organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[3-(Naphthalen-1-yl)phen­yl]naphthal­ene

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 17 January 2013; accepted 23 January 2013; online 31 January 2013)

The title compound, C26H18, consists of a benzene ring with meta-substituted 1-naphthalene substituents, which are essentially planar (r.m.s. deviation = 0.039 and 0.027 Å). The conformation is mixed syn/anti, with equivalent torsion angles about the benzene–naphthalene bonds of 121.46 (11) and 51.58 (14)°.

Related literature

For synthesis of the title compound, see: Woods et al. (1951[Woods, G. F., Reed, F. T., Arthur, T. E. & Ezekiel, H. (1951). J. Am. Chem. Soc. 73, 3854-3856.]). For similar structures, see Baker et al. (1990[Baker, K. N., Fratini, A. V. & Adams, W. W. (1990). Polymer, 31, 1623-1631.]); Lin & Williams (1975[Lin, Y. C. & Williams, D. E. (1975). Acta Cryst. B31, 318-320.]); Bart (1968[Bart, J. C. J. (1968). Acta Cryst. B24, 1277-1287.]); Wolfenden et al. (2013[Wolfenden, M. L., Dhar, R. K., Fronczek, F. R. & Watkins, S. F. (2013). Acta Cryst. E69, o308.]). For MM2 calculations, see: CambridgeSoft (2010[CambridgeSoft (2010). Chem3DPro. CambridgeSoft Corporation, Cambridge, MA, USA.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18

  • Mr = 330.4

  • Triclinic, [P \overline 1]

  • a = 7.6272 (1) Å

  • b = 10.8453 (2) Å

  • c = 11.8454 (2) Å

  • α = 106.0798 (8)°

  • β = 96.2976 (8)°

  • γ = 108.4307 (9)°

  • V = 872.05 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.28 × 0.22 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.980, Tmax = 0.989

  • 11174 measured reflections

  • 6272 independent reflections

  • 4659 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.138

  • S = 1.05

  • 6272 reflections

  • 289 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Although the structures of p-oligophenyls have been well investigated (Baker et al., 1990, and references therein), there have been few reports of the conformational preferences of m-oligophenyls. Lin & Williams (1975) have reported the crystal structure of 1,3,5 triphenyl benzene, which serves as a model for m-polyphenyls. That structure has phenyl groups which are twisted about the benzene-benzene single bonds by torsion angles of +40.7, -37.2, and +36.1°. The crystal structure of one of the polymorphic forms of hexaphenyl benzene, reported by Bart (1968), also shows that the peripheral rings are twisted out of the central ring by about 25°. That molecule also exhibited out-of-plane distortion by bending of the exocyclic bonds. We have studied the structure of 1,3-bis(1-naphthyl)benzene for comparison of its conformation to the previous results.

Title compound I consists of a benzene ring with meta-substituted 1-naphthalenes. The benzene ring is planar (δr.m.s. = 0.007 Å), as are the two naphthalenes (δr.m.s. = 0.039 and 0.027 Å). MM2 calculations of isolated models (CambridgeSoft, 2010) reveal six conformers of I with approximately equal energies. They differ by positive or negative torsions C2—C1—C7—C8 (A1) and C2—C3—C17—C18 (A2) from the three paradigmatic conformers syn (C2v, A1, A2 = 0, 0°), anti (C2v, 180, 180°), and mixed (Cs, 180, 0°). The conformation of I is mixed (C1), with A1 = 121.46 (11)° and A2 = 51.58 (14)° (MM2 yields angles of 149 and 35° for the global minimum energy conformation).

Related literature top

For synthesis of the title compound, see: Woods et al. (1951). For similar structures, see Baker et al. (1990); Lin & Williams (1975); Bart (1968). For MM2 calculations, see: CambridgeSoft (2010).

Experimental top

The crystal was prepared by refluxing di-(α-naphthyl)-cyclohexadiene with a Pd-charcoal mixture in p-cymene for 4–5 h. After filtration, the filtrate was steam distilled. The residue was extracted with ether and recrystallized from petroleum ether (Woods et al., 1951).

Refinement top

All H atom positions were refined, but Uiso(H) was set to 1.2Ueq of the attached C atom. C–H distances fall within the range 0.973 (14) - 1.031 (15) Å.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
1-[3-(Naphthalen-1-yl)phenyl]naphthalene top
Crystal data top
C26H18Z = 2
Mr = 330.4F(000) = 348
Triclinic, P1Dx = 1.258 Mg m3
Hall symbol: -P 1Melting point: 131.5(5) K
a = 7.6272 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8453 (2) ÅCell parameters from 5528 reflections
c = 11.8454 (2) Åθ = 2.6–32.6°
α = 106.0798 (8)°µ = 0.07 mm1
β = 96.2976 (8)°T = 100 K
γ = 108.4307 (9)°Prism, colourless
V = 872.05 (2) Å30.28 × 0.22 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
6272 independent reflections
Radiation source: fine-focus sealed tube4659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 9 pixels mm-1θmax = 32.6°, θmin = 2.9°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1616
Tmin = 0.980, Tmax = 0.989l = 1717
11174 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138Only H-atom coordinates refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.1782P]
where P = (Fo2 + 2Fc2)/3
6272 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.25 e Å3
0 constraints
Crystal data top
C26H18γ = 108.4307 (9)°
Mr = 330.4V = 872.05 (2) Å3
Triclinic, P1Z = 2
a = 7.6272 (1) ÅMo Kα radiation
b = 10.8453 (2) ŵ = 0.07 mm1
c = 11.8454 (2) ÅT = 100 K
α = 106.0798 (8)°0.28 × 0.22 × 0.15 mm
β = 96.2976 (8)°
Data collection top
Nonius KappaCCD
diffractometer
6272 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
4659 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.989Rint = 0.025
11174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.138Only H-atom coordinates refined
S = 1.05Δρmax = 0.36 e Å3
6272 reflectionsΔρmin = 0.25 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.82582 (14)0.47008 (10)0.81621 (9)0.01484 (18)
C20.69555 (14)0.50351 (10)0.74916 (9)0.01559 (18)
H20.5744 (18)0.4321 (13)0.7006 (12)0.019*
C30.73683 (14)0.63687 (10)0.74479 (9)0.01583 (18)
C40.91076 (15)0.73893 (10)0.81138 (9)0.0186 (2)
H40.9414 (19)0.8349 (14)0.8107 (13)0.022*
C51.04081 (15)0.70701 (11)0.87862 (9)0.0192 (2)
H51.159 (2)0.7783 (14)0.9277 (13)0.023*
C60.99993 (14)0.57264 (10)0.87979 (9)0.01680 (19)
H61.0961 (19)0.5510 (13)0.9275 (12)0.02*
C70.78015 (13)0.32634 (10)0.81691 (9)0.01449 (18)
C80.89726 (15)0.25621 (11)0.77886 (10)0.01835 (19)
H81.013 (2)0.3032 (14)0.7538 (13)0.022*
C90.85267 (16)0.11697 (11)0.77163 (10)0.0213 (2)
H90.939 (2)0.0692 (15)0.7408 (14)0.026*
C100.69203 (16)0.04918 (10)0.80376 (10)0.0200 (2)
H100.658 (2)0.0494 (14)0.7972 (13)0.024*
C110.57133 (14)0.11841 (10)0.84745 (9)0.01646 (19)
C120.40719 (16)0.05083 (11)0.88491 (10)0.0216 (2)
H120.380 (2)0.0479 (15)0.8764 (13)0.026*
C130.29543 (16)0.11944 (12)0.93179 (11)0.0241 (2)
H130.183 (2)0.0731 (15)0.9603 (13)0.029*
C140.34088 (16)0.25987 (11)0.94264 (10)0.0217 (2)
H140.261 (2)0.3096 (14)0.9777 (13)0.026*
C150.49569 (14)0.32721 (10)0.90471 (9)0.01736 (19)
H150.5279 (19)0.4277 (14)0.9140 (13)0.021*
C160.61575 (14)0.25913 (9)0.85565 (9)0.01443 (18)
C170.59275 (14)0.66850 (10)0.67417 (9)0.01692 (19)
C180.41114 (16)0.63294 (12)0.69381 (11)0.0235 (2)
H180.378 (2)0.5841 (15)0.7523 (14)0.028*
C190.27133 (17)0.66524 (14)0.63265 (12)0.0287 (3)
H190.139 (2)0.6350 (16)0.6469 (14)0.034*
C200.31553 (16)0.73679 (13)0.55434 (11)0.0247 (2)
H200.216 (2)0.7599 (15)0.5088 (14)0.03*
C210.49962 (15)0.77453 (10)0.53030 (9)0.01804 (19)
C220.54657 (16)0.84667 (11)0.44775 (9)0.0201 (2)
H220.4519 (19)0.8779 (14)0.4119 (13)0.024*
C230.71984 (16)0.87506 (11)0.41886 (10)0.0220 (2)
H230.751 (2)0.9230 (14)0.3557 (14)0.026*
C240.85601 (16)0.83222 (11)0.47117 (10)0.0215 (2)
H240.983 (2)0.8506 (15)0.4477 (13)0.026*
C250.81667 (15)0.76545 (11)0.55395 (10)0.01813 (19)
H250.9135 (19)0.7354 (14)0.5896 (13)0.022*
C260.63915 (14)0.73646 (10)0.58754 (9)0.01580 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0164 (4)0.0144 (4)0.0145 (4)0.0052 (3)0.0046 (3)0.0059 (3)
C20.0164 (4)0.0139 (4)0.0158 (4)0.0050 (3)0.0026 (3)0.0049 (3)
C30.0181 (4)0.0162 (4)0.0149 (4)0.0068 (3)0.0050 (3)0.0065 (3)
C40.0229 (5)0.0152 (4)0.0176 (5)0.0046 (4)0.0059 (4)0.0072 (4)
C50.0195 (5)0.0178 (4)0.0166 (5)0.0007 (4)0.0028 (4)0.0074 (4)
C60.0160 (4)0.0188 (4)0.0152 (4)0.0041 (3)0.0030 (3)0.0079 (3)
C70.0153 (4)0.0141 (4)0.0137 (4)0.0051 (3)0.0016 (3)0.0048 (3)
C80.0185 (5)0.0197 (4)0.0188 (5)0.0089 (4)0.0047 (4)0.0068 (4)
C90.0251 (5)0.0205 (5)0.0217 (5)0.0134 (4)0.0046 (4)0.0062 (4)
C100.0262 (5)0.0152 (4)0.0192 (5)0.0098 (4)0.0019 (4)0.0054 (4)
C110.0197 (5)0.0131 (4)0.0150 (4)0.0044 (3)0.0010 (3)0.0050 (3)
C120.0237 (5)0.0169 (4)0.0217 (5)0.0023 (4)0.0036 (4)0.0089 (4)
C130.0213 (5)0.0239 (5)0.0247 (5)0.0024 (4)0.0066 (4)0.0106 (4)
C140.0205 (5)0.0236 (5)0.0218 (5)0.0078 (4)0.0076 (4)0.0078 (4)
C150.0189 (5)0.0163 (4)0.0175 (5)0.0067 (4)0.0047 (4)0.0059 (4)
C160.0158 (4)0.0134 (4)0.0134 (4)0.0049 (3)0.0014 (3)0.0046 (3)
C170.0193 (4)0.0163 (4)0.0178 (5)0.0086 (4)0.0052 (4)0.0066 (4)
C180.0218 (5)0.0307 (5)0.0265 (6)0.0132 (4)0.0112 (4)0.0159 (5)
C190.0212 (5)0.0429 (7)0.0334 (6)0.0174 (5)0.0124 (5)0.0205 (5)
C200.0235 (5)0.0332 (6)0.0253 (6)0.0175 (5)0.0068 (4)0.0127 (5)
C210.0207 (5)0.0182 (4)0.0162 (4)0.0100 (4)0.0023 (4)0.0044 (4)
C220.0250 (5)0.0188 (4)0.0165 (5)0.0099 (4)0.0000 (4)0.0049 (4)
C230.0264 (5)0.0209 (5)0.0176 (5)0.0062 (4)0.0018 (4)0.0087 (4)
C240.0219 (5)0.0233 (5)0.0208 (5)0.0072 (4)0.0060 (4)0.0103 (4)
C250.0190 (5)0.0191 (4)0.0193 (5)0.0086 (4)0.0052 (4)0.0087 (4)
C260.0183 (4)0.0143 (4)0.0158 (4)0.0073 (3)0.0037 (3)0.0048 (3)
Geometric parameters (Å, º) top
C1—C61.3966 (14)C13—C141.4157 (16)
C1—C21.4013 (13)C13—H130.992 (15)
C1—C71.4886 (13)C14—C151.3720 (15)
C2—C31.3966 (13)C14—H140.988 (15)
C2—H20.984 (13)C15—C161.4241 (14)
C3—C41.4019 (14)C15—H151.010 (13)
C3—C171.4902 (14)C17—C181.3799 (15)
C4—C51.3909 (15)C17—C261.4337 (14)
C4—H40.995 (13)C18—C191.4113 (16)
C5—C61.3949 (14)C18—H180.990 (15)
C5—H50.973 (14)C19—C201.3704 (17)
C6—H61.001 (13)C19—H191.007 (16)
C7—C81.3811 (14)C20—C211.4174 (16)
C7—C161.4309 (14)C20—H201.016 (15)
C8—C91.4144 (15)C21—C221.4212 (15)
C8—H80.991 (14)C21—C261.4272 (13)
C9—C101.3690 (16)C22—C231.3634 (16)
C9—H90.999 (15)C22—H220.992 (14)
C10—C111.4161 (15)C23—C241.4149 (15)
C10—H100.996 (14)C23—H231.031 (15)
C11—C121.4223 (15)C24—C251.3771 (14)
C11—C161.4273 (13)C24—H241.010 (15)
C12—C131.3656 (17)C25—C261.4173 (14)
C12—H120.998 (14)C25—H250.995 (14)
C6—C1—C2119.05 (9)C15—C14—C13120.27 (10)
C6—C1—C7120.75 (9)C15—C14—H14119.9 (8)
C2—C1—C7120.18 (8)C13—C14—H14119.8 (8)
C3—C2—C1121.27 (9)C14—C15—C16121.25 (9)
C3—C2—H2118.1 (7)C14—C15—H15119.6 (8)
C1—C2—H2120.5 (7)C16—C15—H15119.1 (8)
C2—C3—C4118.73 (9)C15—C16—C11118.13 (9)
C2—C3—C17119.48 (9)C15—C16—C7122.94 (9)
C4—C3—C17121.74 (9)C11—C16—C7118.92 (9)
C5—C4—C3120.47 (9)C18—C17—C26119.33 (9)
C5—C4—H4119.7 (8)C18—C17—C3119.14 (9)
C3—C4—H4119.8 (8)C26—C17—C3121.53 (9)
C4—C5—C6120.26 (9)C17—C18—C19121.38 (10)
C4—C5—H5120.7 (8)C17—C18—H18119.4 (8)
C6—C5—H5119.0 (8)C19—C18—H18119.3 (9)
C5—C6—C1120.18 (9)C20—C19—C18120.19 (11)
C5—C6—H6119.3 (8)C20—C19—H19120.4 (9)
C1—C6—H6120.5 (7)C18—C19—H19119.4 (9)
C8—C7—C16119.38 (9)C19—C20—C21120.53 (10)
C8—C7—C1119.62 (9)C19—C20—H20121.2 (9)
C16—C7—C1121.00 (8)C21—C20—H20118.2 (9)
C7—C8—C9121.24 (10)C20—C21—C22121.15 (9)
C7—C8—H8119.6 (8)C20—C21—C26119.53 (9)
C9—C8—H8119.1 (8)C22—C21—C26119.29 (9)
C10—C9—C8120.22 (10)C23—C22—C21121.06 (9)
C10—C9—H9121.2 (8)C23—C22—H22119.8 (8)
C8—C9—H9118.6 (8)C21—C22—H22119.1 (8)
C9—C10—C11120.51 (9)C22—C23—C24119.94 (10)
C9—C10—H10120.8 (8)C22—C23—H23120.9 (8)
C11—C10—H10118.7 (8)C24—C23—H23119.1 (8)
C10—C11—C12121.23 (9)C25—C24—C23120.38 (10)
C10—C11—C16119.64 (9)C25—C24—H24119.7 (8)
C12—C11—C16119.13 (9)C23—C24—H24119.9 (8)
C13—C12—C11121.13 (10)C24—C25—C26121.10 (9)
C13—C12—H12122.3 (8)C24—C25—H25119.5 (8)
C11—C12—H12116.6 (8)C26—C25—H25119.4 (8)
C12—C13—C14120.05 (10)C25—C26—C21118.13 (9)
C12—C13—H13121.2 (9)C25—C26—C17123.00 (9)
C14—C13—H13118.8 (8)C21—C26—C17118.85 (9)
C6—C1—C2—C30.09 (15)C12—C11—C16—C7179.48 (9)
C7—C1—C2—C3178.50 (9)C8—C7—C16—C15175.10 (9)
C1—C2—C3—C41.45 (15)C1—C7—C16—C155.35 (15)
C1—C2—C3—C17178.88 (9)C8—C7—C16—C113.52 (14)
C2—C3—C4—C51.18 (15)C1—C7—C16—C11176.03 (9)
C17—C3—C4—C5178.55 (10)C2—C3—C17—C1851.58 (14)
C3—C4—C5—C60.46 (16)C4—C3—C17—C18125.77 (12)
C4—C5—C6—C11.86 (16)C2—C3—C17—C26129.21 (11)
C2—C1—C6—C51.58 (15)C4—C3—C17—C2653.44 (14)
C7—C1—C6—C5179.85 (10)C26—C17—C18—C191.65 (17)
C6—C1—C7—C857.09 (13)C3—C17—C18—C19177.57 (11)
C2—C1—C7—C8121.46 (11)C17—C18—C19—C201.89 (19)
C6—C1—C7—C16123.36 (11)C18—C19—C20—C212.44 (19)
C2—C1—C7—C1658.08 (13)C19—C20—C21—C22178.91 (11)
C16—C7—C8—C93.27 (15)C19—C20—C21—C260.53 (17)
C1—C7—C8—C9176.28 (9)C20—C21—C22—C23175.72 (10)
C7—C8—C9—C100.69 (16)C26—C21—C22—C232.66 (15)
C8—C9—C10—C111.62 (16)C21—C22—C23—C240.14 (16)
C9—C10—C11—C12177.93 (10)C22—C23—C24—C251.92 (17)
C9—C10—C11—C161.29 (15)C23—C24—C25—C260.83 (17)
C10—C11—C12—C13177.18 (10)C24—C25—C26—C211.96 (15)
C16—C11—C12—C132.04 (16)C24—C25—C26—C17179.34 (10)
C11—C12—C13—C140.68 (17)C20—C21—C26—C25174.76 (10)
C12—C13—C14—C150.87 (17)C22—C21—C26—C253.65 (14)
C13—C14—C15—C161.04 (16)C20—C21—C26—C174.00 (14)
C14—C15—C16—C110.33 (15)C22—C21—C26—C17177.59 (9)
C14—C15—C16—C7178.95 (10)C18—C17—C26—C25174.15 (10)
C10—C11—C16—C15177.40 (9)C3—C17—C26—C256.64 (15)
C12—C11—C16—C151.83 (14)C18—C17—C26—C214.54 (15)
C10—C11—C16—C71.28 (14)C3—C17—C26—C21174.67 (9)

Experimental details

Crystal data
Chemical formulaC26H18
Mr330.4
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.6272 (1), 10.8453 (2), 11.8454 (2)
α, β, γ (°)106.0798 (8), 96.2976 (8), 108.4307 (9)
V3)872.05 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.28 × 0.22 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.980, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11174, 6272, 4659
Rint0.025
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.138, 1.05
No. of reflections6272
No. of parameters289
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.36, 0.25

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Footnotes

CAS 103068–16–2.

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

First citationBaker, K. N., Fratini, A. V. & Adams, W. W. (1990). Polymer, 31, 1623–1631.  CrossRef CAS Web of Science Google Scholar
First citationBart, J. C. J. (1968). Acta Cryst. B24, 1277–1287.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCambridgeSoft (2010). Chem3DPro. CambridgeSoft Corporation, Cambridge, MA, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLin, Y. C. & Williams, D. E. (1975). Acta Cryst. B31, 318–320.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolfenden, M. L., Dhar, R. K., Fronczek, F. R. & Watkins, S. F. (2013). Acta Cryst. E69, o308.  CSD CrossRef IUCr Journals Google Scholar
First citationWoods, G. F., Reed, F. T., Arthur, T. E. & Ezekiel, H. (1951). J. Am. Chem. Soc. 73, 3854–3856.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds