organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Bromo-3-phenyl-3a,4-di­hydro-3H-chromeno[4,3-c]isoxazole-3a-carbo­nitrile

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 28 December 2012; accepted 24 January 2013; online 31 January 2013)

In the title compound, C17H11BrN2O2, the five-membered isoxazole ring has an envelope conformation with the C atom bearing the phenyl ring as the flap. The pyran ring has a half-chair conformation. In the chromeno ring system, the dihedral angle between the mean plane of the pyran ring and the benzene ring is 4.68 (2)°. The dihedral angle between the mean planes of the chromeno ring system and the isoxazole ring is 13.79 (15)°. The latter forms a dihedral angle of 34.10 (17)° with the phenyl ring. In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds, forming an undulating two-dimensional network parallel to the ab plane.

Related literature

For the biological importance of 4H-chromene derivatives, see: Cai (2007[Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79-101.], 2008[Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.]); Cai et al. (2006[Cai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627-2644.]); Caine (1993[Caine, B. (1993). Science, 260, 1814-1816.]); Gabor (1988[Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91-126. Budapest: Akademiai Kiado.]); Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Valenti et al. (1993[Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349-360.]); Hyana & Saimoto (1987[Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]). For related structures, see: Gangadharan et al. (2011[Gangadharan, R., SethuSankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o942.]); Swaminathan et al. (2011[Swaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o905.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11BrN2O2

  • Mr = 355.19

  • Monoclinic, P 21 /c

  • a = 15.1034 (8) Å

  • b = 6.0676 (3) Å

  • c = 16.0865 (10) Å

  • β = 99.953 (2)°

  • V = 1452.00 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.84 mm−1

  • T = 298 K

  • 0.35 × 0.28 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.437, Tmax = 0.601

  • 9947 measured reflections

  • 3175 independent reflections

  • 2214 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.102

  • S = 1.09

  • 3175 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N2i 0.93 2.62 3.519 (5) 164
C15—H15⋯N2ii 0.93 2.61 3.334 (5) 135
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

4H-Chromenes are biologically important compounds used as synthetic ligands in the design of drugs and discovery processes. They exhibit numerous biological and pharmacological properties, such as anti-viral, anti-fungal, anti-inflammatory, anti- diabetic, cardionthonic, anti anaphylactic and anti-cancer activity (Cai, 2008, 2007; Cai et al., 2006; Gabor, 1988; Brooks, 1998; Valenti et al., 1993; Hyana & Saimoto, 1987; Tang et al., 2007). Chromenopyrrole compounds are used in the treatment of impulsive disorders (Caine, 1993). Continuing our interest in such compounds we have synthesized the title compound and report herein on its crystal structure.

The molecular structure of the title molecule is illustrated in Fig. 1. The five-membered isoxazole ring (N1/O2/C7/C8/C6) adopts an envelope conformation with atom C7 as the flap: puckering parameters (Cremer & Pople, 1975) being q2 = 0.28795 (2) Å and Φ = 143.4 (2)°. In the chromeno ring system, the dihedral angle between the mean plane of the pyran ring and the benzene ring is 4.68 (2)°. The dihedral angle between the mean planes of the chromeno ring system (fusion of benzene and pyran rings) and the isoxazole ring is 13.79 (15)°. The isoxazole ring mean planes forms a dihedral angle of 34.10 (17)° with phenyl ring (C11—C16). The dihedral angle between the chromeno ring system mean plane and this phenyl ring is 25.42 (13)°. The atom Br1 deviates by 0.0379 (5) Å from the chromeno ring mean plane (O1,C1—C6/C8—C10). The geometric parameters of the title molecule agree well with those reported for closely related structures (Gangadharan et al., 2011; Swaminathan et al., 2011).

In the crystal, molecules are linked by intermolecular C—H···N hydrogen bonds forming an undulating two-dimensional network parallel to the ab plane (Fig. 2 and Table 1).

Related literature top

For the biological importance of 4H-chromene derivatives, see: Cai (2007, 2008); Cai et al. (2006); Caine (1993); Gabor (1988); Brooks (1998); Valenti et al. (1993); Hyana & Saimoto (1987); Tang et al. (2007). For related structures, see: Gangadharan et al. (2011); Swaminathan et al. (2011). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

To a solution of (E)-2-((4-bromo-2-((E)-(hydroxyimino)methyl)phenoxy)methyl) -3-phenylacrylonitrile (2 mmol) in CCl4 at 273 - 283 K was added pinch wise NCS (4 mmol) over 3 h. After Et3N (4 mmol) was added to the reaction mixture which was stirred at room temperature for 2 h. After completion of the reaction, the mixture was evaporated under reduced pressure and the resulting crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 × 15 ml). The combining organic layer was washed with brine (2 × 10 ml) and dried over anhydrous Na2SO4. The organic layer was evaporated and purified by column chromatography (silica gel 60–120 mesh; 7% EtOAc in hexanes) to provide the desired pure title product as a colourless solid. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All the H atoms were positioned geometrically and constrained to ride on their parent atom: C—H = 0.93, 0.97 and 0.98 A for aromatic, methine and methylene H atoms, respectively, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The molecules are linked by C—H···N hydrogen bonds (dashed lines; see Table 1 for details).
8-Bromo-3-phenyl-3a,4-dihydro-3H-chromeno[4,3-c]isoxazole-3a-carbonitrile top
Crystal data top
C17H11BrN2O2F(000) = 712
Mr = 355.19Dx = 1.625 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3175 reflections
a = 15.1034 (8) Åθ = 2.6–28.6°
b = 6.0676 (3) ŵ = 2.84 mm1
c = 16.0865 (10) ÅT = 298 K
β = 99.953 (2)°Block, colourless
V = 1452.00 (14) Å30.35 × 0.28 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3175 independent reflections
Radiation source: fine-focus sealed tube2214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 28.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2017
Tmin = 0.437, Tmax = 0.601k = 76
9947 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0261P)2 + 2.1957P]
where P = (Fo2 + 2Fc2)/3
3175 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
C17H11BrN2O2V = 1452.00 (14) Å3
Mr = 355.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.1034 (8) ŵ = 2.84 mm1
b = 6.0676 (3) ÅT = 298 K
c = 16.0865 (10) Å0.35 × 0.28 × 0.20 mm
β = 99.953 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3175 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2214 reflections with I > 2σ(I)
Tmin = 0.437, Tmax = 0.601Rint = 0.031
9947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.09Δρmax = 0.68 e Å3
3175 reflectionsΔρmin = 0.96 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.36162 (2)0.32449 (7)0.91825 (3)0.05691 (17)
C10.5050 (3)0.1845 (7)0.8336 (2)0.0511 (10)
H10.49200.31790.80570.061*
C20.4363 (2)0.0557 (7)0.8528 (2)0.0497 (10)
H20.37700.10230.83830.060*
C30.4558 (2)0.1418 (6)0.8935 (2)0.0409 (8)
C40.5432 (2)0.2124 (6)0.9171 (2)0.0388 (8)
H40.55550.34520.94570.047*
C50.6132 (2)0.0817 (6)0.8976 (2)0.0347 (7)
C60.7069 (2)0.1465 (5)0.9180 (2)0.0327 (7)
C70.8603 (2)0.0893 (6)0.9367 (2)0.0350 (8)
H70.87090.01670.98340.042*
C80.7744 (2)0.0220 (5)0.87679 (19)0.0328 (7)
C90.7483 (2)0.2215 (6)0.8748 (2)0.0442 (9)
H9A0.78870.30490.84600.053*
H9B0.75450.27680.93210.053*
C100.5935 (2)0.1162 (6)0.8556 (2)0.0397 (8)
C110.9454 (2)0.1107 (6)0.90087 (19)0.0335 (8)
C120.9955 (2)0.3024 (6)0.9084 (2)0.0463 (9)
H120.97500.42580.93360.056*
C131.0765 (3)0.3117 (7)0.8784 (2)0.0540 (10)
H131.11040.44040.88460.065*
C141.1064 (2)0.1313 (7)0.8398 (2)0.0527 (10)
H141.16060.13740.81990.063*
C151.0561 (2)0.0576 (7)0.8308 (2)0.0522 (10)
H151.07560.17930.80380.063*
C160.9764 (2)0.0679 (6)0.8617 (2)0.0456 (9)
H160.94310.19760.85600.055*
C170.7720 (2)0.1102 (6)0.7912 (2)0.0380 (8)
N10.74127 (18)0.2977 (5)0.96850 (19)0.0449 (7)
N20.7691 (2)0.1831 (7)0.7260 (2)0.0633 (10)
O10.65812 (17)0.2523 (4)0.83272 (17)0.0518 (7)
O20.83596 (15)0.2996 (4)0.96973 (16)0.0481 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0352 (2)0.0664 (3)0.0693 (3)0.00649 (18)0.00961 (17)0.0061 (2)
C10.052 (2)0.045 (2)0.056 (2)0.0149 (19)0.0085 (18)0.008 (2)
C20.0376 (19)0.057 (3)0.053 (2)0.0119 (18)0.0041 (17)0.001 (2)
C30.0349 (17)0.047 (2)0.0410 (18)0.0027 (16)0.0061 (14)0.0104 (17)
C40.0389 (17)0.038 (2)0.0381 (17)0.0003 (15)0.0040 (14)0.0013 (16)
C50.0369 (17)0.032 (2)0.0340 (17)0.0008 (14)0.0043 (14)0.0040 (15)
C60.0357 (16)0.027 (2)0.0335 (16)0.0036 (14)0.0016 (13)0.0014 (15)
C70.0383 (17)0.032 (2)0.0326 (17)0.0088 (14)0.0006 (14)0.0005 (15)
C80.0345 (16)0.030 (2)0.0336 (16)0.0013 (14)0.0045 (13)0.0002 (14)
C90.0441 (19)0.030 (2)0.060 (2)0.0007 (16)0.0144 (17)0.0027 (18)
C100.0440 (19)0.035 (2)0.0419 (19)0.0032 (16)0.0114 (15)0.0004 (16)
C110.0320 (16)0.036 (2)0.0285 (15)0.0068 (14)0.0057 (13)0.0014 (14)
C120.053 (2)0.039 (2)0.046 (2)0.0008 (18)0.0048 (17)0.0044 (18)
C130.052 (2)0.055 (3)0.053 (2)0.012 (2)0.0028 (18)0.006 (2)
C140.0397 (19)0.075 (3)0.044 (2)0.000 (2)0.0071 (16)0.008 (2)
C150.046 (2)0.058 (3)0.054 (2)0.010 (2)0.0119 (18)0.010 (2)
C160.0390 (18)0.041 (2)0.055 (2)0.0029 (16)0.0043 (16)0.0070 (19)
C170.0292 (16)0.046 (2)0.0365 (19)0.0046 (15)0.0017 (14)0.0008 (17)
N10.0341 (15)0.045 (2)0.0549 (18)0.0062 (14)0.0051 (13)0.0105 (16)
N20.0420 (17)0.095 (3)0.049 (2)0.0085 (18)0.0012 (15)0.022 (2)
O10.0490 (15)0.0387 (15)0.0700 (18)0.0083 (12)0.0170 (13)0.0172 (14)
O20.0321 (12)0.0495 (16)0.0604 (16)0.0037 (11)0.0012 (11)0.0236 (13)
Geometric parameters (Å, º) top
Br1—C31.899 (3)C8—C91.528 (5)
C1—C21.376 (5)C9—O11.425 (4)
C1—C101.385 (5)C9—H9A0.9700
C1—H10.9300C9—H9B0.9700
C2—C31.373 (5)C10—O11.377 (4)
C2—H20.9300C11—C161.375 (5)
C3—C41.377 (5)C11—C121.382 (5)
C4—C51.400 (5)C12—C131.390 (5)
C4—H40.9300C12—H120.9300
C5—C101.384 (5)C13—C141.373 (6)
C5—C61.451 (4)C13—H130.9300
C6—N11.275 (4)C14—C151.369 (6)
C6—C81.512 (4)C14—H140.9300
C7—O21.454 (4)C15—C161.381 (5)
C7—C111.502 (4)C15—H150.9300
C7—C81.532 (4)C16—H160.9300
C7—H70.9800C17—N21.132 (4)
C8—C171.472 (5)N1—O21.427 (3)
C2—C1—C10120.3 (4)O1—C9—H9A109.4
C2—C1—H1119.9C8—C9—H9A109.4
C10—C1—H1119.9O1—C9—H9B109.4
C3—C2—C1119.6 (3)C8—C9—H9B109.4
C3—C2—H2120.2H9A—C9—H9B108.0
C1—C2—H2120.2O1—C10—C5123.2 (3)
C2—C3—C4121.3 (3)O1—C10—C1116.7 (3)
C2—C3—Br1120.2 (3)C5—C10—C1120.0 (3)
C4—C3—Br1118.5 (3)C16—C11—C12118.6 (3)
C3—C4—C5119.1 (3)C16—C11—C7119.3 (3)
C3—C4—H4120.4C12—C11—C7122.1 (3)
C5—C4—H4120.4C11—C12—C13120.4 (4)
C10—C5—C4119.6 (3)C11—C12—H12119.8
C10—C5—C6117.7 (3)C13—C12—H12119.8
C4—C5—C6122.7 (3)C14—C13—C12120.1 (4)
N1—C6—C5127.9 (3)C14—C13—H13119.9
N1—C6—C8114.0 (3)C12—C13—H13119.9
C5—C6—C8118.1 (3)C15—C14—C13119.7 (3)
O2—C7—C11110.6 (3)C15—C14—H14120.2
O2—C7—C8102.9 (2)C13—C14—H14120.2
C11—C7—C8118.0 (3)C14—C15—C16120.1 (4)
O2—C7—H7108.3C14—C15—H15119.9
C11—C7—H7108.3C16—C15—H15119.9
C8—C7—H7108.3C11—C16—C15121.1 (4)
C17—C8—C6108.6 (3)C11—C16—H16119.5
C17—C8—C9111.6 (3)C15—C16—H16119.5
C6—C8—C9107.5 (3)N2—C17—C8178.2 (4)
C17—C8—C7111.9 (3)C6—N1—O2108.2 (3)
C6—C8—C798.8 (2)C10—O1—C9117.3 (3)
C9—C8—C7117.3 (3)N1—O2—C7107.7 (2)
O1—C9—C8111.0 (3)
C10—C1—C2—C30.4 (6)C4—C5—C10—O1178.8 (3)
C1—C2—C3—C41.3 (5)C6—C5—C10—O10.1 (5)
C1—C2—C3—Br1178.6 (3)C4—C5—C10—C10.3 (5)
C2—C3—C4—C51.3 (5)C6—C5—C10—C1179.2 (3)
Br1—C3—C4—C5178.6 (2)C2—C1—C10—O1178.8 (3)
C3—C4—C5—C100.5 (5)C2—C1—C10—C50.4 (6)
C3—C4—C5—C6178.3 (3)O2—C7—C11—C16175.9 (3)
C10—C5—C6—N1166.3 (3)C8—C7—C11—C1658.0 (4)
C4—C5—C6—N114.9 (5)O2—C7—C11—C126.3 (4)
C10—C5—C6—C812.9 (4)C8—C7—C11—C12124.3 (3)
C4—C5—C6—C8166.0 (3)C16—C11—C12—C131.3 (5)
N1—C6—C8—C1799.7 (3)C7—C11—C12—C13176.4 (3)
C5—C6—C8—C1781.0 (4)C11—C12—C13—C141.1 (6)
N1—C6—C8—C9139.5 (3)C12—C13—C14—C150.1 (6)
C5—C6—C8—C939.8 (4)C13—C14—C15—C161.1 (6)
N1—C6—C8—C717.1 (4)C12—C11—C16—C150.3 (5)
C5—C6—C8—C7162.1 (3)C7—C11—C16—C15177.5 (3)
O2—C7—C8—C1788.2 (3)C14—C15—C16—C110.9 (6)
C11—C7—C8—C1733.8 (4)C5—C6—N1—O2179.0 (3)
O2—C7—C8—C626.0 (3)C8—C6—N1—O20.2 (4)
C11—C7—C8—C6148.0 (3)C5—C10—O1—C918.8 (5)
O2—C7—C8—C9141.0 (3)C1—C10—O1—C9162.1 (3)
C11—C7—C8—C997.0 (4)C8—C9—O1—C1047.8 (4)
C17—C8—C9—O162.8 (4)C6—N1—O2—C718.5 (4)
C6—C8—C9—O156.1 (4)C11—C7—O2—N1155.3 (3)
C7—C8—C9—O1166.2 (3)C8—C7—O2—N128.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N2i0.932.623.519 (5)164
C15—H15···N2ii0.932.613.334 (5)135
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H11BrN2O2
Mr355.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.1034 (8), 6.0676 (3), 16.0865 (10)
β (°) 99.953 (2)
V3)1452.00 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.84
Crystal size (mm)0.35 × 0.28 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.437, 0.601
No. of measured, independent and
observed [I > 2σ(I)] reflections
9947, 3175, 2214
Rint0.031
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.102, 1.09
No. of reflections3175
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.96

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N2i0.932.623.519 (5)164
C15—H15···N2ii0.932.613.334 (5)135
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

GS and SA thank UGC, India, for financial support. GS also thanks the SAIF, IIT-Madras, for for the instrumentation facility.

References

First citationBrooks, G. T. (1998). Pestic. Sci. 22, 41–50.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79–101.  Google Scholar
First citationCai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.  Web of Science PubMed Google Scholar
First citationCai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627–2644.  Web of Science PubMed CAS Google Scholar
First citationCaine, B. (1993). Science, 260, 1814–1816.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.  Google Scholar
First citationGangadharan, R., SethuSankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationValenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds