29121.8 (9)
F8—P2—F1286.8 (6)C32—C31—C23179.1 (11)
F11—P2—F12178.3 (8)N7—C33—C34173 (2)
F9—P2—F1289.6 (7)N8—C35—C36176.8 (15)
F7—P2—F1290.1 (7)N1—C1—H1119
F17—P3—F1588.9 (8)C2—C1—H1119
F17—P3—F1392.5 (6)C1—C2—H2121
F15—P3—F1385.6 (6)C3—C2—H2120
F17—P3—F1690.7 (6)C2—C3—H3121
F15—P3—F1689.8 (7)C4—C3—H3120
F13—P3—F16174.3 (6)C3—C4—H4120
F17—P3—F14179.5 (8)C5—C4—H4120
F15—P3—F1490.6 (6)C6—C7—H7119
F13—P3—F1487.7 (6)C8—C7—H7119
F16—P3—F1489.1 (6)C7—C8—H8121
F17—P3—F1892.4 (8)C9—C8—H8121
F15—P3—F18178.6 (8)C8—C9—H9121
F13—P3—F1894.8 (6)C10—C9—H9121
F16—P3—F1889.8 (6)C11—C12—H12120
F14—P3—F1888.1 (7)C13—C12—H12120
F18i—F16—P3115.0 (10)C12—C13—H13121
F16i—F18—P3149.8 (10)C14—C13—H13121
C1—N1—C5118.6 (6)C13—C14—H14120
C1—N1—Ru1127.3 (5)C15—C14—H14119
C5—N1—Ru1114.1 (5)N3—C15—H15120
C10—N2—C6121.0 (7)C14—C15—H15120
C10—N2—Ru1119.9 (5)N4—C16—H16119
C6—N2—Ru1119.1 (5)C17—C16—H16119
C15—N3—C11119.8 (7)C16—C17—H17120
C15—N3—Ru1127.2 (6)C18—C17—H17120
C11—N3—Ru1113.0 (5)C17—C18—H18121
C16—N4—C20118.5 (6)C19—C18—H18121
C16—N4—Ru1127.9 (5)C18—C19—H19120
C20—N4—Ru1113.5 (5)C20—C19—H19120
C21—N5—C25120.5 (7)C21—C22—H22121
C21—N5—Ru1121.4 (5)C23—C22—H22120
C25—N5—Ru1118.1 (5)C23—C24—H24121
C30—N6—C26118.4 (7)C25—C24—H24121
C30—N6—Ru1127.3 (6)C26—C27—H27121
C26—N6—Ru1114.4 (5)C28—C27—H27121
N1—C1—C2122.2 (7)C27—C28—H28120
C3—C2—C1119.2 (7)C29—C28—H28121
C2—C3—C4119.2 (7)C28—C29—H29120
C3—C4—C5120.3 (7)C30—C29—H29120
N1—C5—C4120.6 (7)N6—C30—H30119
N1—C5—C6115.2 (6)C29—C30—H30119
C4—C5—C6124.2 (7)C31—C32—H32180
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ru(C15H11N3)(C17H11N3)](PF6)2·2C2H3N
Mr963.67
Crystal system, space groupTriclinic, P1
Temperature (K)140
a, b, c (Å)8.704 (2), 8.860 (2), 27.277 (7)
α, β, γ (°)96.876 (4), 95.619 (3), 93.023 (3)
V3)2073.9 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerBruker D8 with APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.947, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
19870, 7496, 5137
Rint0.081
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.228, 1.25
No. of reflections7496
No. of parameters596
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.75, 0.94

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

Support by the US Department of Energy through the Laboratory Directed Research and Development (LDRD) program at LANL is gratefully acknowledged.

References

First citationBenniston, A. C., Harriman, A., Li, P. & Sams, C. A. (2005). J. Am. Chem. Soc. 127, 2553–2564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrosshenny, V., Harriman, A., Gisselbrecht, J.-P. & Ziessel, R. (1996). J. Am. Chem. Soc. 118, 10315–10316.  CrossRef CAS Web of Science Google Scholar
First citationGrosshenny, V., Romero, F. M. & Ziessel, R. (1997). J. Org. Chem. 62, 1491–1500.  CrossRef CAS Web of Science Google Scholar
First citationHammarström, L. & Johansson, O. (2010). Coord. Chem. Rev. 254, 2546–2559.  Google Scholar
First citationLashgari, K., Kritikos, M., Norrestam, R. & Norrby, T. (1999). Acta Cryst. C55, 64–67.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRuben, M., Landa, A., Lörtscher, E., Riel, H., Mayor, M., Görls, H., Weber, H. B., Arnold, A. & Evers, F. (2008). Small, 4, 2229–2235.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRuther, R. E., Rigsby, M. L., Gerken, J. B., Hogendoorn, S. R., Landis, E. C., Stahl, S. S. & Hamers, R. J. (2011). J. Am. Chem. Soc. 133, 5692–5694.  Web of Science CrossRef CAS PubMed Google Scholar
First citationScudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). CrystEngComm, 7, 642–649.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSullivan, B. P., Calvert, J. M. & Meyer, T. J. (1980). Inorg. Chem. 19, 1404–1407.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZiessel, R., Grosshenny, V., Hissler, M. & Stroh, C. (2004). Inorg. Chem. 43, 4262–4271.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m79-m80
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds