organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Oct­yl­oxy)phenyl 2-oxo-2H-chromene-3-carboxyl­ate

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur 572 103, Karnataka, India, and cRaman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 24 December 2012; accepted 3 January 2013; online 9 January 2013)

In the title compound, C24H26O5, the 2H-chromene ring system is essentially planar, with a maximum deviation of 0.029 (2) Å from the best-fit mean plane incorporating both rings. The dihedral angle between the 2H-chromene ring system and the benzene ring is 21.00 (1)°. In the crystal, pairs of C—H⋯O hydrogen bonds generate an R22(8) ring pattern. These contacts are bolstered by weaker bifurcated C—H⋯O hydrogen bonds.

Related literature

For general background to coumarin derivatives and their biological and technological applications, see: Georgieva et al. (2004[Georgieva, I., Mihaylov, T., Bauer, G. & Trendafilova, N. (2004). Chem. Phys. 300, 119-131.]); Creaven et al. (2005[Creaven, B. S., Egan, D. A., Kavanagh, K., McCann, M., Mahon, M., Noble, A., Thati, B. & Walsh, M. (2005). Polyhedron, 24, 949-957.]); Morita et al. (2005[Morita, Y., Tasaka, T., Yamaguchi, R., Okamoto, H. & Takenaka, S. (2005). Mol. Cryst. Liq. Cryst. 439, 209-220.]); Tian et al. (2003[Tian, Y., Akiyamab, E. & Nagase, Y. (2003). J. Mater. Chem. 13, 1253-1258.]); Iliopoulos et al. (2010[Iliopoulos, K., Krupka, O., Gindre, D. & Salle, M. (2010). J. Am. Chem. Soc. 132, 14343-14345.]); Hejchman et al. (2011[Hejchman, E. B., Konc, J. T., Maciejewska, D. & Kruszewska, H. (2011). Synth. Commun. 41, 2392-2402.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26O5

  • Mr = 394.45

  • Monoclinic, P 21 /n

  • a = 14.464 (3) Å

  • b = 6.7548 (15) Å

  • c = 21.381 (5) Å

  • β = 91.663 (8)°

  • V = 2088.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.29 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.982

  • 22609 measured reflections

  • 3615 independent reflections

  • 1926 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.146

  • S = 0.94

  • 3615 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.59 3.513 (4) 174
C9—H9⋯O2i 0.93 2.51 3.420 (3) 167
C16—H16⋯O2i 0.93 2.71 3.551 (3) 151
C16—H16⋯O3i 0.93 2.63 3.338 (3) 133
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coumarin derivatives have been attracted increasing attention due to their extensive biological applications, such as anticancer, anti-inflammatory and anticoagulant agents (Georgieva et al., 2004; Creaven et al., 2005). The coumarin nucleus has been the focus of our recent research concerning the design, synthesis and characterization to investigate their liquid crystal properties together with crystal structure studies (Morita et al., 2005; Tian et al., 2003). Coumarins are interesting class of heterocycles because of their dipolar moment increases by external stimulus such as light, temperature, electric current and chemical reaction (Iliopoulos et al., 2010). The excitation of the coumarin chromophore increases the electron density of its carbonyl groups owing to excited photochemical and photophysical properties such as molecular fluorescent sensors, laser dyes and many industrial applications (Hejchman et al., 2011).

The asymmetric unit of 4-(octyloxy)phenyl 2-oxo-2H-chromene-3 -carboxylate is shown in Fig. 1. The 2H-chromene ring (O1/C1–C9) system is planar, with a maximum deviation of 0.028 (2) Å for atom C8. The dihedral angle between 2H-chromene ring (O1/C1–C9) and benzene ring (C11–C16) is 21.11 (1)°. The crystal structure is characterized by intermolecular C4—H4···O1 and C9—H9···O2 hydrogen bonding generating an R2 2(8) ring pattern (Bernstein et al., 1995). Bifurcated C16—H16···O2 and C16—H16···O3 contacts further strengthen the packing, Fig. 2.

Related literature top

For general background to coumarin derivatives and their biological and technological applications, see: Georgieva et al. (2004); Creaven et al. (2005); Morita et al. (2005); Tian et al. (2003); Iliopoulos et al. (2010); Hejchman et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 2-oxo-2H-chromene-3-carboxylic acid (19 mg,1 mmol), 4-(octyloxy)phenol (22.2 mg,1 mmol), N,N -dicyclohexylcarbodiimide (23 mg,1.2 mmol) and a catalytic quantity of N,N-dimethylaminopyrimidine was stirred in 5 ml of dry dichloromethane for 24 h at room temperature. The residue obtained on removal of solvent was chromatographed on silica gel and eluted with chloroform. Removal of solvent from the eluate afforded a colorless solid, which was re-crystallized from absolute ethanol to obtain needle like crystals of the title compound for X-ray diffraction analysis.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C—H = 0.96 Å for methyl H, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing for the title compound with hydrogen bonds drawn as dashed lines.
4-(Octyloxy)phenyl 2-oxo-2H-chromene-3-carboxylate top
Crystal data top
C24H26O5F(000) = 840
Mr = 394.45Dx = 1.255 Mg m3
Monoclinic, P21/nMelting point: 580 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 14.464 (3) ÅCell parameters from 3615 reflections
b = 6.7548 (15) Åθ = 3.2–25.0°
c = 21.381 (5) ŵ = 0.09 mm1
β = 91.663 (8)°T = 293 K
V = 2088.0 (8) Å3Needles, colourless
Z = 40.29 × 0.25 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3615 independent reflections
Radiation source: fine-focus sealed tube1926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ω and ϕ scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1716
Tmin = 0.975, Tmax = 0.982k = 85
22609 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.077P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3615 reflectionsΔρmax = 0.18 e Å3
264 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (7)
Crystal data top
C24H26O5V = 2088.0 (8) Å3
Mr = 394.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.464 (3) ŵ = 0.09 mm1
b = 6.7548 (15) ÅT = 293 K
c = 21.381 (5) Å0.29 × 0.25 × 0.21 mm
β = 91.663 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3615 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1926 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.982Rint = 0.084
22609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 0.94Δρmax = 0.18 e Å3
3615 reflectionsΔρmin = 0.14 e Å3
264 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11082 (14)0.0294 (3)0.01675 (8)0.0705 (6)
O20.11756 (15)0.1104 (3)0.07552 (9)0.0826 (7)
O30.06844 (14)0.1538 (3)0.17685 (9)0.0744 (6)
O40.14523 (12)0.4373 (2)0.16091 (7)0.0610 (5)
O50.14206 (14)0.7392 (3)0.40100 (8)0.0730 (6)
C10.1075 (2)0.1595 (5)0.11861 (13)0.0755 (9)
H10.10430.03140.13450.091*
C20.1090 (2)0.3196 (5)0.15818 (14)0.0827 (9)
H20.10620.29950.20120.099*
C30.1146 (2)0.5101 (5)0.13485 (14)0.0775 (9)
H30.11650.61740.16200.093*
C40.11723 (19)0.5398 (4)0.07203 (13)0.0682 (8)
H40.12030.66820.05640.082*
C50.11538 (17)0.3810 (4)0.03071 (11)0.0509 (6)
C60.11088 (18)0.1917 (4)0.05564 (12)0.0557 (7)
C70.11337 (19)0.0428 (4)0.04771 (12)0.0603 (7)
C80.11338 (17)0.2423 (3)0.07410 (11)0.0497 (6)
C90.11632 (16)0.3995 (4)0.03580 (11)0.0524 (7)
H90.11910.52550.05330.063*
C100.10603 (18)0.2654 (4)0.14224 (12)0.0531 (7)
C110.13845 (18)0.5046 (4)0.22323 (11)0.0535 (7)
C120.16625 (19)0.3932 (4)0.27383 (12)0.0639 (8)
H120.18450.26230.26860.077*
C130.16691 (19)0.4769 (4)0.33248 (12)0.0650 (8)
H130.18630.40280.36710.078*
C140.13875 (19)0.6712 (4)0.34023 (11)0.0567 (7)
C150.11116 (19)0.7799 (4)0.28884 (11)0.0619 (7)
H150.09230.91040.29380.074*
C160.11120 (19)0.6972 (4)0.22990 (11)0.0591 (7)
H160.09290.77150.19510.071*
C170.1323 (2)0.9462 (4)0.41084 (12)0.0645 (7)
H17A0.07390.99160.39260.077*
H17B0.18191.01680.39090.077*
C180.1356 (2)0.9869 (4)0.47999 (11)0.0675 (8)
H18A0.19140.92870.49840.081*
H18B0.08310.92390.49890.081*
C190.1343 (2)1.2047 (4)0.49476 (12)0.0707 (8)
H19A0.08121.26340.47310.085*
H19B0.18931.26460.47800.085*
C200.1304 (2)1.2574 (4)0.56327 (12)0.0723 (8)
H20A0.07611.19600.58060.087*
H20B0.18431.20270.58500.087*
C210.1269 (2)1.4752 (5)0.57543 (13)0.0831 (9)
H21A0.07171.52780.55460.100*
H21B0.17971.53600.55620.100*
C220.1265 (2)1.5383 (5)0.64278 (13)0.0839 (9)
H22A0.18181.48830.66410.101*
H22B0.07341.48010.66250.101*
C230.1229 (3)1.7629 (5)0.65022 (15)0.1031 (12)
H23A0.17461.81990.62870.124*
H23B0.06661.81080.62950.124*
C240.1255 (3)1.8364 (6)0.71544 (16)0.1332 (16)
H24A0.07201.78940.73650.200*
H24B0.12561.97850.71530.200*
H24C0.18041.78890.73680.200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1120 (16)0.0356 (11)0.0641 (12)0.0062 (10)0.0039 (10)0.0070 (9)
O20.1353 (19)0.0309 (12)0.0816 (14)0.0007 (11)0.0057 (12)0.0064 (10)
O30.1055 (16)0.0459 (12)0.0723 (12)0.0202 (11)0.0096 (11)0.0020 (10)
O40.0867 (14)0.0398 (11)0.0564 (11)0.0166 (9)0.0003 (9)0.0004 (9)
O50.1129 (17)0.0487 (13)0.0570 (12)0.0036 (10)0.0023 (10)0.0017 (9)
C10.103 (2)0.059 (2)0.0653 (19)0.0103 (16)0.0005 (16)0.0075 (16)
C20.098 (3)0.090 (3)0.0596 (18)0.0053 (19)0.0046 (16)0.0027 (19)
C30.097 (3)0.066 (2)0.069 (2)0.0052 (17)0.0010 (16)0.0184 (17)
C40.082 (2)0.0507 (18)0.0718 (19)0.0039 (15)0.0006 (15)0.0067 (16)
C50.0562 (17)0.0401 (16)0.0562 (15)0.0004 (12)0.0026 (12)0.0034 (13)
C60.0659 (19)0.0445 (17)0.0566 (16)0.0040 (13)0.0021 (13)0.0030 (14)
C70.075 (2)0.0386 (17)0.0672 (18)0.0039 (13)0.0036 (14)0.0036 (15)
C80.0573 (17)0.0307 (14)0.0608 (16)0.0013 (11)0.0018 (12)0.0018 (13)
C90.0623 (18)0.0326 (15)0.0622 (16)0.0006 (12)0.0020 (12)0.0042 (12)
C100.0590 (17)0.0361 (16)0.0639 (17)0.0016 (13)0.0025 (13)0.0025 (14)
C110.0697 (19)0.0365 (15)0.0542 (15)0.0078 (12)0.0018 (12)0.0008 (13)
C120.087 (2)0.0373 (15)0.0670 (18)0.0048 (14)0.0062 (15)0.0005 (14)
C130.092 (2)0.0435 (17)0.0588 (17)0.0071 (14)0.0091 (14)0.0103 (14)
C140.0749 (19)0.0434 (17)0.0515 (16)0.0048 (13)0.0026 (13)0.0046 (13)
C150.088 (2)0.0377 (15)0.0599 (17)0.0002 (14)0.0029 (14)0.0023 (13)
C160.081 (2)0.0369 (16)0.0588 (17)0.0038 (13)0.0064 (14)0.0094 (13)
C170.077 (2)0.0548 (19)0.0615 (17)0.0054 (14)0.0026 (13)0.0055 (14)
C180.069 (2)0.070 (2)0.0638 (17)0.0044 (15)0.0027 (13)0.0025 (15)
C190.090 (2)0.0596 (19)0.0627 (17)0.0049 (16)0.0010 (15)0.0041 (15)
C200.086 (2)0.060 (2)0.0706 (19)0.0015 (15)0.0053 (15)0.0064 (15)
C210.106 (3)0.067 (2)0.076 (2)0.0033 (18)0.0015 (17)0.0039 (17)
C220.102 (3)0.074 (2)0.077 (2)0.0031 (18)0.0093 (17)0.0084 (18)
C230.152 (3)0.077 (3)0.080 (2)0.015 (2)0.004 (2)0.0115 (19)
C240.204 (5)0.110 (3)0.088 (3)0.014 (3)0.028 (3)0.014 (2)
Geometric parameters (Å, º) top
O1—C61.376 (3)C14—C151.371 (3)
O1—C71.381 (3)C15—C161.379 (3)
O2—C71.194 (3)C15—H150.9300
O3—C101.198 (3)C16—H160.9300
O4—C101.347 (3)C17—C181.503 (3)
O4—C111.414 (3)C17—H17A0.9700
O5—C141.378 (3)C17—H17B0.9700
O5—C171.422 (3)C18—C191.505 (4)
C1—C61.363 (3)C18—H18A0.9700
C1—C21.374 (4)C18—H18B0.9700
C1—H10.9300C19—C201.510 (3)
C2—C31.381 (4)C19—H19A0.9700
C2—H20.9300C19—H19B0.9700
C3—C41.357 (3)C20—C211.496 (4)
C3—H30.9300C20—H20A0.9700
C4—C51.390 (3)C20—H20B0.9700
C4—H40.9300C21—C221.502 (4)
C5—C61.386 (3)C21—H21A0.9700
C5—C91.427 (3)C21—H21B0.9700
C7—C81.461 (3)C22—C231.527 (4)
C8—C91.342 (3)C22—H22A0.9700
C8—C101.472 (3)C22—H22B0.9700
C9—H90.9300C23—C241.479 (4)
C11—C161.368 (4)C23—H23A0.9700
C11—C121.369 (3)C23—H23B0.9700
C12—C131.375 (3)C24—H24A0.9600
C12—H120.9300C24—H24B0.9600
C13—C141.386 (4)C24—H24C0.9600
C13—H130.9300
C6—O1—C7123.4 (2)C15—C16—H16120.4
C10—O4—C11121.06 (19)O5—C17—C18109.0 (2)
C14—O5—C17117.82 (19)O5—C17—H17A109.9
C6—C1—C2118.8 (3)C18—C17—H17A109.9
C6—C1—H1120.6O5—C17—H17B109.9
C2—C1—H1120.6C18—C17—H17B109.9
C1—C2—C3120.8 (3)H17A—C17—H17B108.3
C1—C2—H2119.6C17—C18—C19112.6 (2)
C3—C2—H2119.6C17—C18—H18A109.1
C4—C3—C2119.6 (3)C19—C18—H18A109.1
C4—C3—H3120.2C17—C18—H18B109.1
C2—C3—H3120.2C19—C18—H18B109.1
C3—C4—C5120.9 (3)H18A—C18—H18B107.8
C3—C4—H4119.5C18—C19—C20115.8 (2)
C5—C4—H4119.5C18—C19—H19A108.3
C6—C5—C4117.9 (2)C20—C19—H19A108.3
C6—C5—C9117.6 (2)C18—C19—H19B108.3
C4—C5—C9124.5 (2)C20—C19—H19B108.3
C1—C6—O1118.0 (2)H19A—C19—H19B107.4
C1—C6—C5121.8 (2)C21—C20—C19113.8 (2)
O1—C6—C5120.2 (2)C21—C20—H20A108.8
O2—C7—O1116.1 (2)C19—C20—H20A108.8
O2—C7—C8127.4 (2)C21—C20—H20B108.8
O1—C7—C8116.5 (2)C19—C20—H20B108.8
C9—C8—C7119.6 (2)H20A—C20—H20B107.7
C9—C8—C10121.6 (2)C20—C21—C22116.5 (3)
C7—C8—C10118.7 (2)C20—C21—H21A108.2
C8—C9—C5122.6 (2)C22—C21—H21A108.2
C8—C9—H9118.7C20—C21—H21B108.2
C5—C9—H9118.7C22—C21—H21B108.2
O3—C10—O4123.6 (2)H21A—C21—H21B107.3
O3—C10—C8126.3 (2)C21—C22—C23112.5 (3)
O4—C10—C8110.0 (2)C21—C22—H22A109.1
C16—C11—C12121.3 (2)C23—C22—H22A109.1
C16—C11—O4115.6 (2)C21—C22—H22B109.1
C12—C11—O4122.8 (2)C23—C22—H22B109.1
C11—C12—C13119.3 (2)H22A—C22—H22B107.8
C11—C12—H12120.4C24—C23—C22115.6 (3)
C13—C12—H12120.4C24—C23—H23A108.4
C12—C13—C14120.3 (2)C22—C23—H23A108.4
C12—C13—H13119.9C24—C23—H23B108.4
C14—C13—H13119.9C22—C23—H23B108.4
C15—C14—O5125.3 (2)H23A—C23—H23B107.4
C15—C14—C13119.4 (2)C23—C24—H24A109.5
O5—C14—C13115.2 (2)C23—C24—H24B109.5
C14—C15—C16120.5 (3)H24A—C24—H24B109.5
C14—C15—H15119.7C23—C24—H24C109.5
C16—C15—H15119.7H24A—C24—H24C109.5
C11—C16—C15119.2 (2)H24B—C24—H24C109.5
C11—C16—H16120.4
C6—C1—C2—C30.6 (5)C9—C8—C10—O3148.8 (3)
C1—C2—C3—C41.0 (5)C7—C8—C10—O328.5 (4)
C2—C3—C4—C50.7 (4)C9—C8—C10—O428.8 (3)
C3—C4—C5—C60.1 (4)C7—C8—C10—O4153.9 (2)
C3—C4—C5—C9178.9 (2)C10—O4—C11—C16131.1 (3)
C2—C1—C6—O1179.0 (3)C10—O4—C11—C1255.5 (3)
C2—C1—C6—C50.2 (4)C16—C11—C12—C130.1 (4)
C7—O1—C6—C1179.5 (2)O4—C11—C12—C13172.9 (2)
C7—O1—C6—C51.2 (4)C11—C12—C13—C140.7 (4)
C4—C5—C6—C10.6 (4)C17—O5—C14—C1511.9 (4)
C9—C5—C6—C1178.5 (2)C17—O5—C14—C13167.5 (2)
C4—C5—C6—O1178.7 (2)C12—C13—C14—C150.7 (4)
C9—C5—C6—O12.3 (4)C12—C13—C14—O5179.8 (2)
C6—O1—C7—O2176.5 (2)O5—C14—C15—C16179.5 (2)
C6—O1—C7—C81.8 (4)C13—C14—C15—C160.1 (4)
O2—C7—C8—C9174.3 (3)C12—C11—C16—C150.5 (4)
O1—C7—C8—C93.8 (4)O4—C11—C16—C15174.0 (2)
O2—C7—C8—C108.4 (4)C14—C15—C16—C110.5 (4)
O1—C7—C8—C10173.6 (2)C14—O5—C17—C18178.6 (2)
C7—C8—C9—C52.8 (4)O5—C17—C18—C19174.9 (2)
C10—C8—C9—C5174.5 (2)C17—C18—C19—C20175.7 (2)
C6—C5—C9—C80.3 (4)C18—C19—C20—C21178.6 (3)
C4—C5—C9—C8179.2 (3)C19—C20—C21—C22177.7 (3)
C11—O4—C10—O34.6 (4)C20—C21—C22—C23180.0 (3)
C11—O4—C10—C8173.1 (2)C21—C22—C23—C24178.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.593.513 (4)174
C9—H9···O2i0.932.513.420 (3)167
C16—H16···O2ii0.932.713.551 (3)151
C16—H16···O3ii0.932.633.338 (3)133
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H26O5
Mr394.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.464 (3), 6.7548 (15), 21.381 (5)
β (°) 91.663 (8)
V3)2088.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.29 × 0.25 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.975, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
22609, 3615, 1926
Rint0.084
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.146, 0.94
No. of reflections3615
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.59003.513 (4)174.00
C9—H9···O2i0.932.51003.420 (3)167.00
C16—H16···O2ii0.932.713.551 (3)150.67
C16—H16···O3ii0.932.633.338 (3)132.93
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

The authors thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, and P. A. Suchetan, Department of Studies and Research in Chemistry, U·C.S. Tumkur University, Tumkur, for their help and suggestions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCreaven, B. S., Egan, D. A., Kavanagh, K., McCann, M., Mahon, M., Noble, A., Thati, B. & Walsh, M. (2005). Polyhedron, 24, 949–957.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeorgieva, I., Mihaylov, T., Bauer, G. & Trendafilova, N. (2004). Chem. Phys. 300, 119–131.  Web of Science CrossRef CAS Google Scholar
First citationHejchman, E. B., Konc, J. T., Maciejewska, D. & Kruszewska, H. (2011). Synth. Commun. 41, 2392–2402.  Web of Science CrossRef CAS Google Scholar
First citationIliopoulos, K., Krupka, O., Gindre, D. & Salle, M. (2010). J. Am. Chem. Soc. 132, 14343–14345.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMorita, Y., Tasaka, T., Yamaguchi, R., Okamoto, H. & Takenaka, S. (2005). Mol. Cryst. Liq. Cryst. 439, 209–220.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y., Akiyamab, E. & Nagase, Y. (2003). J. Mater. Chem. 13, 1253–1258.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds