organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,3-Di­fluoro­phen­yl)(4-tosyl­piperazin-1-yl)methanone

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, bDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, cDepartment of Physics, Karnatak University, Dharwad, Karnataka 580 003, India, and dDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: drsreenivasa@yahoo.co.in

(Received 19 December 2012; accepted 22 December 2012; online 4 January 2013)

In the title compound, C18H18F2N2O3S, the piperazine ring adopts a chair conformation. The dihedral angle between the sulfonyl-bound benzene ring and the best fit plane throught the six non-H atoms of the piperazine ring is 69.4 (2)°, while those between the fluoro­benzene and sulfonyl rings and the fluoro­benzene and piperazine rings are 30.97 (2) and 75.98 (2)°, respectively. In the crystal, mol­ecules are connected to form a tetra­meric unit through C—H⋯O hydrogen bonds. The structure is further stabilized by weak inter­molecular C—H⋯F inter­actions, generating C(8) and C(7) chains running along [100].

Related literature

For the synthesis, characterization and biological activity of piperazine and its derivatives, see: Gan et al. (2009a[Gan, L. L., Cai, J. L. & Zhou, C. H. (2009a). Chin. Pharm. J. 44, 1361-1368.],b[Gan, L. L., Lu, Y. H. & Zhou, C. H. (2009b). Chin. J. Biochem. Pharm. 30, 127-131.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18F2N2O3S

  • Mr = 380.40

  • Monoclinic, P 21 /c

  • a = 17.0456 (4) Å

  • b = 7.6026 (1) Å

  • c = 15.5113 (3) Å

  • β = 113.513 (1)°

  • V = 1843.22 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 K

  • 0.28 × 0.26 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.958

  • 11988 measured reflections

  • 2359 independent reflections

  • 1930 reflections with I > 2σ(I)

  • Rint = 0.023

  • θmax = 22.4°

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.092

  • S = 1.06

  • 2359 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.93 2.58 3.495 (3) 169
C8—H8A⋯O3ii 0.97 2.34 3.255 (3) 157
C10—H10B⋯O1iii 0.97 2.48 3.402 (3) 159
C8—H8B⋯F1iv 0.97 2.57 3.518 (3) 165
C11—H11A⋯F2iv 0.97 2.56 3.296 (3) 133
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y-1, z; (iii) x, y+1, z; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker,2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Numerous piperazine derivatives such as aryl amides, sulphonamides, Mannich bases, Schiff's bases, thiazolidinones, azetidinones, imidazolinones have shown a wide spectrum of biological activities viz. anti-inflammatory, antibacterial, antimalarial, anticonvulsant, antipyretic, antitumor, anthelmintics, analgesic, antidepressant, antifungal, antitubercular, anticancer, antidiabetic effects (Gan et al., 2009a, 2009b). Keeping this in mind, we synthesized the title compound to study its crystal structure.

The compound crystallizes in monoclinic crystal system and the space group P21/c. In the crystal structure, the piperazine ring adopts chair conformation. The dihedral angle between the sulfonyl bound benzene ring and the best fit plane through all six atoms of the piperazine ring is 69.4 (2)°, while those between the fluorobenzene and the sulfonyl rings and the fluorobenzene and the piperazine rings are 30.97 (2)° and 75.98 (2)° respectively. In the crystal structure molecules form a tetrameric unit generating alternate R22(22), (C8—H8A···O3, C10—H10B···O1) and inversion related C4—H4···O3 R22(10) rings (Bernstein et al.1995). The structure is further stabilized by weak intermolecular C11—H11A···F2 and C8—H8B···F1 interactions.

Related literature top

For the synthesis, characterization and biological activity of piperazine and its derivatives, see: Gan et al. (2009a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

1-Tosylpiperazine (0.01 mmol) and triethylamine (0.02 mmol) were dissolved in 10 ml of dichloromethane (CH2Cl2). The mixture was cooled to 0°C and 1-propanephosphonic acid anhydride (0.02 mmol) and 2,4-diflurobenzoic acid (0.01 mmol) added. The reaction mixture was stirred at 80°C for 14 h. The reaction was monitored by TLC and the solvent removed yielding the crude product. The crude mass was purified by chromatography on 230–400 silica gel with petroleum ether and ethyl acetate as eluents. Single crystals of the title compound were obtained from slow evaporation of a solution of the compound in petroleum ether and ethyl acetate (1:4).

Refinement top

H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 - 0.97 Å. The isotropic displacement parameters for all H atoms were set to 1.2 times Ueq of the parent atom or 1.5 times that of the parent atom for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker,2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
(2,3-Difluorophenyl)(4-tosylpiperazin-1-yl)methanone top
Crystal data top
C18H18F2N2O3SPrism
Mr = 380.40Dx = 1.371 Mg m3
Monoclinic, P21/cMelting point: 457 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 17.0456 (4) ÅCell parameters from 2364 reflections
b = 7.6026 (1) Åθ = 2.6–22.4°
c = 15.5113 (3) ŵ = 0.22 mm1
β = 113.513 (1)°T = 298 K
V = 1843.22 (6) Å3Prism, colourless
Z = 40.28 × 0.26 × 0.20 mm
F(000) = 792
Data collection top
Bruker APEXII CCD
diffractometer
2359 independent reflections
Radiation source: fine-focus sealed tube1930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 0.95 pixels mm-1θmax = 22.4°, θmin = 2.6°
ϕ and ω scansh = 1815
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 87
Tmin = 0.942, Tmax = 0.958l = 1616
11988 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.3661P]
where P = (Fo2 + 2Fc2)/3
2359 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.23 e Å3
0 constraints
Crystal data top
C18H18F2N2O3SV = 1843.22 (6) Å3
Mr = 380.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.0456 (4) ŵ = 0.22 mm1
b = 7.6026 (1) ÅT = 298 K
c = 15.5113 (3) Å0.28 × 0.26 × 0.20 mm
β = 113.513 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2359 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1930 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.958Rint = 0.023
11988 measured reflectionsθmax = 22.4°
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
2359 reflectionsΔρmin = 0.23 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56842 (15)0.1855 (3)0.19563 (16)0.0606 (6)
C20.50273 (17)0.2154 (3)0.28076 (15)0.0652 (6)
C30.42103 (17)0.2278 (3)0.28889 (17)0.0712 (7)
H30.37670.24860.34700.085*
C40.40468 (16)0.2091 (3)0.20946 (19)0.0788 (7)
H40.34880.21650.21370.095*
C50.47062 (17)0.1794 (3)0.12370 (17)0.0710 (7)
H50.45870.16720.07050.085*
C60.55410 (14)0.1675 (3)0.11526 (14)0.0542 (6)
C70.62575 (15)0.1198 (3)0.02411 (15)0.0599 (6)
C80.71988 (15)0.1996 (3)0.13429 (14)0.0644 (6)
H8A0.73690.07770.13530.077*
H8B0.69440.21350.17970.077*
C90.79693 (15)0.3155 (3)0.16094 (15)0.0632 (6)
H9A0.83640.29010.22490.076*
H9B0.82600.29350.11950.076*
C100.71040 (13)0.5453 (3)0.05710 (14)0.0574 (6)
H10A0.73820.52780.01410.069*
H10B0.69380.66790.05420.069*
C110.63270 (14)0.4302 (3)0.02931 (15)0.0598 (6)
H11A0.60150.45800.06790.072*
H11B0.59540.45250.03580.072*
C120.91357 (14)0.6645 (3)0.15849 (14)0.0584 (6)
C130.98919 (15)0.5691 (3)0.19152 (16)0.0659 (6)
H131.00220.49510.24310.079*
C141.04489 (16)0.5843 (3)0.14784 (19)0.0746 (7)
H141.09520.51910.17020.089*
C151.02791 (17)0.6943 (3)0.07146 (18)0.0730 (7)
C160.95135 (18)0.7848 (3)0.03828 (17)0.0742 (7)
H160.93790.85650.01430.089*
C170.89459 (16)0.7722 (3)0.08056 (16)0.0659 (6)
H170.84370.83540.05710.079*
C181.0916 (2)0.7155 (4)0.0280 (2)0.1021 (10)
H18A1.06340.76120.03460.153*
H18B1.11650.60340.02560.153*
H18C1.13570.79560.06510.153*
N10.65731 (11)0.2441 (2)0.04104 (11)0.0572 (5)
N20.76965 (11)0.5003 (2)0.15333 (11)0.0571 (5)
O10.65057 (13)0.0330 (2)0.01083 (11)0.0937 (6)
O20.88639 (11)0.5727 (2)0.30408 (10)0.0772 (5)
O30.79753 (10)0.8085 (2)0.20235 (11)0.0740 (5)
F10.64895 (9)0.1741 (2)0.19068 (10)0.0971 (5)
F20.52079 (11)0.2303 (2)0.35774 (10)0.1029 (6)
S10.84155 (4)0.64492 (7)0.21283 (4)0.0619 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0636 (15)0.0573 (14)0.0623 (15)0.0075 (12)0.0267 (13)0.0050 (11)
C20.0869 (18)0.0589 (15)0.0500 (14)0.0087 (13)0.0274 (14)0.0016 (10)
C30.0761 (18)0.0625 (16)0.0607 (15)0.0060 (13)0.0122 (13)0.0038 (11)
C40.0635 (16)0.0821 (19)0.087 (2)0.0011 (14)0.0268 (16)0.0009 (14)
C50.0809 (18)0.0705 (16)0.0687 (16)0.0017 (14)0.0372 (15)0.0020 (12)
C60.0702 (15)0.0380 (12)0.0526 (13)0.0016 (10)0.0226 (11)0.0001 (9)
C70.0803 (16)0.0451 (15)0.0530 (13)0.0055 (12)0.0252 (12)0.0038 (11)
C80.0877 (17)0.0441 (13)0.0535 (13)0.0094 (12)0.0198 (12)0.0069 (10)
C90.0733 (15)0.0474 (14)0.0556 (13)0.0164 (12)0.0117 (12)0.0094 (10)
C100.0643 (14)0.0413 (13)0.0549 (13)0.0079 (11)0.0115 (11)0.0077 (9)
C110.0672 (14)0.0435 (13)0.0596 (13)0.0097 (11)0.0158 (11)0.0037 (10)
C120.0631 (14)0.0409 (12)0.0522 (12)0.0002 (11)0.0031 (11)0.0037 (10)
C130.0656 (15)0.0497 (14)0.0621 (14)0.0027 (12)0.0040 (13)0.0012 (11)
C140.0597 (15)0.0575 (16)0.0884 (18)0.0001 (13)0.0105 (14)0.0153 (14)
C150.0815 (18)0.0529 (15)0.0763 (17)0.0159 (14)0.0227 (15)0.0202 (13)
C160.0898 (19)0.0559 (16)0.0635 (15)0.0092 (14)0.0163 (15)0.0017 (12)
C170.0702 (15)0.0513 (15)0.0592 (14)0.0028 (12)0.0079 (13)0.0031 (11)
C180.109 (2)0.089 (2)0.120 (2)0.0272 (18)0.058 (2)0.0307 (18)
N10.0741 (12)0.0373 (11)0.0504 (10)0.0061 (9)0.0144 (9)0.0024 (8)
N20.0660 (11)0.0395 (10)0.0518 (10)0.0089 (9)0.0089 (9)0.0057 (8)
O10.1381 (16)0.0460 (11)0.0679 (10)0.0203 (10)0.0104 (10)0.0024 (8)
O20.0933 (12)0.0732 (11)0.0470 (8)0.0107 (9)0.0088 (8)0.0031 (7)
O30.0833 (11)0.0487 (9)0.0760 (10)0.0128 (8)0.0169 (9)0.0088 (7)
F10.0793 (10)0.1325 (14)0.0878 (10)0.0192 (9)0.0422 (8)0.0291 (9)
F20.1248 (13)0.1301 (14)0.0601 (9)0.0342 (11)0.0437 (9)0.0201 (8)
S10.0722 (4)0.0485 (4)0.0499 (3)0.0083 (3)0.0084 (3)0.0018 (2)
Geometric parameters (Å, º) top
C1—F11.347 (2)C10—H10A0.9700
C1—C21.367 (3)C10—H10B0.9700
C1—C61.369 (3)C11—N11.466 (3)
C2—C31.351 (3)C11—H11A0.9700
C2—F21.352 (3)C11—H11B0.9700
C3—C41.375 (3)C12—C131.387 (3)
C3—H30.9300C12—C171.387 (3)
C4—C51.375 (3)C12—S11.751 (2)
C4—H40.9300C13—C141.374 (3)
C5—C61.379 (3)C13—H130.9300
C5—H50.9300C14—C151.383 (4)
C6—C71.498 (3)C14—H140.9300
C7—O11.225 (3)C15—C161.380 (4)
C7—N11.330 (3)C15—C181.497 (4)
C8—N11.454 (3)C16—C171.372 (3)
C8—C91.496 (3)C16—H160.9300
C8—H8A0.9700C17—H170.9300
C8—H8B0.9700C18—H18A0.9600
C9—N21.470 (3)C18—H18B0.9600
C9—H9A0.9700C18—H18C0.9600
C9—H9B0.9700N2—S11.6311 (17)
C10—N21.470 (2)O2—S11.4234 (15)
C10—C111.500 (3)O3—S11.4281 (16)
F1—C1—C2119.3 (2)C10—C11—H11A109.5
F1—C1—C6119.3 (2)N1—C11—H11B109.5
C2—C1—C6121.4 (2)C10—C11—H11B109.5
C3—C2—F2120.1 (2)H11A—C11—H11B108.1
C3—C2—C1121.2 (2)C13—C12—C17119.3 (2)
F2—C2—C1118.7 (2)C13—C12—S1120.31 (18)
C2—C3—C4118.6 (2)C17—C12—S1120.34 (18)
C2—C3—H3120.7C14—C13—C12119.8 (2)
C4—C3—H3120.7C14—C13—H13120.1
C3—C4—C5120.3 (2)C12—C13—H13120.1
C3—C4—H4119.9C13—C14—C15121.6 (2)
C5—C4—H4119.9C13—C14—H14119.2
C4—C5—C6121.1 (2)C15—C14—H14119.2
C4—C5—H5119.4C16—C15—C14117.7 (3)
C6—C5—H5119.4C16—C15—C18121.7 (3)
C1—C6—C5117.3 (2)C14—C15—C18120.6 (3)
C1—C6—C7120.6 (2)C17—C16—C15121.9 (2)
C5—C6—C7121.8 (2)C17—C16—H16119.0
O1—C7—N1122.5 (2)C15—C16—H16119.0
O1—C7—C6119.0 (2)C16—C17—C12119.6 (2)
N1—C7—C6118.36 (19)C16—C17—H17120.2
N1—C8—C9110.67 (17)C12—C17—H17120.2
N1—C8—H8A109.5C15—C18—H18A109.5
C9—C8—H8A109.5C15—C18—H18B109.5
N1—C8—H8B109.5H18A—C18—H18B109.5
C9—C8—H8B109.5C15—C18—H18C109.5
H8A—C8—H8B108.1H18A—C18—H18C109.5
N2—C9—C8109.02 (18)H18B—C18—H18C109.5
N2—C9—H9A109.9C7—N1—C8120.31 (17)
C8—C9—H9A109.9C7—N1—C11125.61 (17)
N2—C9—H9B109.9C8—N1—C11114.06 (16)
C8—C9—H9B109.9C9—N2—C10111.79 (16)
H9A—C9—H9B108.3C9—N2—S1117.19 (14)
N2—C10—C11109.02 (16)C10—N2—S1118.30 (13)
N2—C10—H10A109.9O2—S1—O3119.91 (10)
C11—C10—H10A109.9O2—S1—N2106.66 (9)
N2—C10—H10B109.9O3—S1—N2106.31 (9)
C11—C10—H10B109.9O2—S1—C12108.06 (10)
H10A—C10—H10B108.3O3—S1—C12107.97 (10)
N1—C11—C10110.57 (17)N2—S1—C12107.32 (9)
N1—C11—H11A109.5
F1—C1—C2—C3180.0 (2)C15—C16—C17—C120.6 (3)
C6—C1—C2—C30.2 (4)C13—C12—C17—C161.0 (3)
F1—C1—C2—F20.8 (3)S1—C12—C17—C16179.41 (17)
C6—C1—C2—F2179.4 (2)O1—C7—N1—C84.0 (3)
F2—C2—C3—C4178.9 (2)C6—C7—N1—C8172.92 (19)
C1—C2—C3—C40.2 (4)O1—C7—N1—C11178.1 (2)
C2—C3—C4—C50.4 (4)C6—C7—N1—C115.1 (3)
C3—C4—C5—C60.1 (4)C9—C8—N1—C7127.7 (2)
F1—C1—C6—C5179.7 (2)C9—C8—N1—C1154.1 (3)
C2—C1—C6—C50.5 (3)C10—C11—N1—C7128.3 (2)
F1—C1—C6—C75.4 (3)C10—C11—N1—C853.6 (2)
C2—C1—C6—C7174.8 (2)C8—C9—N2—C1060.2 (2)
C4—C5—C6—C10.3 (3)C8—C9—N2—S1158.59 (15)
C4—C5—C6—C7174.6 (2)C11—C10—N2—C959.8 (2)
C1—C6—C7—O176.6 (3)C11—C10—N2—S1159.43 (14)
C5—C6—C7—O197.4 (3)C9—N2—S1—O244.59 (18)
C1—C6—C7—N1106.4 (2)C10—N2—S1—O2176.77 (15)
C5—C6—C7—N179.5 (3)C9—N2—S1—O3173.63 (15)
N1—C8—C9—N255.6 (2)C10—N2—S1—O347.72 (18)
N2—C10—C11—N154.7 (2)C9—N2—S1—C1271.02 (17)
C17—C12—C13—C141.0 (3)C10—N2—S1—C1267.62 (17)
S1—C12—C13—C14179.43 (16)C13—C12—S1—O218.83 (19)
C12—C13—C14—C150.5 (3)C17—C12—S1—O2162.78 (17)
C13—C14—C15—C162.0 (3)C13—C12—S1—O3149.92 (17)
C13—C14—C15—C18176.9 (2)C17—C12—S1—O331.70 (19)
C14—C15—C16—C172.1 (3)C13—C12—S1—N295.85 (17)
C18—C15—C16—C17176.9 (2)C17—C12—S1—N282.53 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.583.495 (3)169
C8—H8A···O3ii0.972.343.255 (3)157
C10—H10B···O1iii0.972.483.402 (3)159
C8—H8B···F1iv0.972.573.518 (3)165
C11—H11A···F2iv0.972.563.296 (3)133
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H18F2N2O3S
Mr380.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.0456 (4), 7.6026 (1), 15.5113 (3)
β (°) 113.513 (1)
V3)1843.22 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.28 × 0.26 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.942, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
11988, 2359, 1930
Rint0.023
θmax (°)22.4
(sin θ/λ)max1)0.535
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.06
No. of reflections2359
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.23

Computer programs: APEX2 (Bruker, 2009), APEX2 and SAINT-Plus (Bruker, 2009), SAINT-Plus and XPREP (Bruker,2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.583.495 (3)169.3
C8—H8A···O3ii0.972.343.255 (3)156.8
C10—H10B···O1iii0.972.483.402 (3)159.2
C8—H8B···F1iv0.972.573.518 (3)165.0
C11—H11A···F2iv0.972.563.296 (3)133.1
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr S. C. Sharma, Vice Chancellor, Tumkur University, for his constant encouragement. JT also thanks the DST, New Delhi, for the SCXRD facility under the PURSE Grant (SR/S9/Z-23/2008/11, 2009) at USIC, Karnatak University.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGan, L. L., Cai, J. L. & Zhou, C. H. (2009a). Chin. Pharm. J. 44, 1361–1368.  CAS Google Scholar
First citationGan, L. L., Lu, Y. H. & Zhou, C. H. (2009b). Chin. J. Biochem. Pharm. 30, 127–131.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds