organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 6-eth­­oxy-3-phenyl-3a,4-di­hydro-3H-chromeno[4,3-c]isoxazole-3a-car­boxylate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 16 December 2012; accepted 22 December 2012; online 4 January 2013)

In the title compound, C20H19NO5, the dihedral angle between the mean plane of the pyran ring (which has a half-chair conformation) and the benzene ring of the chromeno ring system is 7.21 (7)°. The dihedral angle between the mean plane of the chromeno ring system and the isoxazole ring is 21.78 (6)°, while the isoxazole ring forms a dihedral angle of 72.60 (8)° with the attached phenyl ring. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(10) ring motif. These dimers are linked via C—H⋯N hydrogen bonds, forming chains along [001].

Related literature

For the biological activity of chromenopyrroles, see: Caine (1993[Caine, B. (1993). Science, 260, 1814-1816.]), and of benzopyran and isoxazolidine derivatives, see: Lin et al. (1996[Lin, G. N., Lu, C. M., Lin, H. C., Fang, S. C., Shieh, B. J., Hsu, M. F., Wang, J. P., Ko, F. N. & Teng, C. M. (1996). J. Nat. Prod. 59, 834-838.]); Hu et al. (2004[Hu, H., Harrison, T. J. & Wilson, P. D. (2004). J. Org. Chem. 69, 3782-3786.]). For uses of isoxazole derivatives, see: Baraldi et al. (1987[Baraldi, P. G., Barco, A., Benetti, S., Pollini, G. P. & Simoni, D. (1987). Synthesis, pp. 857-869.]); Eddington et al. (2002[Eddington, N. D., Cox, D. S., Roberts, R. R., Butcher, R. J., Edafiogho, I. O., Stables, J. P., Cooke, N., Goodwin, A. M., Smith, C. A. & Scott, K. R. (2002). Eur. J. Med. Chem. 37, 635-648.]). For related structures, see: Gangadharan et al. (2011[Gangadharan, R., SethuSankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o942.]); Swaminathan et al. (2011[Swaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o905.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19NO5

  • Mr = 353.36

  • Monoclinic, P 21 /c

  • a = 12.9342 (6) Å

  • b = 7.5591 (2) Å

  • c = 18.7138 (8) Å

  • β = 105.440 (2)°

  • V = 1763.63 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.990

  • 13064 measured reflections

  • 4245 independent reflections

  • 3253 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.03

  • 4245 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O4i 0.97 2.55 3.3875 (19) 145
C8—H8⋯N1ii 0.98 2.52 3.4269 (19) 154
Symmetry codes: (i) -x, -y+2, -z+2; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chromenopyrrole compounds are used in the treatment of impulsive disorders (Caine, 1993). It is well known that benzo-pyran and isoxazolidine derivatives possess interesting biological and pharmacological activities (Lin et al., 1996; Hu et al., 2004). Isoxazole and its derivatives are key intermediates for the preparation of products which mimic natural compounds (Baraldi et al., 1987). They have been shown to possess anticonvulsant activity (Eddington et al., 2002). Herein we report on the synthesis and the crystal structure of the new title chromeno compound.

The molecular structure of the title molecule is illustrated in Fig. 1. In the chromeno ring system the pyran ring has a half chair conformation. Its mean plane makes a dihedral angle with the benzene ring of 7.21 (7)°. The dihedral angle between the mean plane of the chromeno ring system (fusion of benzene and pyran rings) and the isoxazole ring (O2/N1/C7-C9) is 21.78 (6)°. The isoxazole ring also forms a dihedral angle of 72.60 (8)° with the phenyl ring (C15—C20). The geometric parameters of the title molecule agree well with those reported for closely related structures (Gangadharan et al., 2011; Swaminathan et al., 2011).

In the crystal, molecules are linked via pairs of C-H···O hydrogen bonds to form inversion dimers with an R22(10) ring motif (Bernstein et al., 1995; Table 1 and Fig. 2). These dimers are linked via C-H···N hydrogen bonds to form chains along the c axis.

Related literature top

For the biological activity of chromenopyrroles, see: Caine (1993), and of benzopyran and isoxazolidine derivatives, see: Lin et al. (1996); Hu et al. (2004). For uses of isoxazole derivatives, see: Baraldi et al. (1987); Eddington et al. (2002). For related structures, see: Gangadharan et al. (2011); Swaminathan et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

At 283 - 293 K, NCS (4 mmol) was added pinch wise over 3 h to a solution of ((E)-methyl2-((2ethoxy-6-((E)-(hydroxyimino)methyl)phenoxy)methyl) -3-phenylacrylate (2 mmol) in CCl4. After Et3N (4 mmol) was added to the reaction mixture which was stirred at room temperature for 2 h. After completion of the reaction, the mixture was evaporated under reduced pressure and the resulting crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 × 15 ml). The combined organic layers were washed with brine (2 × 10 ml) and dried over anhydrous Na2SO4. The organic layer was evaporated and purified by column chromatography (silica gel 60–120 mesh 7% EtOAc in hexanes) to provide the desired pure title product as a colourless solid. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in ethyl acetate.

Refinement top

All the H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound. The C-H···O and C-H···N hydrogen bonds are shown as dashed lines (see Table 1 for details).
Methyl 6-ethoxy-3-phenyl-3a,4-dihydro-3H-chromeno[4,3-c]isoxazole-3a- carboxylate top
Crystal data top
C20H19NO5F(000) = 744
Mr = 353.36Dx = 1.331 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4245 reflections
a = 12.9342 (6) Åθ = 2.3–28.4°
b = 7.5591 (2) ŵ = 0.10 mm1
c = 18.7138 (8) ÅT = 298 K
β = 105.440 (2)°Monoclinic, colourless
V = 1763.63 (12) Å30.25 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4245 independent reflections
Radiation source: fine-focus sealed tube3253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω and ϕ scansθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1317
Tmin = 0.976, Tmax = 0.990k = 96
13064 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.5069P]
where P = (Fo2 + 2Fc2)/3
4245 reflections(Δ/σ)max = 0.002
237 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H19NO5V = 1763.63 (12) Å3
Mr = 353.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9342 (6) ŵ = 0.10 mm1
b = 7.5591 (2) ÅT = 298 K
c = 18.7138 (8) Å0.25 × 0.20 × 0.10 mm
β = 105.440 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4245 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3253 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.990Rint = 0.017
13064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
4245 reflectionsΔρmin = 0.22 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34469 (12)0.7365 (2)0.84801 (8)0.0408 (3)
H10.32800.72020.79690.049*
C20.44803 (13)0.7149 (2)0.89052 (9)0.0497 (4)
H20.50130.68280.86800.060*
C30.47417 (12)0.7405 (2)0.96675 (9)0.0467 (4)
H30.54490.72700.99450.056*
C40.39633 (11)0.78572 (19)1.00188 (8)0.0365 (3)
C50.28961 (10)0.80410 (17)0.95890 (7)0.0299 (3)
C60.10418 (10)0.81790 (19)0.95728 (7)0.0331 (3)
H6A0.05820.86830.98530.040*
H6B0.08950.69210.95160.040*
C70.08137 (10)0.90610 (17)0.88085 (7)0.0290 (3)
C80.02921 (11)0.87517 (19)0.82484 (7)0.0341 (3)
H80.06130.99080.80880.041*
C90.15362 (10)0.81458 (16)0.84177 (7)0.0291 (3)
C100.26470 (11)0.78305 (17)0.88215 (7)0.0308 (3)
C110.51955 (13)0.7982 (3)1.12204 (9)0.0539 (4)
H11A0.56610.88391.10760.065*
H11B0.54730.68061.11770.065*
C120.51486 (19)0.8317 (4)1.20010 (11)0.0856 (7)
H12A0.48270.94511.20290.128*
H12B0.58620.83021.23260.128*
H12C0.47270.74131.21490.128*
C130.10049 (11)1.10449 (19)0.89314 (7)0.0338 (3)
C140.20504 (14)1.3490 (2)0.87993 (12)0.0608 (5)
H14A0.13881.41130.86060.091*
H14B0.25501.38150.85240.091*
H14C0.23421.37920.93120.091*
C150.10961 (10)0.76672 (18)0.85102 (7)0.0331 (3)
C160.18456 (12)0.8534 (2)0.87901 (9)0.0437 (4)
H160.18540.97640.88020.052*
C170.25822 (14)0.7588 (3)0.90523 (10)0.0565 (4)
H170.30790.81800.92440.068*
C180.25809 (14)0.5775 (3)0.90297 (10)0.0565 (4)
H180.30810.51390.92020.068*
C190.18410 (14)0.4897 (2)0.87527 (10)0.0550 (4)
H190.18400.36670.87400.066*
C200.10973 (13)0.5836 (2)0.84930 (9)0.0452 (4)
H200.05980.52360.83070.054*
N10.10693 (10)0.75033 (17)0.77828 (6)0.0376 (3)
O10.21512 (7)0.84634 (13)0.99612 (5)0.0351 (2)
O20.00309 (9)0.79042 (16)0.76155 (5)0.0456 (3)
O30.41260 (8)0.81419 (16)1.07581 (6)0.0473 (3)
O40.04263 (10)1.19594 (15)0.91752 (7)0.0560 (3)
O50.18555 (8)1.16068 (13)0.87330 (6)0.0442 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0428 (8)0.0401 (8)0.0440 (7)0.0001 (6)0.0196 (6)0.0057 (6)
C20.0400 (8)0.0554 (10)0.0602 (10)0.0050 (7)0.0244 (7)0.0042 (8)
C30.0295 (7)0.0533 (10)0.0561 (9)0.0037 (6)0.0093 (6)0.0042 (7)
C40.0342 (7)0.0344 (8)0.0398 (7)0.0005 (5)0.0081 (6)0.0035 (6)
C50.0305 (6)0.0247 (6)0.0359 (6)0.0000 (5)0.0110 (5)0.0013 (5)
C60.0304 (6)0.0377 (7)0.0326 (6)0.0001 (5)0.0106 (5)0.0037 (5)
C70.0292 (6)0.0276 (7)0.0306 (6)0.0009 (5)0.0087 (5)0.0015 (5)
C80.0335 (7)0.0340 (7)0.0331 (6)0.0002 (5)0.0057 (5)0.0031 (5)
C90.0353 (7)0.0228 (6)0.0312 (6)0.0029 (5)0.0125 (5)0.0008 (5)
C100.0343 (7)0.0228 (6)0.0368 (6)0.0021 (5)0.0121 (5)0.0019 (5)
C110.0421 (9)0.0584 (11)0.0511 (9)0.0016 (7)0.0051 (7)0.0071 (8)
C120.0797 (15)0.118 (2)0.0469 (10)0.0033 (14)0.0051 (10)0.0057 (12)
C130.0363 (7)0.0312 (7)0.0323 (6)0.0019 (5)0.0062 (5)0.0006 (5)
C140.0486 (10)0.0267 (8)0.0982 (14)0.0065 (7)0.0038 (9)0.0070 (8)
C150.0287 (6)0.0345 (7)0.0333 (6)0.0011 (5)0.0033 (5)0.0003 (5)
C160.0376 (8)0.0377 (8)0.0557 (9)0.0017 (6)0.0124 (7)0.0071 (7)
C170.0406 (9)0.0671 (12)0.0677 (11)0.0065 (8)0.0247 (8)0.0119 (9)
C180.0463 (9)0.0633 (12)0.0616 (10)0.0185 (8)0.0177 (8)0.0046 (9)
C190.0575 (10)0.0367 (9)0.0691 (11)0.0102 (7)0.0139 (9)0.0050 (8)
C200.0449 (8)0.0344 (8)0.0581 (9)0.0015 (6)0.0168 (7)0.0015 (7)
N10.0399 (7)0.0405 (7)0.0332 (5)0.0065 (5)0.0112 (5)0.0032 (5)
O10.0313 (5)0.0444 (6)0.0297 (4)0.0024 (4)0.0082 (4)0.0010 (4)
O20.0386 (5)0.0654 (7)0.0316 (5)0.0081 (5)0.0073 (4)0.0052 (5)
O30.0377 (6)0.0623 (7)0.0381 (5)0.0015 (5)0.0036 (4)0.0023 (5)
O40.0714 (8)0.0398 (6)0.0659 (7)0.0076 (6)0.0343 (6)0.0079 (5)
O50.0364 (5)0.0245 (5)0.0706 (7)0.0013 (4)0.0123 (5)0.0041 (4)
Geometric parameters (Å, º) top
C1—C21.371 (2)C11—C121.500 (3)
C1—C101.3980 (19)C11—H11A0.9700
C1—H10.9300C11—H11B0.9700
C2—C31.389 (2)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.384 (2)C12—H12C0.9600
C3—H30.9300C13—O41.1949 (17)
C4—O31.3600 (17)C13—O51.3215 (17)
C4—C51.4073 (18)C14—O51.4451 (19)
C5—O11.3685 (16)C14—H14A0.9600
C5—C101.3948 (18)C14—H14B0.9600
C6—O11.4416 (16)C14—H14C0.9600
C6—C71.5337 (17)C15—C161.383 (2)
C6—H6A0.9700C15—C201.385 (2)
C6—H6B0.9700C16—C171.382 (2)
C7—C91.5003 (18)C16—H160.9300
C7—C131.5273 (19)C17—C181.371 (3)
C7—C81.5494 (17)C17—H170.9300
C8—O21.4630 (17)C18—C191.375 (3)
C8—C151.5049 (19)C18—H180.9300
C8—H80.9800C19—C201.384 (2)
C9—N11.2767 (17)C19—H190.9300
C9—C101.4540 (18)C20—H200.9300
C11—O31.4281 (18)N1—O21.4063 (16)
C2—C1—C10119.37 (14)O3—C11—H11B110.3
C2—C1—H1120.3C12—C11—H11B110.3
C10—C1—H1120.3H11A—C11—H11B108.6
C1—C2—C3120.84 (14)C11—C12—H12A109.5
C1—C2—H2119.6C11—C12—H12B109.5
C3—C2—H2119.6H12A—C12—H12B109.5
C4—C3—C2120.88 (14)C11—C12—H12C109.5
C4—C3—H3119.6H12A—C12—H12C109.5
C2—C3—H3119.6H12B—C12—H12C109.5
O3—C4—C3125.96 (13)O4—C13—O5125.05 (14)
O3—C4—C5115.37 (12)O4—C13—C7122.19 (13)
C3—C4—C5118.67 (13)O5—C13—C7112.76 (11)
O1—C5—C10123.36 (12)O5—C14—H14A109.5
O1—C5—C4116.64 (11)O5—C14—H14B109.5
C10—C5—C4119.98 (12)H14A—C14—H14B109.5
O1—C6—C7108.90 (10)O5—C14—H14C109.5
O1—C6—H6A109.9H14A—C14—H14C109.5
C7—C6—H6A109.9H14B—C14—H14C109.5
O1—C6—H6B109.9C16—C15—C20119.08 (14)
C7—C6—H6B109.9C16—C15—C8118.66 (13)
H6A—C6—H6B108.3C20—C15—C8122.25 (13)
C9—C7—C13115.42 (11)C17—C16—C15120.52 (15)
C9—C7—C6105.31 (10)C17—C16—H16119.7
C13—C7—C6107.65 (11)C15—C16—H16119.7
C9—C7—C8100.56 (10)C18—C17—C16120.00 (16)
C13—C7—C8109.47 (10)C18—C17—H17120.0
C6—C7—C8118.62 (11)C16—C17—H17120.0
O2—C8—C15110.70 (11)C17—C18—C19120.09 (16)
O2—C8—C7104.08 (10)C17—C18—H18120.0
C15—C8—C7117.10 (10)C19—C18—H18120.0
O2—C8—H8108.2C18—C19—C20120.22 (16)
C15—C8—H8108.2C18—C19—H19119.9
C7—C8—H8108.2C20—C19—H19119.9
N1—C9—C10125.34 (12)C19—C20—C15120.09 (15)
N1—C9—C7115.30 (12)C19—C20—H20120.0
C10—C9—C7118.67 (11)C15—C20—H20120.0
C5—C10—C1120.21 (13)C9—N1—O2108.97 (11)
C5—C10—C9116.22 (11)C5—O1—C6116.72 (10)
C1—C10—C9123.56 (12)N1—O2—C8110.62 (9)
O3—C11—C12106.98 (16)C4—O3—C11117.75 (12)
O3—C11—H11A110.3C13—O5—C14115.58 (13)
C12—C11—H11A110.3
C10—C1—C2—C30.6 (2)C7—C9—C10—C1165.09 (13)
C1—C2—C3—C41.0 (3)C9—C7—C13—O4173.18 (13)
C2—C3—C4—O3179.88 (15)C6—C7—C13—O469.56 (16)
C2—C3—C4—C50.5 (2)C8—C7—C13—O460.65 (17)
O3—C4—C5—O10.61 (18)C9—C7—C13—O56.14 (16)
C3—C4—C5—O1179.04 (13)C6—C7—C13—O5111.12 (12)
O3—C4—C5—C10178.04 (12)C8—C7—C13—O5118.67 (12)
C3—C4—C5—C102.3 (2)O2—C8—C15—C16146.00 (12)
O1—C6—C7—C961.42 (13)C7—C8—C15—C1694.96 (15)
O1—C6—C7—C1362.23 (13)O2—C8—C15—C2035.24 (17)
O1—C6—C7—C8172.88 (11)C7—C8—C15—C2083.80 (17)
C9—C7—C8—O25.46 (12)C20—C15—C16—C170.3 (2)
C13—C7—C8—O2116.48 (12)C8—C15—C16—C17178.49 (14)
C6—C7—C8—O2119.52 (12)C15—C16—C17—C180.6 (3)
C9—C7—C8—C15117.06 (12)C16—C17—C18—C190.6 (3)
C13—C7—C8—C15121.00 (13)C17—C18—C19—C200.2 (3)
C6—C7—C8—C153.00 (18)C18—C19—C20—C150.1 (2)
C13—C7—C9—N1115.20 (13)C16—C15—C20—C190.0 (2)
C6—C7—C9—N1126.23 (12)C8—C15—C20—C19178.80 (13)
C8—C7—C9—N12.45 (15)C10—C9—N1—O2172.22 (12)
C13—C7—C9—C1073.79 (14)C7—C9—N1—O21.90 (16)
C6—C7—C9—C1044.78 (15)C10—C5—O1—C618.01 (17)
C8—C7—C9—C10168.57 (11)C4—C5—O1—C6163.39 (12)
O1—C5—C10—C1178.77 (13)C7—C6—O1—C550.96 (15)
C4—C5—C10—C12.7 (2)C9—N1—O2—C85.87 (15)
O1—C5—C10—C92.05 (18)C15—C8—O2—N1119.54 (12)
C4—C5—C10—C9176.51 (12)C7—C8—O2—N17.10 (14)
C2—C1—C10—C51.2 (2)C3—C4—O3—C110.7 (2)
C2—C1—C10—C9177.92 (14)C5—C4—O3—C11179.68 (13)
N1—C9—C10—C5155.97 (13)C12—C11—O3—C4178.77 (16)
C7—C9—C10—C514.06 (17)O4—C13—O5—C142.3 (2)
N1—C9—C10—C124.9 (2)C7—C13—O5—C14176.95 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O4i0.972.553.3875 (19)145
C8—H8···N1ii0.982.523.4269 (19)154
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H19NO5
Mr353.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.9342 (6), 7.5591 (2), 18.7138 (8)
β (°) 105.440 (2)
V3)1763.63 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.976, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
13064, 4245, 3253
Rint0.017
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.03
No. of reflections4245
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O4i0.972.553.3875 (19)145
C8—H8···N1ii0.982.523.4269 (19)154
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1/2, z+3/2.
 

Acknowledgements

GS and SA thank the UGC, India, for financial support and GS thanks the SAIF, IIT-Madras, for the instrumentation facility.

References

First citationBaraldi, P. G., Barco, A., Benetti, S., Pollini, G. P. & Simoni, D. (1987). Synthesis, pp. 857–869.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaine, B. (1993). Science, 260, 1814–1816.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEddington, N. D., Cox, D. S., Roberts, R. R., Butcher, R. J., Edafiogho, I. O., Stables, J. P., Cooke, N., Goodwin, A. M., Smith, C. A. & Scott, K. R. (2002). Eur. J. Med. Chem. 37, 635–648.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGangadharan, R., SethuSankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, H., Harrison, T. J. & Wilson, P. D. (2004). J. Org. Chem. 69, 3782–3786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, G. N., Lu, C. M., Lin, H. C., Fang, S. C., Shieh, B. J., Hsu, M. F., Wang, J. P., Ko, F. N. & Teng, C. M. (1996). J. Nat. Prod. 59, 834–838.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o905.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds