organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[(Furan-2-yl)methyl­­idene]-7-methyl-2,3,4,9-tetra­hydro-1H-carbazol-1-one

aPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, dSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, MP, India, and eFaculty of Sciences, Department of Physics, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 17 December 2012; accepted 18 December 2012; online 4 January 2013)

In the title mol­ecule, C18H15NO2, the atoms in the carbazole unit deviate from planarity [maximum deviation from mean plane = 0.1317 (12) Å]. The pyrrole ring makes dihedral angles of 1.01 (8) and 18.56 (10)° with the benzene and furan rings, respectively. The cyclo­hexene ring adopts a half-chair conformation. In the crystal, pairs of N—H⋯O hydrogen bonds form an R22(10) ring. Mol­ecules are further linked by C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For a related structure and the synthesis and applications of carbazole derivatives, see: Archana et al. (2010[Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o3145.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15NO2

  • Mr = 277.31

  • Triclinic, [P \overline 1]

  • a = 6.3925 (3) Å

  • b = 7.9880 (4) Å

  • c = 13.8629 (8) Å

  • α = 83.151 (5)°

  • β = 81.649 (4)°

  • γ = 78.921 (4)°

  • V = 684.28 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 123 K

  • 0.34 × 0.26 × 0.12 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.816, Tmax = 1.000

  • 4371 measured reflections

  • 2724 independent reflections

  • 2382 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.132

  • S = 1.05

  • 2724 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg1 are the centroids of the pyrrole (N9/C9A/C4A/C4B/C8A) and furan (O11/C12–C15)rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O1i 0.867 (18) 1.961 (18) 2.8069 (17) 164.9 (17)
C14—H14⋯O1ii 0.95 2.55 3.250 (2) 130
C4—H4BCg2iii 0.99 2.60 3.5176 (16) 154
C17—H17BCg1iii 0.98 2.89 3.807 (2) 156
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x-1, y, z; (iii) -x+1, -y+2, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

As part of our research (Archana et al., 2010), we have synthesized the title compound (I), and report its crystal structure here.

In the title molecule (Fig. 1), C18H15NO2, the carbazole unit is not planar. Maximum deviation from carbazole mean plane = -0.1317 (12) Å for atom C4. All bond lengths and angles in (I) are normal and comparable with those observed in the related (E)-2-(furan-2-ylmethylidene)-8-methyl-2,3,4,9-tetrahydro-1H- carbazol-1-one (Archana et al., 2010). The pyrrole ring makes dihedral angles of 1.01 (8) and 18.56 (10)° with the benzene and the furan rings, respectively. The cyclohexene ring adopts a half-chair conformation. The puckering parameters (Cremer & Pople, 1975) are q2 = 0.1372 (15) Å, q3 = 0.1060 (15) Å, Q = 0.1734 (15) Å, θ = 52.3 (5)° and ϕ = 143.0 (6)°. Intermolecular N9—H9···O1 hydrogen bonds form a R22(10) (Bernstein et al., 1995) ring motif in the crystal structure (Table 1, Fig. 2). Further, molecules are linked by intermolecular C14—H14···O1, C4—H4B···π, involving the pyrrole (N9/C9A/C4A/C4B/C8A) ring, and C17—H17B···π, involving the furan (O11/C12—C15) ring, interaction to form a three-dimensional architecture (Table 1, Figs 2 & 3).

Related literature top

For a related structure and the synthesis and applications of carbazole derivatives, see: Archana et al. (2010). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

An equimolar mixture of 7-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-one (0.995 g, 0.005 mol) and furan-2-carbaldehyde (0.414 g, 0.005 mol) was treated with 25 ml of a 5% ethanolic potassium hydroxide solution and stirred for 6 h at room temperature. The product precipitated as a yellow crystalline mass, was filtered off and washed with 50% ethanol. A further crop of condensation product was obtained on neutralization with acetic acid and dilution with water. The product was recrystallized from methanol to yield 95% (1.315 g) of the title compound. The pure compound was recrystallized from EtOAc and ethanol.

Refinement top

The H atoms bonded to N9 and C10 were located in a difference Fourier map and refined freely; N9—H9 = 0.867 (18) Å and C10—H10 = 0.964 (19) Å. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2–1.5Ueq(parent atom).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The partial packing of the title compound, viewed approximately down the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. Part of the crystal structure of compound, showing the formation of C—H···π interactions. Symmetry code iii: 1 - x, 2 - y, - z
(E)-2-[(Furan-2-yl)methylidene]-7-methyl-2,3,4,9- tetrahydro-1H-carbazol-1-one top
Crystal data top
C18H15NO2Z = 2
Mr = 277.31F(000) = 292
Triclinic, P1Dx = 1.346 Mg m3
Hall symbol: -P 1Melting point: 402 K
a = 6.3925 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.9880 (4) ÅCell parameters from 2052 reflections
c = 13.8629 (8) Åθ = 5.7–75.5°
α = 83.151 (5)°µ = 0.70 mm1
β = 81.649 (4)°T = 123 K
γ = 78.921 (4)°Prism, colourless
V = 684.28 (6) Å30.34 × 0.26 × 0.12 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
2724 independent reflections
Radiation source: Enhance (Cu) X-ray Source2382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.5081 pixels mm-1θmax = 75.7°, θmin = 5.7°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 89
Tmin = 0.816, Tmax = 1.000l = 1717
4371 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.1562P]
where P = (Fo2 + 2Fc2)/3
2724 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C18H15NO2γ = 78.921 (4)°
Mr = 277.31V = 684.28 (6) Å3
Triclinic, P1Z = 2
a = 6.3925 (3) ÅCu Kα radiation
b = 7.9880 (4) ŵ = 0.70 mm1
c = 13.8629 (8) ÅT = 123 K
α = 83.151 (5)°0.34 × 0.26 × 0.12 mm
β = 81.649 (4)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
2724 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2382 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 1.000Rint = 0.021
4371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.41 e Å3
2724 reflectionsΔρmin = 0.29 e Å3
199 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82745 (16)0.54561 (14)0.10721 (8)0.0321 (3)
O110.4389 (2)0.62235 (18)0.38788 (8)0.0462 (4)
N90.77421 (19)0.66480 (16)0.08384 (9)0.0272 (3)
C10.6548 (2)0.63419 (18)0.07581 (10)0.0256 (4)
C20.4695 (2)0.68389 (18)0.13316 (10)0.0259 (4)
C30.2549 (2)0.77564 (19)0.08760 (11)0.0296 (4)
C40.2491 (2)0.86429 (18)0.00542 (11)0.0275 (4)
C4A0.4362 (2)0.79645 (18)0.05978 (10)0.0258 (4)
C4B0.4742 (2)0.82727 (18)0.15417 (10)0.0279 (4)
C50.3503 (3)0.9176 (2)0.23067 (12)0.0346 (5)
C60.4421 (3)0.9234 (2)0.31372 (12)0.0404 (5)
C70.6555 (3)0.8434 (2)0.32410 (12)0.0375 (5)
C80.7788 (3)0.7521 (2)0.25079 (11)0.0328 (5)
C8A0.6863 (2)0.74409 (18)0.16619 (10)0.0285 (4)
C9A0.6217 (2)0.69588 (17)0.01966 (10)0.0252 (4)
C100.5039 (2)0.63565 (19)0.22508 (11)0.0298 (4)
C120.2715 (3)0.6422 (3)0.44181 (13)0.0492 (6)
C130.0838 (3)0.6875 (2)0.38630 (13)0.0433 (5)
C140.1333 (3)0.6999 (2)0.29094 (12)0.0366 (5)
C150.3511 (3)0.6590 (2)0.29413 (11)0.0317 (4)
C170.7481 (3)0.8590 (3)0.41581 (13)0.0476 (6)
H3A0.194840.863290.137800.0355*
H3B0.156950.691330.072270.0355*
H4A0.115590.850190.049270.0329*
H4B0.244330.988480.012900.0329*
H50.206620.973100.224950.0415*
H60.359210.983170.365720.0485*
H80.921990.696500.257540.0394*
H90.900 (3)0.600 (2)0.0795 (13)0.033 (5)*
H100.644 (3)0.575 (2)0.2485 (14)0.038 (5)*
H120.286260.626150.509430.0590*
H130.055170.707460.406670.0520*
H140.033330.730780.235470.0439*
H17A0.898060.800120.410940.0714*
H17B0.741300.980280.423620.0714*
H17C0.665100.806610.472550.0714*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0224 (5)0.0448 (6)0.0290 (5)0.0035 (4)0.0033 (4)0.0073 (4)
O110.0401 (7)0.0717 (9)0.0272 (6)0.0045 (6)0.0073 (5)0.0117 (5)
N90.0233 (6)0.0337 (6)0.0261 (6)0.0056 (5)0.0062 (5)0.0041 (5)
C10.0221 (7)0.0301 (7)0.0259 (7)0.0081 (5)0.0029 (5)0.0020 (5)
C20.0240 (7)0.0291 (7)0.0260 (7)0.0080 (5)0.0046 (5)0.0007 (5)
C30.0254 (7)0.0345 (7)0.0297 (7)0.0035 (5)0.0080 (5)0.0040 (6)
C40.0235 (6)0.0297 (7)0.0294 (7)0.0044 (5)0.0042 (5)0.0033 (5)
C4A0.0255 (7)0.0268 (7)0.0260 (7)0.0080 (5)0.0029 (5)0.0017 (5)
C4B0.0297 (7)0.0289 (7)0.0265 (7)0.0079 (5)0.0045 (5)0.0028 (5)
C50.0368 (8)0.0348 (8)0.0312 (8)0.0035 (6)0.0030 (6)0.0056 (6)
C60.0522 (10)0.0408 (9)0.0282 (8)0.0065 (7)0.0021 (7)0.0092 (6)
C70.0505 (10)0.0384 (8)0.0271 (8)0.0136 (7)0.0087 (7)0.0033 (6)
C80.0373 (8)0.0356 (8)0.0281 (8)0.0094 (6)0.0102 (6)0.0014 (6)
C8A0.0317 (7)0.0298 (7)0.0260 (7)0.0097 (6)0.0044 (5)0.0025 (5)
C9A0.0225 (6)0.0286 (7)0.0261 (7)0.0076 (5)0.0046 (5)0.0018 (5)
C100.0278 (7)0.0349 (7)0.0276 (7)0.0079 (6)0.0043 (5)0.0022 (6)
C120.0519 (11)0.0675 (12)0.0307 (8)0.0055 (9)0.0171 (8)0.0089 (8)
C130.0437 (9)0.0556 (10)0.0337 (9)0.0087 (8)0.0169 (7)0.0019 (7)
C140.0360 (8)0.0463 (9)0.0289 (8)0.0081 (7)0.0099 (6)0.0014 (6)
C150.0364 (8)0.0362 (8)0.0236 (7)0.0088 (6)0.0047 (6)0.0022 (6)
C170.0567 (11)0.0582 (11)0.0317 (9)0.0111 (9)0.0140 (8)0.0078 (8)
Geometric parameters (Å, º) top
O1—C11.2418 (17)C8—C8A1.401 (2)
O11—C121.367 (2)C10—C151.437 (2)
O11—C151.3804 (19)C12—C131.340 (3)
N9—C8A1.3673 (19)C13—C141.422 (2)
N9—C9A1.3820 (18)C14—C151.363 (3)
N9—H90.867 (18)C3—H3A0.9900
C1—C21.4867 (19)C3—H3B0.9900
C1—C9A1.4399 (19)C4—H4A0.9900
C2—C31.513 (2)C4—H4B0.9900
C2—C101.351 (2)C5—H50.9500
C3—C41.536 (2)C6—H60.9500
C4—C4A1.4857 (19)C8—H80.9500
C4A—C9A1.3819 (19)C10—H100.964 (19)
C4A—C4B1.4227 (19)C12—H120.9500
C4B—C51.411 (2)C13—H130.9500
C4B—C8A1.4144 (19)C14—H140.9500
C5—C61.375 (2)C17—H17A0.9800
C6—C71.411 (3)C17—H17B0.9800
C7—C171.506 (3)C17—H17C0.9800
C7—C81.382 (2)
C12—O11—C15106.77 (14)C10—C15—C14136.41 (15)
C8A—N9—C9A107.83 (12)O11—C15—C10114.65 (15)
C9A—N9—H9129.7 (12)O11—C15—C14108.81 (14)
C8A—N9—H9122.2 (12)C2—C3—H3A108.00
O1—C1—C9A121.59 (12)C2—C3—H3B108.00
O1—C1—C2122.91 (13)C4—C3—H3A108.00
C2—C1—C9A115.50 (12)C4—C3—H3B108.00
C3—C2—C10123.32 (12)H3A—C3—H3B107.00
C1—C2—C3120.81 (12)C3—C4—H4A109.00
C1—C2—C10115.81 (12)C3—C4—H4B109.00
C2—C3—C4118.19 (11)C4A—C4—H4A109.00
C3—C4—C4A113.51 (12)C4A—C4—H4B109.00
C4B—C4A—C9A106.39 (12)H4A—C4—H4B108.00
C4—C4A—C4B130.26 (13)C4B—C5—H5121.00
C4—C4A—C9A123.17 (13)C6—C5—H5121.00
C5—C4B—C8A118.99 (13)C5—C6—H6119.00
C4A—C4B—C5134.20 (14)C7—C6—H6119.00
C4A—C4B—C8A106.80 (12)C7—C8—H8121.00
C4B—C5—C6118.52 (16)C8A—C8—H8121.00
C5—C6—C7122.07 (16)C2—C10—H10118.6 (12)
C6—C7—C17119.33 (15)C15—C10—H10113.9 (11)
C6—C7—C8120.43 (16)O11—C12—H12125.00
C8—C7—C17120.25 (17)C13—C12—H12125.00
C7—C8—C8A117.99 (16)C12—C13—H13127.00
N9—C8A—C8129.24 (13)C14—C13—H13127.00
C4B—C8A—C8121.97 (13)C13—C14—H14126.00
N9—C8A—C4B108.78 (12)C15—C14—H14126.00
C1—C9A—C4A125.39 (12)C7—C17—H17A109.00
N9—C9A—C1124.41 (12)C7—C17—H17B109.00
N9—C9A—C4A110.20 (12)C7—C17—H17C109.00
C2—C10—C15127.43 (13)H17A—C17—H17B110.00
O11—C12—C13110.73 (16)H17A—C17—H17C109.00
C12—C13—C14106.59 (17)H17B—C17—H17C109.00
C13—C14—C15107.09 (15)
C15—O11—C12—C130.7 (2)C9A—C4A—C4B—C8A0.82 (16)
C12—O11—C15—C10176.78 (15)C4—C4A—C9A—N9174.68 (13)
C12—O11—C15—C140.2 (2)C4—C4A—C9A—C14.3 (2)
C9A—N9—C8A—C4B0.07 (16)C4B—C4A—C9A—N90.89 (16)
C9A—N9—C8A—C8178.77 (15)C4B—C4A—C9A—C1179.83 (13)
C8A—N9—C9A—C1179.56 (13)C4A—C4B—C5—C6178.90 (16)
C8A—N9—C9A—C4A0.61 (16)C8A—C4B—C5—C61.0 (2)
O1—C1—C2—C3173.38 (13)C4A—C4B—C8A—N90.47 (16)
O1—C1—C2—C104.0 (2)C4A—C4B—C8A—C8178.34 (14)
C9A—C1—C2—C36.67 (19)C5—C4B—C8A—N9179.64 (13)
C9A—C1—C2—C10176.00 (13)C5—C4B—C8A—C81.6 (2)
O1—C1—C9A—N90.4 (2)C4B—C5—C6—C70.5 (2)
O1—C1—C9A—C4A179.22 (14)C5—C6—C7—C81.5 (3)
C2—C1—C9A—N9179.53 (13)C5—C6—C7—C17178.27 (17)
C2—C1—C9A—C4A0.7 (2)C6—C7—C8—C8A0.9 (2)
C1—C2—C3—C418.4 (2)C17—C7—C8—C8A178.87 (16)
C10—C2—C3—C4164.48 (14)C7—C8—C8A—N9179.15 (15)
C1—C2—C10—C15176.62 (14)C7—C8—C8A—C4B0.6 (2)
C3—C2—C10—C150.6 (2)C2—C10—C15—O11169.91 (15)
C2—C3—C4—C4A21.58 (18)C2—C10—C15—C1414.9 (3)
C3—C4—C4A—C4B170.30 (14)O11—C12—C13—C140.8 (2)
C3—C4—C4A—C9A15.28 (19)C12—C13—C14—C150.6 (2)
C4—C4A—C4B—C55.6 (3)C13—C14—C15—O110.24 (18)
C4—C4A—C4B—C8A174.32 (14)C13—C14—C15—C10175.19 (18)
C9A—C4A—C4B—C5179.32 (16)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg1 are the centroids of the pyrrole (N9/C9A/C4A/C4B/C8A) and furan (O11/C12–C15)rings, respectively.
D—H···AD—HH···AD···AD—H···A
N9—H9···O1i0.867 (18)1.961 (18)2.8069 (17)164.9 (17)
C14—H14···O1ii0.952.553.250 (2)130
C4—H4B···Cg2iii0.992.603.5176 (16)154
C17—H17B···Cg1iii0.982.893.807 (2)156
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC18H15NO2
Mr277.31
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)6.3925 (3), 7.9880 (4), 13.8629 (8)
α, β, γ (°)83.151 (5), 81.649 (4), 78.921 (4)
V3)684.28 (6)
Z2
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.34 × 0.26 × 0.12
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.816, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4371, 2724, 2382
Rint0.021
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.132, 1.05
No. of reflections2724
No. of parameters199
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.29

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS86 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg1 are the centroids of the pyrrole (N9/C9A/C4A/C4B/C8A) and furan (O11/C12–C15)rings, respectively.
D—H···AD—HH···AD···AD—H···A
N9—H9···O1i0.867 (18)1.961 (18)2.8069 (17)164.9 (17)
C14—H14···O1ii0.952.553.250 (2)130
C4—H4B···Cg2iii0.992.603.5176 (16)154
C17—H17B···Cg1iii0.982.893.807 (2)156
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z; (iii) x+1, y+2, z.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. SKG wishes to thank the USIEF for the award of a Fulbright–Nehru Senior Fellowship.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationArchana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o3145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds