organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o267-o268

(6bS*,14R*,14aR*)-Methyl 14-(4-methyl­phen­yl)-7-oxo-6b,6c,7,12b,14,14a-hexa­hydro-1H-pyrano[3,2-c:5,4-c′]dichromene-14a-carboxyl­ate

aDepartment of Computer Science & Engineering, Madha Engineering College, Kundrathur, Chennai 600 069, India, bDepartment of Physics, Presidency College, Chennai 600 005, India, and cDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 10 December 2012; accepted 12 January 2013; online 19 January 2013)

In the title compound, C28H22O6, the chromeno ring system is almost planar, with a dihedral angle between the mean planes of the pyran and benzene rings of 1.87 (8)°. The pyran ring bearing the methyl­phenyl substituent has a half-chair conformation while the other pyran ring has an envelope conformation with the tetra­substituted C atom as the flap. The benzene ring of the chromeno ring system is inclined to the benzene ring fused to the latter pyran ring by 74.66 (9)°. These aromatic rings are inclined to the 4-methyl­phenyl ring by 52.67 (9) and 66.63 (10)°, respectively. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the bc plane.

Related literature

For the biological importance of 4H-chromene derivatives, see: Cai et al. (2006[Cai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627-2644.]); Cai (2007[Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79-101.], 2008[Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.]); Gabor (1988[Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91-126. Budapest: Akademiai Kiado.]); Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Valenti et al. (1993[Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349-360.]); Hyana & Saimoto (1987[Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]).

[Scheme 1]

Experimental

Crystal data
  • C28H22O6

  • Mr = 454.46

  • Monoclinic, P 21 /c

  • a = 9.526 (5) Å

  • b = 10.711 (5) Å

  • c = 21.975 (5) Å

  • β = 97.397 (5)°

  • V = 2223.5 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.32 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.992

  • 22624 measured reflections

  • 4741 independent reflections

  • 3251 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.133

  • S = 1.01

  • 4741 reflections

  • 324 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O5i 0.93 2.35 3.209 (2) 153
C21—H21A⋯O5ii 0.96 2.43 3.285 (3) 148
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4H-Chromenes are biologically important compounds used as synthetic ligands for drug design and discovery processes. They exhibit numerous biological and pharmacological properties such as anti-viral, anti-fungal, anti-inflammatory, anti-diabetic, cardionthonic, anti-anaphylactic and anti-cancer activity (Cai et al., 2006; Cai, 2007,2008; Gabor, 1988; Brooks, 1998; Valenti et al., 1993; Hyana & Saimoto, 1987; Tang et al., 2007). In view of the growing medicinal importance of 4H-chromene derivatives, the title compound was synthesized and we describe herein its crystal structure.

The molecular structure of the title molecule is illustrated in Fig. 1. The mean plane of pyran ring A and the benzene ring (C1—C6) of the chromeno system are inclined to one another by 1.87 (8) °. Atom O2 deviates by 0.1987 (13) Å from the mean plane of the chromeno ring system (O1,C1—C9). Pyran ring A (O3/C7/C8/C10-C12) has a half-chair conformation while pyran ring B (O4/C10/C12-C15) has an envelope conformation with the tetra-substituted C atom, C12, as the flap. Benzene ring (C1—C6) of the chromeno ring system is inclined to the benzene ring (C14-C19) fused to pyran ring B by 74.66 (9) °. The 4-methylphenyl ring (C22-C27) is inclined to benzene rings (C1-C6) and (C14-C19) by 52.67 (9) and 66.63 (10) °, respectively.

In the crystal, molecules are linked via C—H···O hydrogen bonds forming a two-dimensional network lying parallel to the bc plane (Table 1 and Fig. 2).

Related literature top

For the biological importance of 4H-chromene derivatives, see: Cai et al. (2006); Cai (2007, 2008); Gabor (1988); Brooks (1998); Valenti et al. (1993); Hyana & Saimoto (1987); Tang et al. (2007).

Experimental top

A mixture of (E)-methyl 2-((2-formylphenoxy)methyl)-3-(4-methylphenyl) acrylate (0.308 g, 1 mmol) and 4-hydroxy-2H-chromen-2-one (0.162 g, 1 mmol) was placed in a round bottom flask and melted at 453 K for 1 h. After completion of the reaction as indicated by TLC, the crude product was washed with 5 ml of ethylacetate:hexane mixture (1:49 ratio) which successfully provided the title compound as a colourless solid in 97% yield. Diffraction quality crystals were obtained by slow evaporation of a solution in ethyl acetate.

Refinement top

The methine and methylene H atoms were located in a difference Fourier map and freely refined. The aromatic and methyl H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å (aromatic) and 0.96 Å (methyl) Å, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The C-H···O hydrogen bonds are shown as dashed lines [see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity].
(6bS*,14R*,14aR*)-Methyl 14-(4-methylphenyl)-7-oxo-6b,6c,7,12b,14,14a-hexahydro-1H- pyrano[3,2-c:5,4-c']dichromene-14a-carboxylate top
Crystal data top
C28H22O6F(000) = 952
Mr = 454.46Dx = 1.358 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5710 reflections
a = 9.526 (5) Åθ = 1.8–28.5°
b = 10.711 (5) ŵ = 0.10 mm1
c = 21.975 (5) ÅT = 293 K
β = 97.397 (5)°Monoclinic, colourless
V = 2223.5 (16) Å30.32 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4741 independent reflections
Radiation source: fine-focus sealed tube3251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 26.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1211
Tmin = 0.972, Tmax = 0.992k = 1313
22624 measured reflectionsl = 2627
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.4826P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4741 reflectionsΔρmax = 0.29 e Å3
324 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (10)
Crystal data top
C28H22O6V = 2223.5 (16) Å3
Mr = 454.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.526 (5) ŵ = 0.10 mm1
b = 10.711 (5) ÅT = 293 K
c = 21.975 (5) Å0.32 × 0.20 × 0.10 mm
β = 97.397 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4741 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3251 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.992Rint = 0.028
22624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.29 e Å3
4741 reflectionsΔρmin = 0.16 e Å3
324 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.48425 (14)0.87273 (11)0.09194 (5)0.0573 (3)
O20.67296 (15)0.85457 (12)0.04518 (6)0.0658 (4)
O30.22158 (12)0.85200 (11)0.07008 (5)0.0544 (3)
O40.43549 (15)0.53003 (11)0.09744 (6)0.0657 (4)
O50.4359 (2)0.65360 (13)0.21784 (6)0.0918 (6)
O60.51056 (15)0.84702 (11)0.20115 (6)0.0647 (4)
C10.1064 (2)0.89144 (18)0.03761 (9)0.0603 (5)
H10.04450.88600.00140.072*
C20.0543 (2)0.9138 (2)0.09163 (10)0.0710 (6)
H20.04250.92390.09220.085*
C30.1467 (3)0.9215 (2)0.14565 (10)0.0733 (6)
H30.11130.93710.18240.088*
C40.2887 (2)0.90663 (18)0.14566 (8)0.0653 (5)
H40.35000.91140.18210.078*
C50.3403 (2)0.88433 (15)0.09076 (8)0.0511 (4)
C60.25104 (19)0.87658 (14)0.03612 (7)0.0491 (4)
C70.31477 (18)0.85169 (14)0.01846 (7)0.0468 (4)
C80.45453 (18)0.82799 (14)0.01720 (7)0.0454 (4)
C90.5464 (2)0.85058 (15)0.03936 (8)0.0507 (4)
C100.51915 (18)0.78861 (15)0.07384 (7)0.0455 (4)
C110.28495 (19)0.85679 (16)0.12630 (8)0.0494 (4)
C120.39806 (18)0.75276 (14)0.12394 (7)0.0464 (4)
C130.3355 (2)0.62767 (16)0.10734 (9)0.0540 (5)
C140.5728 (2)0.55895 (16)0.07821 (8)0.0541 (4)
C150.62175 (19)0.67960 (15)0.06576 (8)0.0503 (4)
C160.7656 (2)0.6973 (2)0.05198 (9)0.0659 (5)
H160.80070.77780.04510.079*
C170.8591 (2)0.5977 (2)0.04821 (10)0.0802 (7)
H170.95590.61090.03860.096*
C180.8067 (3)0.4787 (2)0.05896 (10)0.0804 (7)
H180.86850.41110.05580.097*
H100.5703 (17)0.8589 (16)0.0883 (7)0.045 (4)*
H110.3340 (17)0.9362 (16)0.1275 (7)0.047 (4)*
H13A0.268 (2)0.5981 (18)0.1418 (9)0.064 (5)*
H13B0.291 (2)0.6358 (19)0.0683 (10)0.071 (6)*
C190.6654 (3)0.45911 (19)0.07413 (9)0.0686 (6)
H190.63110.37860.08170.082*
C200.4500 (2)0.74304 (16)0.18581 (8)0.0537 (4)
C210.5548 (3)0.8502 (2)0.26125 (11)0.0918 (8)
H21A0.59700.92970.26760.138*
H21B0.47420.83780.29170.138*
H21C0.62270.78520.26460.138*
C220.16930 (19)0.85119 (15)0.17946 (8)0.0520 (4)
C230.0536 (2)0.77419 (19)0.18095 (9)0.0651 (5)
H230.04160.72600.14680.078*
C240.0450 (2)0.7678 (2)0.23264 (10)0.0728 (6)
H240.12270.71510.23260.087*
C250.0313 (2)0.8371 (2)0.28415 (9)0.0672 (6)
C260.0823 (2)0.9161 (2)0.28170 (9)0.0721 (6)
H260.09280.96560.31560.087*
C270.1816 (2)0.92392 (19)0.23030 (9)0.0642 (5)
H270.25740.97870.22990.077*
C280.1372 (3)0.8274 (3)0.34122 (10)0.0941 (8)
H28A0.20960.76860.33450.141*
H28B0.09010.79980.37490.141*
H28C0.17930.90770.35060.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0720 (9)0.0549 (7)0.0397 (7)0.0028 (6)0.0132 (6)0.0050 (5)
O20.0612 (9)0.0693 (9)0.0601 (8)0.0020 (7)0.0184 (6)0.0081 (6)
O30.0575 (7)0.0596 (7)0.0412 (7)0.0072 (6)0.0121 (5)0.0049 (5)
O40.0763 (9)0.0365 (6)0.0798 (9)0.0020 (6)0.0069 (7)0.0053 (6)
O50.1751 (17)0.0535 (8)0.0456 (8)0.0130 (9)0.0101 (9)0.0111 (6)
O60.0880 (10)0.0519 (7)0.0548 (8)0.0085 (6)0.0122 (7)0.0012 (6)
C10.0694 (13)0.0548 (10)0.0540 (11)0.0050 (9)0.0023 (9)0.0028 (8)
C20.0788 (14)0.0683 (13)0.0671 (14)0.0075 (11)0.0134 (11)0.0081 (10)
C30.0958 (18)0.0695 (13)0.0567 (13)0.0042 (12)0.0178 (12)0.0050 (10)
C40.0954 (16)0.0571 (11)0.0405 (10)0.0036 (10)0.0023 (10)0.0018 (8)
C50.0676 (12)0.0365 (8)0.0457 (10)0.0007 (7)0.0058 (8)0.0022 (7)
C60.0665 (12)0.0345 (8)0.0431 (9)0.0025 (7)0.0050 (8)0.0012 (7)
C70.0594 (11)0.0349 (8)0.0412 (9)0.0007 (7)0.0126 (7)0.0017 (6)
C80.0588 (11)0.0330 (8)0.0399 (9)0.0007 (7)0.0102 (7)0.0010 (6)
C90.0630 (12)0.0366 (8)0.0469 (10)0.0014 (8)0.0142 (8)0.0018 (7)
C100.0539 (10)0.0362 (8)0.0425 (9)0.0029 (7)0.0086 (7)0.0007 (7)
C110.0598 (11)0.0411 (9)0.0430 (10)0.0002 (8)0.0106 (8)0.0016 (7)
C120.0576 (10)0.0360 (8)0.0412 (9)0.0012 (7)0.0100 (7)0.0012 (7)
C130.0647 (12)0.0393 (9)0.0538 (11)0.0053 (8)0.0084 (9)0.0004 (8)
C140.0725 (13)0.0435 (9)0.0442 (10)0.0049 (8)0.0008 (8)0.0067 (7)
C150.0607 (11)0.0461 (9)0.0410 (9)0.0062 (8)0.0054 (8)0.0020 (7)
C160.0631 (12)0.0650 (12)0.0650 (13)0.0057 (10)0.0097 (10)0.0008 (10)
C170.0667 (14)0.0942 (18)0.0759 (15)0.0222 (12)0.0054 (11)0.0034 (13)
C180.0985 (19)0.0750 (15)0.0663 (14)0.0377 (13)0.0046 (12)0.0058 (11)
C190.0949 (17)0.0496 (10)0.0591 (12)0.0166 (10)0.0015 (11)0.0074 (9)
C200.0721 (12)0.0403 (9)0.0441 (10)0.0045 (8)0.0102 (8)0.0002 (7)
C210.137 (2)0.0781 (16)0.0653 (15)0.0017 (14)0.0319 (14)0.0077 (11)
C220.0636 (11)0.0445 (9)0.0426 (9)0.0068 (8)0.0136 (8)0.0022 (7)
C230.0680 (12)0.0648 (12)0.0562 (12)0.0028 (10)0.0167 (9)0.0075 (9)
C240.0696 (13)0.0672 (13)0.0726 (14)0.0010 (10)0.0258 (11)0.0026 (11)
C250.0730 (13)0.0730 (13)0.0491 (11)0.0267 (11)0.0169 (9)0.0156 (10)
C260.0854 (15)0.0824 (14)0.0443 (11)0.0201 (12)0.0078 (10)0.0087 (10)
C270.0725 (13)0.0611 (11)0.0541 (11)0.0063 (9)0.0100 (9)0.0081 (9)
C280.0876 (16)0.120 (2)0.0632 (14)0.0365 (15)0.0328 (12)0.0224 (13)
Geometric parameters (Å, º) top
O1—C51.373 (2)C12—C131.530 (2)
O1—C91.385 (2)C13—H13A0.98 (2)
O2—C91.197 (2)C13—H13B1.01 (2)
O3—C71.3473 (19)C14—C191.382 (3)
O3—C111.444 (2)C14—C151.389 (2)
O4—C141.358 (2)C15—C161.378 (3)
O4—C131.412 (2)C16—C171.386 (3)
O5—C201.186 (2)C16—H160.9300
O6—C201.318 (2)C17—C181.378 (3)
O6—C211.437 (2)C17—H170.9300
C1—C21.366 (3)C18—C191.360 (3)
C1—C61.392 (3)C18—H180.9300
C1—H10.9300C19—H190.9300
C2—C31.387 (3)C21—H21A0.9600
C2—H20.9300C21—H21B0.9600
C3—C41.362 (3)C21—H21C0.9600
C3—H30.9300C22—C231.374 (3)
C4—C51.381 (3)C22—C271.379 (3)
C4—H40.9300C23—C241.379 (3)
C5—C61.382 (2)C23—H230.9300
C6—C71.437 (2)C24—C251.374 (3)
C7—C81.352 (2)C24—H240.9300
C8—C91.445 (2)C25—C261.369 (3)
C8—C101.518 (2)C25—C281.508 (3)
C10—C151.518 (2)C26—C271.379 (3)
C10—C121.537 (2)C26—H260.9300
C10—H100.972 (17)C27—H270.9300
C11—C221.500 (2)C28—H28A0.9600
C11—C121.546 (2)C28—H28B0.9600
C11—H110.973 (17)C28—H28C0.9600
C12—C201.509 (3)
C5—O1—C9122.17 (13)C12—C13—H13B110.3 (12)
C7—O3—C11114.68 (13)H13A—C13—H13B112.1 (16)
C14—O4—C13118.86 (13)O4—C14—C19115.14 (17)
C20—O6—C21116.42 (16)O4—C14—C15123.98 (15)
C2—C1—C6120.83 (19)C19—C14—C15120.83 (19)
C2—C1—H1119.6C16—C15—C14118.07 (16)
C6—C1—H1119.6C16—C15—C10121.77 (16)
C1—C2—C3119.5 (2)C14—C15—C10119.87 (16)
C1—C2—H2120.2C15—C16—C17121.3 (2)
C3—C2—H2120.2C15—C16—H16119.3
C4—C3—C2121.0 (2)C17—C16—H16119.3
C4—C3—H3119.5C18—C17—C16119.1 (2)
C2—C3—H3119.5C18—C17—H17120.4
C3—C4—C5119.05 (19)C16—C17—H17120.4
C3—C4—H4120.5C19—C18—C17120.7 (2)
C5—C4—H4120.5C19—C18—H18119.7
O1—C5—C4117.78 (16)C17—C18—H18119.7
O1—C5—C6120.81 (16)C18—C19—C14120.0 (2)
C4—C5—C6121.39 (19)C18—C19—H19120.0
C5—C6—C1118.25 (17)C14—C19—H19120.0
C5—C6—C7117.22 (17)O5—C20—O6123.41 (18)
C1—C6—C7124.53 (16)O5—C20—C12124.40 (17)
O3—C7—C8123.92 (16)O6—C20—C12112.17 (14)
O3—C7—C6113.50 (15)O6—C21—H21A109.5
C8—C7—C6122.57 (15)O6—C21—H21B109.5
C7—C8—C9118.14 (16)H21A—C21—H21B109.5
C7—C8—C10122.53 (14)O6—C21—H21C109.5
C9—C8—C10119.16 (15)H21A—C21—H21C109.5
O2—C9—O1115.95 (15)H21B—C21—H21C109.5
O2—C9—C8126.01 (18)C23—C22—C27118.11 (16)
O1—C9—C8118.02 (16)C23—C22—C11123.31 (16)
C8—C10—C15116.16 (13)C27—C22—C11118.55 (17)
C8—C10—C12108.09 (14)C22—C23—C24120.59 (19)
C15—C10—C12107.70 (13)C22—C23—H23119.7
C8—C10—H10109.0 (9)C24—C23—H23119.7
C15—C10—H10106.9 (9)C25—C24—C23121.6 (2)
C12—C10—H10108.7 (10)C25—C24—H24119.2
O3—C11—C22108.59 (15)C23—C24—H24119.2
O3—C11—C12108.18 (13)C26—C25—C24117.38 (18)
C22—C11—C12115.84 (14)C26—C25—C28121.1 (2)
O3—C11—H11108.1 (10)C24—C25—C28121.6 (2)
C22—C11—H11108.7 (10)C25—C26—C27121.7 (2)
C12—C11—H11107.2 (10)C25—C26—H26119.2
C20—C12—C13109.72 (14)C27—C26—H26119.2
C20—C12—C10111.07 (15)C26—C27—C22120.6 (2)
C13—C12—C10109.11 (13)C26—C27—H27119.7
C20—C12—C11109.12 (13)C22—C27—H27119.7
C13—C12—C11110.36 (15)C25—C28—H28A109.5
C10—C12—C11107.42 (13)C25—C28—H28B109.5
O4—C13—C12114.18 (16)H28A—C28—H28B109.5
O4—C13—H13A104.0 (11)C25—C28—H28C109.5
C12—C13—H13A109.6 (11)H28A—C28—H28C109.5
O4—C13—H13B106.5 (12)H28B—C28—H28C109.5
C6—C1—C2—C30.2 (3)O3—C11—C12—C1068.00 (17)
C1—C2—C3—C40.2 (3)C22—C11—C12—C10169.86 (15)
C2—C3—C4—C50.4 (3)C14—O4—C13—C1226.9 (2)
C9—O1—C5—C4179.86 (15)C20—C12—C13—O466.43 (19)
C9—O1—C5—C61.3 (2)C10—C12—C13—O455.5 (2)
C3—C4—C5—O1178.43 (17)C11—C12—C13—O4173.29 (14)
C3—C4—C5—C60.2 (3)C13—O4—C14—C19175.30 (17)
O1—C5—C6—C1178.79 (15)C13—O4—C14—C151.9 (3)
C4—C5—C6—C10.2 (2)O4—C14—C15—C16174.18 (17)
O1—C5—C6—C72.1 (2)C19—C14—C15—C162.9 (3)
C4—C5—C6—C7179.32 (16)O4—C14—C15—C100.3 (3)
C2—C1—C6—C50.4 (3)C19—C14—C15—C10176.75 (16)
C2—C1—C6—C7179.41 (17)C8—C10—C15—C1693.5 (2)
C11—O3—C7—C815.2 (2)C12—C10—C15—C16145.19 (17)
C11—O3—C7—C6166.09 (13)C8—C10—C15—C1492.91 (19)
C5—C6—C7—O3176.76 (13)C12—C10—C15—C1428.4 (2)
C1—C6—C7—O34.2 (2)C14—C15—C16—C172.5 (3)
C5—C6—C7—C84.5 (2)C10—C15—C16—C17176.20 (18)
C1—C6—C7—C8174.56 (16)C15—C16—C17—C180.5 (3)
O3—C7—C8—C9170.02 (14)C16—C17—C18—C191.1 (3)
C6—C7—C8—C911.3 (2)C17—C18—C19—C140.7 (3)
O3—C7—C8—C105.1 (2)O4—C14—C19—C18175.98 (18)
C6—C7—C8—C10173.51 (14)C15—C14—C19—C181.4 (3)
C5—O1—C9—O2172.88 (14)C21—O6—C20—O52.7 (3)
C5—O1—C9—C85.7 (2)C21—O6—C20—C12175.78 (17)
C7—C8—C9—O2166.65 (16)C13—C12—C20—O54.2 (3)
C10—C8—C9—O28.7 (2)C10—C12—C20—O5124.9 (2)
C7—C8—C9—O111.8 (2)C11—C12—C20—O5116.8 (2)
C10—C8—C9—O1172.92 (13)C13—C12—C20—O6177.29 (14)
C7—C8—C10—C15134.14 (16)C10—C12—C20—O656.57 (18)
C9—C8—C10—C1550.8 (2)C11—C12—C20—O661.68 (19)
C7—C8—C10—C1213.0 (2)O3—C11—C22—C2340.9 (2)
C9—C8—C10—C12171.88 (13)C12—C11—C22—C2381.0 (2)
C7—O3—C11—C22177.67 (13)O3—C11—C22—C27141.21 (17)
C7—O3—C11—C1251.19 (17)C12—C11—C22—C2796.9 (2)
C8—C10—C12—C20166.11 (12)C27—C22—C23—C241.8 (3)
C15—C10—C12—C2067.66 (17)C11—C22—C23—C24176.10 (18)
C8—C10—C12—C1372.81 (17)C22—C23—C24—C250.1 (3)
C15—C10—C12—C1353.43 (19)C23—C24—C25—C261.8 (3)
C8—C10—C12—C1146.84 (17)C23—C24—C25—C28178.4 (2)
C15—C10—C12—C11173.07 (14)C24—C25—C26—C271.6 (3)
O3—C11—C12—C20171.49 (13)C28—C25—C26—C27178.60 (19)
C22—C11—C12—C2049.4 (2)C25—C26—C27—C220.3 (3)
O3—C11—C12—C1350.85 (17)C23—C22—C27—C262.0 (3)
C22—C11—C12—C1371.3 (2)C11—C22—C27—C26175.98 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O5i0.932.353.209 (2)153
C21—H21A···O5ii0.962.433.285 (3)148
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC28H22O6
Mr454.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.526 (5), 10.711 (5), 21.975 (5)
β (°) 97.397 (5)
V3)2223.5 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.972, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
22624, 4741, 3251
Rint0.028
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.01
No. of reflections4741
No. of parameters324
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.16

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O5i0.932.353.209 (2)153
C21—H21A···O5ii0.962.433.285 (3)148
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z1/2.
 

Acknowledgements

SA and VS thank the UGC, India, for financial support. The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBrooks, G. T. (1998). Pestic. Sci. 22, 41–50.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79–101.  Google Scholar
First citationCai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603–607.  Web of Science PubMed Google Scholar
First citationCai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627–2644.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.  Google Scholar
First citationHyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationValenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o267-o268
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds