organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4,4′-Di­bromo-[1,1′-biphen­yl]-2-yl)benzamide

aDepartment of Physics, Idhaya College for Women, Kumbakonam-1, India, bDepartment of Physics, Kunthavai Naachiar Govt. Arts College (W) (Autonomous), Thanjavur-7, India, and cOrganic Materials Lab, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 6 January 2013; accepted 7 January 2013; online 12 January 2013)

In the title compound, C19H13Br2NO, the dihedral angle between the rings of the biphenyl group is 53.59 (14)°. The ring of the benzamide group is inclined to the phenyl rings of the biphenyl group by 23.87 (15) and 75.89 (15)°. There are no significant inter­molecular inter­actions in the crystal structure.

Related literature

For applications of the title compound, see: Libman & Slack (1951[Libman, D. D. & Slack, R. (1951). J. Chem. Soc. pp. 2588-2590.]); Mandadapu et al. (2009[Mandadapu, A. K., Saifuddin, M., Agarwal, P. K. & Kundu, B. (2009). Org. Biomol. Chem. 7, 2796-2803.]); Youn & Bihn (2009[Youn, S. W. & Bihn, J. H. (2009). Tetrahedron Lett. 50, 4598-4601.]); Yulan et al. (2010[Yulan, C., Fenghong, L. & Zhishan, B. (2010). Macromolecules, 43, 1349-1355.]). For pharmacological properties of biphenyl aniline, see: Zhu et al. (2008[Zhu, L., Patel, M. & Zhang, M. (2008). Tetrahedron Lett. 49, 2734-2737.]). For related structures, see: Li & Cui (2011[Li, H.-L. & Cui, J.-T. (2011). Acta Cryst. E67, o1596.]); Kuś et al. (2009[Kuś, P., Zemanek, A. & Jones, P. G. (2009). Acta Cryst. E65, o1327.]); Hammond et al. (2009[Hammond, N., Carvalho, P., Wu, Y. & Avery, M. A. (2009). Acta Cryst. E65, o1052-o1053.]); Gowda et al. (2010[Gowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o1897.]); Novina et al. (2012[Novina, J. J., Vasuki, G., Kumar, S. & Thomas, K. R. J. (2012). Acta Cryst. E68, o319.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13Br2NO

  • Mr = 431.12

  • Monoclinic, P 21 /c

  • a = 9.0188 (5) Å

  • b = 11.6415 (9) Å

  • c = 16.0068 (12) Å

  • β = 100.737 (2)°

  • V = 1651.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.91 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.238, Tmax = 0.374

  • 16420 measured reflections

  • 3453 independent reflections

  • 2302 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.075

  • S = 1.01

  • 3453 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Biphenyl aniline, a subclass of biaryl compounds, has been recognized as a privileged structure in drug discovery. Its derivatives have been pursued as anti–phlogistic, analgesic, anti–obesity, and anti–tumor agents (Zhu et al., 2008). Amide substituted biphenyl derivatives are commonly used to develop antiparasitic agents for the treatment of African sleeping sickness disease (Libman & Slack, 1951; Mandadapu et al., 2009; Youn & Bihn, 2009; Yulan et al., 2010). Benzamides are recognized as one of the important bioactive skeletons and exhibit various potent pharmaceutical activities. As part of our studies on the substituent effects on the structures and other aspects of dibromo biphenyl derivatives, 4,4'-Dibromo-2-nitrobiphenyl (Novina et al., 2012), in the present work we report herein on the synthesis and crystal structure of the title compound.

In the molecular structure of the title compound (Fig. 1), the two benzene rings of the biphenyl group are twisted with respect to each other by 53.59 (14)°, which is similar to to the arrangement [53.52 (14)°] found in 2,5-Bis(bromomethyl)biphenyl (Kuś et al., 2009), but is somewhat larger than the angle of 45.5 (2)° found in 3,3',5,5'-Tetranitrobiphenyl (Hammond et al., 2009). The amide unit C1—N1—C13(O1)—C14 is planar [r.m.s deviation = 0.013 Å], and subtends dihedral angles of 12.38 (12)° and 32.34 (11)° respectively to the C1-C6 and C14-C19 phenyl rings. These two aromatic rings are inclined to one another by 23.87 (15)°, while rings C7-C12 and C14-C19 are inclined to one another by 75.89 (15)°. The C13O1 and C13—N1 bond distances are 1.221 (3) and 1.360 (3) Å, respectively, showing the electron delocalization in the amide fragment. The N—H and CO bonds in the amide group are anti to each other, similar to that observed in 2-Chloro-N-(2,3-dimethylphenyl)-benzamide (Gowda et al., 2010), and N-(3,5-Dimethoxyphenyl)benzamide (Li & Cui, 2011). The length of the bond connecting the phenyl rings, 1.489 (4) Å, is close to the standard value of 1.48 Å for a Csp2—Csp2 single bond.

In the crystal, there are no significant interactions and the structure is stabilized by Van der Waals interactions (Fig. 2).

Related literature top

For applications of the title compound, see: Libman & Slack (1951); Mandadapu et al. (2009); Youn & Bihn (2009); Yulan et al. (2010). For pharmacological properties of biphenyl aniline, see: Zhu et al. (2008). For related structures, see: Li & Cui (2011); Kuś et al. (2009); Hammond et al. (2009); Gowda et al. (2010). For our studies on the substituent effects on the structures and other aspects of dibromobiphenyl derivatives, see: Novina et al. (2012).

Experimental top

To a dry THF solution of 4,4'-dibromo-[1,1'-biphenyl]-2-amine (3.27 g, 10 mmol) and triethylamine (3 ml) was added drop wise a dry THF solution (40 ml) of benzoyl chloride at 273 K. After stirring at room temperature for 20 h, the solution was poured into water (80 ml) and extracted with dichloromethane (2 × 50 ml). The combined organic extracts were dried over anhydrous Na2SO4 and evaporated to dryness. This gave white solid which was further recrystallized with dichloromethane-hexanes [Yield 3.0 g (70%); M.p. 443–445 K]. HRMS calcd. for C19H13Br2NO [M]+ m/z 428.9364 found 428.9363. Spectroscopic data for the title compound is available in the archived CIF.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: N—H = 0.86 Å and C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis.
N-(4,4'-Dibromo-[1,1'-biphenyl]-2-yl)benzamide top
Crystal data top
C19H13Br2NOF(000) = 848
Mr = 431.12Dx = 1.734 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3453 reflections
a = 9.0188 (5) Åθ = 2.2–26.6°
b = 11.6415 (9) ŵ = 4.91 mm1
c = 16.0068 (12) ÅT = 293 K
β = 100.737 (2)°Block, colourless
V = 1651.2 (2) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3453 independent reflections
Radiation source: fine-focus sealed tube2302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scanθmax = 26.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.238, Tmax = 0.374k = 1414
16420 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0267P)2 + 1.1775P]
where P = (Fo2 + 2Fc2)/3
3453 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C19H13Br2NOV = 1651.2 (2) Å3
Mr = 431.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0188 (5) ŵ = 4.91 mm1
b = 11.6415 (9) ÅT = 293 K
c = 16.0068 (12) Å0.30 × 0.25 × 0.20 mm
β = 100.737 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3453 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2302 reflections with I > 2σ(I)
Tmin = 0.238, Tmax = 0.374Rint = 0.032
16420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.01Δρmax = 0.46 e Å3
3453 reflectionsΔρmin = 0.49 e Å3
208 parameters
Special details top

Experimental. Spectroscopic data for the title compound: IR (νN—H) 3399 cm-1, 1567 cm-1, (νCO) 1666 cm-1, 1H NMR (CDCl3, 500 MHz) δ: 8.74 (d, J = 1.5 Hz, 1 H), 7.85 (s, 1H), 7.60 (dd, J = 6.5, 2.0 Hz, 2 H), 7.59–7.61 (m, 2 H), 7.52–7.55 (m, 1 H), 7.42–7.45 (m, 2 H), 7.35 (d, J = 1.5 Hz, 1 H), 7.30 (dd, J = 6.5, 2.0 Hz, 2 H), 7.11 (d, J = 8.0 Hz, 1 H); 13C NMR (CDCl3, 125 MHz) δ 165.1, 136.0, 135.8, 134.1, 133.7, 32.6, 131.1, 130.8, 130.2, 130.1, 129.0, 128.5, 127.7, 126.8, 124.6, 122.9, 122.7.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.63621 (4)0.21302 (3)0.15668 (2)0.06302 (13)
Br20.22124 (4)1.08134 (3)0.04697 (3)0.07108 (15)
O10.1733 (2)0.33800 (17)0.05842 (14)0.0542 (6)
C10.3653 (3)0.4886 (2)0.06373 (17)0.0342 (6)
C80.4769 (3)0.7869 (2)0.09646 (18)0.0414 (7)
H80.57850.76810.10220.050*
C190.0269 (3)0.4448 (3)0.2115 (2)0.0496 (8)
H190.06880.37310.21800.060*
N10.2512 (2)0.51464 (19)0.00712 (14)0.0380 (6)
H10.23330.58660.01600.046*
C110.1763 (3)0.8444 (3)0.07935 (19)0.0480 (8)
H110.07500.86400.07370.058*
C20.4251 (3)0.3787 (2)0.07720 (18)0.0397 (7)
H20.38590.31850.04170.048*
C40.6025 (3)0.4467 (3)0.19891 (18)0.0455 (8)
H40.68060.43200.24440.055*
C30.5430 (3)0.3604 (3)0.14369 (18)0.0410 (7)
C70.3728 (3)0.7005 (2)0.10278 (17)0.0361 (6)
C120.2218 (3)0.7322 (3)0.09524 (19)0.0440 (7)
H120.15040.67660.10100.053*
C140.0602 (3)0.5010 (2)0.13340 (18)0.0372 (7)
C90.4329 (3)0.8994 (2)0.08194 (19)0.0439 (7)
H90.50430.95620.07890.053*
C100.2825 (3)0.9271 (2)0.07198 (19)0.0437 (7)
C50.5431 (3)0.5548 (3)0.18479 (19)0.0455 (7)
H50.58310.61390.22130.055*
C60.4249 (3)0.5796 (2)0.11777 (17)0.0367 (6)
C130.1656 (3)0.4425 (2)0.06326 (18)0.0373 (7)
C180.0677 (4)0.4950 (3)0.2791 (2)0.0626 (10)
H180.08750.45810.33150.075*
C170.1326 (4)0.5993 (4)0.2690 (3)0.0746 (11)
H170.19560.63340.31490.089*
C150.0075 (3)0.6061 (3)0.1242 (2)0.0493 (8)
H150.01300.64460.07250.059*
C160.1055 (4)0.6535 (3)0.1922 (3)0.0664 (10)
H160.15320.72280.18550.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0675 (2)0.0512 (2)0.0659 (2)0.01286 (17)0.00079 (18)0.01402 (17)
Br20.0641 (2)0.0444 (2)0.0985 (3)0.00851 (17)0.0009 (2)0.0004 (2)
O10.0578 (13)0.0335 (12)0.0629 (14)0.0026 (10)0.0104 (11)0.0010 (10)
C10.0326 (15)0.0391 (16)0.0314 (15)0.0046 (12)0.0071 (12)0.0051 (13)
C80.0324 (15)0.0438 (18)0.0471 (18)0.0032 (13)0.0048 (13)0.0074 (15)
C190.0484 (18)0.0491 (19)0.0467 (19)0.0067 (15)0.0033 (15)0.0017 (16)
N10.0417 (13)0.0296 (13)0.0390 (14)0.0036 (10)0.0018 (11)0.0029 (11)
C110.0359 (16)0.054 (2)0.052 (2)0.0038 (15)0.0044 (14)0.0088 (16)
C20.0421 (16)0.0373 (16)0.0389 (17)0.0044 (13)0.0055 (14)0.0031 (13)
C40.0430 (17)0.060 (2)0.0311 (16)0.0009 (15)0.0000 (14)0.0086 (15)
C30.0417 (16)0.0442 (17)0.0382 (17)0.0009 (14)0.0104 (14)0.0127 (14)
C70.0369 (15)0.0385 (16)0.0316 (15)0.0024 (13)0.0035 (12)0.0055 (13)
C120.0369 (16)0.0481 (19)0.0473 (18)0.0097 (14)0.0082 (14)0.0066 (15)
C140.0324 (14)0.0391 (16)0.0394 (17)0.0069 (12)0.0050 (13)0.0024 (13)
C90.0408 (17)0.0397 (17)0.0498 (19)0.0085 (13)0.0052 (14)0.0060 (14)
C100.0478 (18)0.0375 (17)0.0428 (18)0.0015 (14)0.0003 (14)0.0059 (14)
C50.0442 (17)0.0528 (19)0.0368 (17)0.0030 (15)0.0004 (14)0.0036 (15)
C60.0349 (15)0.0421 (17)0.0337 (16)0.0037 (13)0.0083 (13)0.0013 (13)
C130.0348 (15)0.0381 (17)0.0393 (17)0.0065 (12)0.0072 (13)0.0005 (13)
C180.063 (2)0.073 (3)0.045 (2)0.019 (2)0.0081 (18)0.0018 (18)
C170.060 (2)0.086 (3)0.068 (3)0.001 (2)0.015 (2)0.026 (2)
C150.0505 (18)0.0472 (19)0.0496 (19)0.0029 (15)0.0079 (16)0.0050 (15)
C160.062 (2)0.060 (2)0.074 (3)0.0151 (18)0.005 (2)0.016 (2)
Geometric parameters (Å, º) top
Br1—C31.904 (3)C4—C51.370 (4)
Br2—C101.899 (3)C4—C31.379 (4)
O1—C131.221 (3)C4—H40.9300
C1—C21.390 (4)C7—C121.394 (4)
C1—C61.409 (4)C7—C61.489 (4)
C1—N11.415 (3)C12—H120.9300
C8—C91.376 (4)C14—C151.388 (4)
C8—C71.393 (4)C14—C131.493 (4)
C8—H80.9300C9—C101.374 (4)
C19—C181.377 (4)C9—H90.9300
C19—C141.393 (4)C5—C61.395 (4)
C19—H190.9300C5—H50.9300
N1—C131.360 (3)C18—C171.371 (5)
N1—H10.8600C18—H180.9300
C11—C121.378 (4)C17—C161.362 (5)
C11—C101.379 (4)C17—H170.9300
C11—H110.9300C15—C161.382 (4)
C2—C31.374 (4)C15—H150.9300
C2—H20.9300C16—H160.9300
C2—C1—C6120.3 (2)C15—C14—C19118.9 (3)
C2—C1—N1121.7 (2)C15—C14—C13123.6 (3)
C6—C1—N1117.9 (2)C19—C14—C13117.5 (3)
C9—C8—C7121.5 (3)C10—C9—C8119.4 (3)
C9—C8—H8119.2C10—C9—H9120.3
C7—C8—H8119.2C8—C9—H9120.3
C18—C19—C14120.3 (3)C9—C10—C11120.8 (3)
C18—C19—H19119.8C9—C10—Br2119.2 (2)
C14—C19—H19119.8C11—C10—Br2119.9 (2)
C13—N1—C1129.5 (2)C4—C5—C6122.4 (3)
C13—N1—H1115.3C4—C5—H5118.8
C1—N1—H1115.3C6—C5—H5118.8
C12—C11—C10119.3 (3)C5—C6—C1117.8 (3)
C12—C11—H11120.3C5—C6—C7119.5 (3)
C10—C11—H11120.3C1—C6—C7122.6 (2)
C3—C2—C1119.0 (3)O1—C13—N1123.7 (3)
C3—C2—H2120.5O1—C13—C14121.5 (3)
C1—C2—H2120.5N1—C13—C14114.8 (2)
C5—C4—C3118.1 (3)C17—C18—C19119.9 (3)
C5—C4—H4121.0C17—C18—H18120.1
C3—C4—H4121.0C19—C18—H18120.1
C2—C3—C4122.4 (3)C16—C17—C18120.5 (3)
C2—C3—Br1119.1 (2)C16—C17—H17119.7
C4—C3—Br1118.4 (2)C18—C17—H17119.7
C8—C7—C12117.6 (3)C16—C15—C14119.9 (3)
C8—C7—C6119.9 (2)C16—C15—H15120.1
C12—C7—C6122.5 (2)C14—C15—H15120.1
C11—C12—C7121.3 (3)C17—C16—C15120.4 (3)
C11—C12—H12119.4C17—C16—H16119.8
C7—C12—H12119.4C15—C16—H16119.8
C2—C1—N1—C1311.6 (4)C4—C5—C6—C7175.9 (3)
C6—C1—N1—C13172.7 (3)C2—C1—C6—C50.8 (4)
C6—C1—C2—C30.1 (4)N1—C1—C6—C5176.5 (2)
N1—C1—C2—C3175.5 (2)C2—C1—C6—C7175.5 (2)
C1—C2—C3—C41.4 (4)N1—C1—C6—C70.2 (4)
C1—C2—C3—Br1174.8 (2)C8—C7—C6—C551.6 (4)
C5—C4—C3—C21.7 (4)C12—C7—C6—C5127.9 (3)
C5—C4—C3—Br1174.6 (2)C8—C7—C6—C1124.6 (3)
C9—C8—C7—C121.0 (4)C12—C7—C6—C155.9 (4)
C9—C8—C7—C6179.5 (3)C1—N1—C13—O12.2 (5)
C10—C11—C12—C70.9 (5)C1—N1—C13—C14177.1 (2)
C8—C7—C12—C112.1 (4)C15—C14—C13—O1148.3 (3)
C6—C7—C12—C11178.4 (3)C19—C14—C13—O130.4 (4)
C18—C19—C14—C152.2 (4)C15—C14—C13—N132.3 (4)
C18—C19—C14—C13179.0 (3)C19—C14—C13—N1149.0 (3)
C7—C8—C9—C101.1 (5)C14—C19—C18—C171.7 (5)
C8—C9—C10—C112.3 (5)C19—C18—C17—C160.7 (6)
C8—C9—C10—Br2177.2 (2)C19—C14—C15—C160.4 (4)
C12—C11—C10—C91.3 (5)C13—C14—C15—C16179.1 (3)
C12—C11—C10—Br2178.3 (2)C18—C17—C16—C152.5 (6)
C3—C4—C5—C60.7 (4)C14—C15—C16—C172.0 (5)
C4—C5—C6—C10.5 (4)

Experimental details

Crystal data
Chemical formulaC19H13Br2NO
Mr431.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.0188 (5), 11.6415 (9), 16.0068 (12)
β (°) 100.737 (2)
V3)1651.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)4.91
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.238, 0.374
No. of measured, independent and
observed [I > 2σ(I)] reflections
16420, 3453, 2302
Rint0.032
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.075, 1.01
No. of reflections3453
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.49

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility, IIT Madras, Chennai, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o1897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHammond, N., Carvalho, P., Wu, Y. & Avery, M. A. (2009). Acta Cryst. E65, o1052–o1053.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKuś, P., Zemanek, A. & Jones, P. G. (2009). Acta Cryst. E65, o1327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H.-L. & Cui, J.-T. (2011). Acta Cryst. E67, o1596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLibman, D. D. & Slack, R. (1951). J. Chem. Soc. pp. 2588–2590.  CrossRef Web of Science Google Scholar
First citationMandadapu, A. K., Saifuddin, M., Agarwal, P. K. & Kundu, B. (2009). Org. Biomol. Chem. 7, 2796–2803.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNovina, J. J., Vasuki, G., Kumar, S. & Thomas, K. R. J. (2012). Acta Cryst. E68, o319.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoun, S. W. & Bihn, J. H. (2009). Tetrahedron Lett. 50, 4598–4601.  Web of Science CrossRef CAS Google Scholar
First citationYulan, C., Fenghong, L. & Zhishan, B. (2010). Macromolecules, 43, 1349–1355.  Google Scholar
First citationZhu, L., Patel, M. & Zhang, M. (2008). Tetrahedron Lett. 49, 2734–2737.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds