organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Chloro­phen­yl)-1-cyclo­propyl-2-(2-fluoro­phen­yl)-3-phenyl­pentane-1,5-dione

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, Tamilnadu, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 4 January 2013; accepted 11 January 2013; online 19 January 2013)

In the title compound, C26H22ClFO2, the cyclo­propane ring makes dihedral angles of 45.7 (2), 49.0 (2) and 65.2 (2)° with the fluoro-substituted phenyl ring, the benzene ring and the chloro-substituted phenyl ring, respectively. The F and Cl atoms deviate by 0.0307 (11) and 0.0652 (6) Å, respectively, from the planes of the phenyl rings to which they are attached. In the crystal, mol­ecules are linked by C—H⋯F hydrogen bonds, forming chains along the b axis.

Related literature

For the uses and biological importance of diketones, see: Bennett et al. (1999[Bennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847-1852.]); Sato et al. (2008[Sato, K., Yamazoe, S., Yamamoto, R., Ohata, S., Tarui, A., Omote, M., Kumadaki, I. & Ando, A. (2008). Org. Lett. 10, 2405-2408.]). For a related structure, see: Li et al. (2008[Li, K.-Z., Chen, Y.-T., Zhao, C.-W., Wei, G.-D. & He, Q.-P. (2008). Acta Cryst. E64, o1665.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22ClFO2

  • Mr = 420.89

  • Monoclinic, C 2/c

  • a = 43.0465 (15) Å

  • b = 5.7257 (2) Å

  • c = 18.2828 (6) Å

  • β = 109.103 (2)°

  • V = 4258.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.940, Tmax = 0.960

  • 20606 measured reflections

  • 5308 independent reflections

  • 3857 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.146

  • S = 1.02

  • 5308 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯F1i 0.98 2.54 3.433 (2) 151
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Diketones are popular in organic synthesis for their applications in biology and medicine. They are known to exhibit antioxidant, antitumour and antibacterial activities (Bennett et al., 1999). They are also key intermediates in the preparation of various heterocyclic compounds (Sato et al., 2008). We report herein on the synthesis and crystal structure of one the title diketone.

In the title compound, Fig.1, the cyclopropane ring (C1-C3) makes a dihedral angle of 45.7 (2)° with the fluoro substituted phenyl ring (C6-C11). It makes a dihedral angle of 49.0 (2)° with the unsubstituted phenyl ring (C13-C18) and a dihedral angle of 65.2 (2)° with the chloro substituted phenyl ring (C21-C26). The fluorine atom, F1, deviates by 0.0307 (11) Å from the phenyl ring to which it is attached.

The dihedral angle between the unsubstituted phenyl ring and the fluoro substituted phenyl ring is 3.65 (8)° and the dihedral angle between the unsubstituted phenyl ring and the chloro substituted phenyl ring is 71.73 (8)°. The dihedral angle between the fluoro substituted phenyl ring and the chloro substituted phenyl ring is 71.15 (8)°. The chloro atom, Cl1, deviates by 0.0652 (6) Å from the phenyl ring to which it is attached.

In the crystal, C–H···F hydrogen bonds link the molecules to form chains along the b axis (Table 1 and Fig. 2).

Related literature top

For the uses and biological importance of diketones, see: Bennett et al. (1999); Sato et al. (2008). For a related structure, see: Li et al. (2008).

Experimental top

A mixture of 4-chloroacetophenone(0.01mole), benzaldehyde (0.01 mole), cyclopropyl 2-fluorobenzyl ketone (0.01 mole) and sodium hydroxide solution (10 ml, 10%) in ethanol (50 ml) was stirred for 3 hrs at room temperature. The solid that separated was filtered and washed with distilled water. The product was recrystallised from ethanol [Yield = 95%, M.p. = 405 - 407 K] giving block-like colourless crystals of the title compound.

Refinement top

The hydrogen atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 - 1.08 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. H-atoms not involved in C-H···F hydrogen bonds (dashed lines) have been excluded for clarity.
5-(4-Chlorophenyl)-1-cyclopropyl-2-(2-fluorophenyl)-3-phenylpentane-1,5-dione top
Crystal data top
C26H22ClFO2F(000) = 1760
Mr = 420.89Dx = 1.313 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5308 reflections
a = 43.0465 (15) Åθ = 2.0–28.3°
b = 5.7257 (2) ŵ = 0.21 mm1
c = 18.2828 (6) ÅT = 293 K
β = 109.103 (2)°Block, colourless
V = 4258.0 (3) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5308 independent reflections
Radiation source: fine-focus sealed tube3857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 5655
Tmin = 0.940, Tmax = 0.960k = 77
20606 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0784P)2 + 1.3969P]
where P = (Fo2 + 2Fc2)/3
5308 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C26H22ClFO2V = 4258.0 (3) Å3
Mr = 420.89Z = 8
Monoclinic, C2/cMo Kα radiation
a = 43.0465 (15) ŵ = 0.21 mm1
b = 5.7257 (2) ÅT = 293 K
c = 18.2828 (6) Å0.30 × 0.25 × 0.20 mm
β = 109.103 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5308 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3857 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.960Rint = 0.026
20606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
5308 reflectionsΔρmin = 0.41 e Å3
271 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.98198 (5)0.1534 (5)0.63987 (11)0.0788 (6)
H1A0.97880.31070.65580.095*
H1B0.98690.03760.68080.095*
C20.99781 (5)0.1272 (5)0.58082 (13)0.0856 (7)
H2A1.01250.00470.58530.103*
H2B1.00440.26830.56040.103*
C30.96139 (4)0.0774 (4)0.55940 (10)0.0638 (4)
H30.95450.08660.55250.077*
C40.93845 (4)0.2511 (3)0.51216 (9)0.0519 (4)
C50.90431 (4)0.1631 (3)0.46517 (8)0.0431 (3)
H50.90660.00340.44820.052*
C60.88405 (4)0.1533 (3)0.51978 (8)0.0438 (3)
C70.88474 (4)0.3324 (3)0.57192 (8)0.0528 (4)
H70.89820.46120.57440.063*
C80.86572 (5)0.3224 (3)0.62019 (10)0.0614 (4)
H80.86670.44310.65490.074*
C90.84548 (5)0.1340 (3)0.61672 (10)0.0637 (5)
H90.83280.12770.64920.076*
C100.84387 (5)0.0456 (3)0.56527 (10)0.0596 (4)
H100.83010.17290.56220.071*
C110.86323 (4)0.0313 (3)0.51858 (9)0.0495 (3)
C120.88775 (4)0.3132 (3)0.39218 (8)0.0436 (3)
H120.88690.47500.40880.052*
C130.90741 (3)0.3082 (2)0.33675 (7)0.0416 (3)
C140.92695 (4)0.4952 (3)0.33202 (10)0.0569 (4)
H140.92840.62360.36410.068*
C150.94436 (5)0.4954 (3)0.28052 (12)0.0671 (5)
H150.95730.62320.27830.080*
C160.94255 (4)0.3079 (3)0.23278 (11)0.0645 (5)
H160.95430.30780.19820.077*
C170.92334 (5)0.1211 (3)0.23624 (10)0.0638 (4)
H170.92190.00600.20360.077*
C180.90601 (4)0.1203 (3)0.28822 (9)0.0537 (4)
H180.89320.00880.29050.064*
C190.85253 (3)0.2291 (3)0.35328 (9)0.0491 (3)
H19A0.85320.06950.33600.059*
H19B0.84130.22780.39150.059*
C200.83275 (4)0.3740 (3)0.28526 (8)0.0457 (3)
C210.80262 (3)0.2639 (3)0.22939 (8)0.0436 (3)
C220.79031 (4)0.0502 (3)0.24330 (10)0.0511 (4)
H220.80100.03030.28880.061*
C230.76239 (4)0.0443 (3)0.19061 (10)0.0570 (4)
H230.75420.18700.20050.068*
C240.74683 (4)0.0746 (3)0.12351 (10)0.0596 (4)
C250.75831 (5)0.2881 (3)0.10805 (10)0.0640 (4)
H250.74740.36770.06250.077*
C260.78613 (4)0.3814 (3)0.16101 (9)0.0542 (4)
H260.79400.52490.15100.065*
O10.94554 (4)0.4569 (2)0.51323 (8)0.0786 (4)
O20.84006 (3)0.5733 (2)0.27563 (7)0.0614 (3)
F10.86105 (3)0.20686 (17)0.46719 (6)0.0687 (3)
Cl10.712537 (14)0.05059 (13)0.05552 (4)0.0982 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0636 (11)0.1197 (18)0.0452 (9)0.0021 (11)0.0071 (8)0.0002 (10)
C20.0520 (10)0.131 (2)0.0690 (12)0.0048 (11)0.0131 (9)0.0203 (13)
C30.0525 (9)0.0754 (12)0.0553 (9)0.0003 (8)0.0063 (8)0.0035 (9)
C40.0535 (8)0.0638 (10)0.0385 (7)0.0064 (7)0.0153 (6)0.0048 (7)
C50.0491 (7)0.0456 (7)0.0346 (6)0.0001 (6)0.0137 (6)0.0022 (5)
C60.0514 (8)0.0468 (7)0.0332 (6)0.0044 (6)0.0139 (6)0.0040 (5)
C70.0671 (9)0.0514 (8)0.0399 (7)0.0029 (7)0.0177 (7)0.0003 (6)
C80.0798 (11)0.0640 (10)0.0449 (8)0.0165 (9)0.0266 (8)0.0009 (7)
C90.0740 (11)0.0741 (11)0.0540 (9)0.0199 (9)0.0361 (9)0.0158 (8)
C100.0645 (10)0.0596 (10)0.0608 (10)0.0028 (8)0.0290 (8)0.0130 (8)
C110.0602 (9)0.0465 (8)0.0435 (8)0.0038 (7)0.0191 (7)0.0019 (6)
C120.0498 (7)0.0440 (7)0.0381 (7)0.0003 (6)0.0158 (6)0.0002 (6)
C130.0437 (7)0.0447 (7)0.0350 (6)0.0019 (6)0.0111 (5)0.0005 (5)
C140.0669 (10)0.0517 (9)0.0554 (9)0.0145 (8)0.0247 (8)0.0084 (7)
C150.0688 (11)0.0698 (11)0.0700 (11)0.0222 (9)0.0328 (9)0.0019 (9)
C160.0640 (10)0.0797 (12)0.0605 (10)0.0017 (9)0.0350 (9)0.0027 (9)
C170.0783 (11)0.0650 (10)0.0564 (9)0.0045 (9)0.0334 (9)0.0131 (8)
C180.0648 (9)0.0505 (8)0.0509 (8)0.0118 (7)0.0260 (7)0.0076 (7)
C190.0458 (7)0.0585 (9)0.0445 (8)0.0021 (7)0.0169 (6)0.0104 (6)
C200.0487 (7)0.0494 (8)0.0434 (7)0.0060 (6)0.0210 (6)0.0053 (6)
C210.0444 (7)0.0474 (7)0.0428 (7)0.0075 (6)0.0195 (6)0.0044 (6)
C220.0483 (8)0.0550 (9)0.0530 (8)0.0065 (7)0.0208 (7)0.0114 (7)
C230.0503 (8)0.0549 (9)0.0700 (10)0.0021 (7)0.0253 (8)0.0060 (8)
C240.0470 (8)0.0689 (11)0.0603 (10)0.0037 (8)0.0140 (7)0.0006 (8)
C250.0627 (10)0.0692 (11)0.0525 (9)0.0006 (9)0.0085 (8)0.0134 (8)
C260.0588 (9)0.0514 (8)0.0508 (8)0.0003 (7)0.0157 (7)0.0090 (7)
O10.0813 (9)0.0664 (8)0.0730 (9)0.0223 (7)0.0049 (7)0.0020 (6)
O20.0690 (7)0.0502 (6)0.0584 (7)0.0017 (5)0.0118 (6)0.0076 (5)
F10.0890 (7)0.0537 (6)0.0725 (7)0.0151 (5)0.0387 (6)0.0136 (5)
Cl10.0709 (3)0.1139 (5)0.0894 (4)0.0320 (3)0.0017 (3)0.0073 (3)
Geometric parameters (Å, º) top
C1—C21.461 (3)C13—C141.382 (2)
C1—C31.512 (3)C13—C181.383 (2)
C1—H1A0.9700C14—C151.382 (2)
C1—H1B0.9700C14—H140.9300
C2—C31.514 (3)C15—C161.369 (3)
C2—H2A0.9700C15—H150.9300
C2—H2B0.9700C16—C171.366 (3)
C3—C41.467 (3)C16—H160.9300
C3—H30.9800C17—C181.387 (2)
C4—O11.216 (2)C17—H170.9300
C4—C51.525 (2)C18—H180.9300
C5—C61.5266 (19)C19—C201.506 (2)
C5—C121.551 (2)C19—H19A0.9700
C5—H50.9800C19—H19B0.9700
C6—C111.381 (2)C20—O21.2117 (19)
C6—C71.394 (2)C20—C211.502 (2)
C7—C81.388 (2)C21—C221.389 (2)
C7—H70.9300C21—C261.392 (2)
C8—C91.375 (3)C22—C231.381 (2)
C8—H80.9300C22—H220.9300
C9—C101.380 (3)C23—C241.371 (3)
C9—H90.9300C23—H230.9300
C10—C111.377 (2)C24—C251.382 (3)
C10—H100.9300C24—Cl11.7425 (18)
C11—F11.3583 (18)C25—C261.378 (2)
C12—C131.5182 (19)C25—H250.9300
C12—C191.527 (2)C26—H260.9300
C12—H120.9800
C2—C1—C361.19 (13)C13—C12—H12108.1
C2—C1—H1A117.6C19—C12—H12108.1
C3—C1—H1A117.6C5—C12—H12108.1
C2—C1—H1B117.6C14—C13—C18117.53 (13)
C3—C1—H1B117.6C14—C13—C12120.74 (13)
H1A—C1—H1B114.8C18—C13—C12121.72 (13)
C1—C2—C361.07 (13)C13—C14—C15121.34 (15)
C1—C2—H2A117.7C13—C14—H14119.3
C3—C2—H2A117.7C15—C14—H14119.3
C1—C2—H2B117.7C16—C15—C14120.23 (16)
C3—C2—H2B117.7C16—C15—H15119.9
H2A—C2—H2B114.8C14—C15—H15119.9
C4—C3—C1116.42 (17)C17—C16—C15119.53 (15)
C4—C3—C2117.72 (19)C17—C16—H16120.2
C1—C3—C257.75 (13)C15—C16—H16120.2
C4—C3—H3117.2C16—C17—C18120.28 (16)
C1—C3—H3117.2C16—C17—H17119.9
C2—C3—H3117.2C18—C17—H17119.9
O1—C4—C3122.04 (16)C13—C18—C17121.08 (15)
O1—C4—C5121.34 (15)C13—C18—H18119.5
C3—C4—C5116.51 (15)C17—C18—H18119.5
C4—C5—C6107.17 (11)C20—C19—C12114.70 (12)
C4—C5—C12112.84 (12)C20—C19—H19A108.6
C6—C5—C12112.52 (12)C12—C19—H19A108.6
C4—C5—H5108.0C20—C19—H19B108.6
C6—C5—H5108.0C12—C19—H19B108.6
C12—C5—H5108.0H19A—C19—H19B107.6
C11—C6—C7116.25 (13)O2—C20—C21120.28 (13)
C11—C6—C5121.61 (13)O2—C20—C19122.37 (14)
C7—C6—C5122.11 (13)C21—C20—C19117.33 (13)
C8—C7—C6121.30 (16)C22—C21—C26118.49 (14)
C8—C7—H7119.3C22—C21—C20122.78 (13)
C6—C7—H7119.3C26—C21—C20118.73 (13)
C9—C8—C7120.02 (16)C23—C22—C21120.96 (15)
C9—C8—H8120.0C23—C22—H22119.5
C7—C8—H8120.0C21—C22—H22119.5
C8—C9—C10120.37 (15)C24—C23—C22119.22 (16)
C8—C9—H9119.8C24—C23—H23120.4
C10—C9—H9119.8C22—C23—H23120.4
C11—C10—C9118.19 (16)C23—C24—C25121.31 (16)
C11—C10—H10120.9C23—C24—Cl1119.07 (14)
C9—C10—H10120.9C25—C24—Cl1119.60 (14)
F1—C11—C10117.77 (15)C26—C25—C24119.07 (16)
F1—C11—C6118.35 (13)C26—C25—H25120.5
C10—C11—C6123.86 (15)C24—C25—H25120.5
C13—C12—C19111.63 (11)C25—C26—C21120.95 (15)
C13—C12—C5111.38 (12)C25—C26—H26119.5
C19—C12—C5109.43 (12)C21—C26—H26119.5
C2—C1—C3—C4107.5 (2)C5—C12—C13—C14102.94 (16)
C1—C2—C3—C4105.2 (2)C19—C12—C13—C1844.28 (19)
C1—C3—C4—O138.4 (2)C5—C12—C13—C1878.37 (17)
C2—C3—C4—O127.3 (3)C18—C13—C14—C150.3 (3)
C1—C3—C4—C5137.90 (16)C12—C13—C14—C15178.45 (16)
C2—C3—C4—C5156.43 (15)C13—C14—C15—C160.1 (3)
O1—C4—C5—C694.60 (18)C14—C15—C16—C170.2 (3)
C3—C4—C5—C681.72 (16)C15—C16—C17—C180.6 (3)
O1—C4—C5—C1229.8 (2)C14—C13—C18—C170.7 (3)
C3—C4—C5—C12153.86 (13)C12—C13—C18—C17178.06 (15)
C4—C5—C6—C11138.34 (15)C16—C17—C18—C130.8 (3)
C12—C5—C6—C1197.05 (16)C13—C12—C19—C2061.19 (17)
C4—C5—C6—C743.57 (18)C5—C12—C19—C20175.04 (12)
C12—C5—C6—C781.04 (17)C12—C19—C20—O220.5 (2)
C11—C6—C7—C80.7 (2)C12—C19—C20—C21160.82 (12)
C5—C6—C7—C8178.87 (14)O2—C20—C21—C22170.23 (14)
C6—C7—C8—C90.5 (3)C19—C20—C21—C228.5 (2)
C7—C8—C9—C100.1 (3)O2—C20—C21—C269.2 (2)
C8—C9—C10—C110.6 (3)C19—C20—C21—C26172.05 (13)
C9—C10—C11—F1178.87 (15)C26—C21—C22—C230.1 (2)
C9—C10—C11—C60.5 (3)C20—C21—C22—C23179.58 (14)
C7—C6—C11—F1178.22 (13)C21—C22—C23—C240.4 (2)
C5—C6—C11—F10.0 (2)C22—C23—C24—C250.7 (3)
C7—C6—C11—C100.2 (2)C22—C23—C24—Cl1177.56 (13)
C5—C6—C11—C10178.39 (15)C23—C24—C25—C260.6 (3)
C4—C5—C12—C1361.90 (15)Cl1—C24—C25—C26177.70 (14)
C6—C5—C12—C13176.68 (12)C24—C25—C26—C210.1 (3)
C4—C5—C12—C19174.20 (12)C22—C21—C26—C250.3 (2)
C6—C5—C12—C1952.77 (16)C20—C21—C26—C25179.75 (15)
C19—C12—C13—C14134.40 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.982.543.433 (2)151
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H22ClFO2
Mr420.89
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)43.0465 (15), 5.7257 (2), 18.2828 (6)
β (°) 109.103 (2)
V3)4258.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.940, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
20606, 5308, 3857
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.146, 1.02
No. of reflections5308
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.41

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.982.543.433 (2)151
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS also thanks the DST for an Inspire fellowship.

References

First citationBennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847–1852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, K.-Z., Chen, Y.-T., Zhao, C.-W., Wei, G.-D. & He, Q.-P. (2008). Acta Cryst. E64, o1665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSato, K., Yamazoe, S., Yamamoto, R., Ohata, S., Tarui, A., Omote, M., Kumadaki, I. & Ando, A. (2008). Org. Lett. 10, 2405–2408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds