metal-organic compounds
Hexaaquacobalt(II) 2,2′-[naphthalene-1,8-diylbis(oxy)]diacetate dihydrate
aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People's Republic of China
*Correspondence e-mail: shishipiaoliang@126.com
In the title compound, [Co(H2O)6](C14H10O6)·2H2O, the 2,2′-[naphthalene-1,8-diylbis(oxy)]diacetate dianion L is not coordinated to the CoII ion. The contains half of the L dianion, half of a [Co(H2O)6]2+ cation (both molecules being completed by inversion symmetry), and one water molecule. The crystal packing features O—H⋯O hydrogen bonding between the carboxylate groups, the aqua ligands and the hydrate water molecules.
Related literature
In recent years, metal complexes have been synthezised with potential applications in molecular sorption, electrical conductivity, catalysis, magnetism, non-linear optics and molecular sensing, see: James (2003); Murray et al. (2009); Karmakar et al. (2009); Kurmoo (2009); Bradshaw et al. (2005). The 5-carboxymethoxy-naphtalene1-yl(oxy)-acetate ligand can provide a dominant packing feature and it often controls the supramolecular assembly, see: Desiraju (2007). For Cd complexes with different co-ligands, see: Deka et al. (2011); Li et al. (2012) and for Zn complexes, see: Mondal et al. (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536813000512/vm2185sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813000512/vm2185Isup2.hkl
The ligand LH2 was synthesized according to the procedure published by Mondal et al. (2008).
A mixture of Co(NO3)2.6H2O (0.05 mmol, 0.015 g), L (0.05 mmol, 0.013 g), water (1 ml) and DMF (1 ml) was heated at 393 K in a Teflon-lined autoclave for three days, followed by slow cooling to room temperature. The resulting pink block crystals were filtered off and washed with distilled water.
The H atoms on the ligands were positioned geometrically and refined as riding [C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. Hydrogen atoms of the water molecules were located in the Fourier difference maps and refined with restraints for the O–H distances and H–O–H angles.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with the atomic numbering scheme and displacement ellipsoids at the 50% probability level (H atoms omitted for clarity) [symmetry codes: (A) -x + 1, -y + 1, -z + 1, (B) -x, -y + 1, -z.]. | |
Fig. 2. Three dimensional supramolecular architecture constructed by intermolecular hydrogen bonds. The dotted lines indicate the hydrogen bonds. |
[Co(H2O)6](C14H10O6)·2H2O | Z = 1 |
Mr = 477.28 | F(000) = 249 |
Triclinic, P1 | Dx = 1.628 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.377 (2) Å | Cell parameters from 1414 reflections |
b = 6.642 (2) Å | θ = 3.2–27.5° |
c = 12.979 (5) Å | µ = 0.95 mm−1 |
α = 79.669 (10)° | T = 293 K |
β = 79.963 (11)° | Block, pink |
γ = 64.911 (8)° | 0.30 × 0.28 × 0.25 mm |
V = 486.8 (3) Å3 |
Siemens CCD area-detector diffractometer | 1678 independent reflections |
Radiation source: fine-focus sealed tube | 1605 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ϕ and ω scans | θmax = 25.0°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | h = −7→7 |
Tmin = 0.731, Tmax = 1.000 | k = −7→7 |
3126 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0408P)2 + 0.1833P] where P = (Fo2 + 2Fc2)/3 |
1678 reflections | (Δ/σ)max < 0.001 |
161 parameters | Δρmax = 0.37 e Å−3 |
12 restraints | Δρmin = −0.48 e Å−3 |
[Co(H2O)6](C14H10O6)·2H2O | γ = 64.911 (8)° |
Mr = 477.28 | V = 486.8 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.377 (2) Å | Mo Kα radiation |
b = 6.642 (2) Å | µ = 0.95 mm−1 |
c = 12.979 (5) Å | T = 293 K |
α = 79.669 (10)° | 0.30 × 0.28 × 0.25 mm |
β = 79.963 (11)° |
Siemens CCD area-detector diffractometer | 1678 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 1605 reflections with I > 2σ(I) |
Tmin = 0.731, Tmax = 1.000 | Rint = 0.018 |
3126 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 12 restraints |
wR(F2) = 0.080 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.37 e Å−3 |
1678 reflections | Δρmin = −0.48 e Å−3 |
161 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7658 (2) | 0.7636 (3) | 0.38143 (11) | 0.0299 (3) | |
O2 | 0.9252 (3) | 0.9376 (3) | 0.20485 (12) | 0.0374 (4) | |
O3 | 1.0787 (3) | 1.1022 (3) | 0.28675 (12) | 0.0331 (4) | |
C5 | 0.5504 (3) | 0.5494 (3) | 0.45495 (15) | 0.0222 (4) | |
C4 | 0.6759 (3) | 0.6729 (3) | 0.47211 (15) | 0.0239 (4) | |
C3 | 0.6996 (3) | 0.6953 (3) | 0.57172 (16) | 0.0275 (4) | |
H3 | 0.7826 | 0.7752 | 0.5816 | 0.033* | |
C2 | 0.5966 (3) | 0.5961 (4) | 0.65934 (16) | 0.0282 (4) | |
H2 | 0.6115 | 0.6131 | 0.7269 | 0.034* | |
C1 | 0.4761 (3) | 0.4762 (3) | 0.64724 (15) | 0.0257 (4) | |
H1 | 0.4113 | 0.4111 | 0.7062 | 0.031* | |
C6 | 0.8919 (3) | 0.8899 (3) | 0.39326 (15) | 0.0254 (4) | |
H6A | 1.0262 | 0.7948 | 0.4304 | 0.031* | |
H6B | 0.7933 | 1.0118 | 0.4343 | 0.031* | |
C7 | 0.9709 (3) | 0.9827 (3) | 0.28607 (16) | 0.0255 (4) | |
Co1 | 0.0000 | 0.5000 | 0.0000 | 0.03054 (16) | |
O7 | 0.5069 (3) | 1.0109 (3) | 0.83972 (12) | 0.0387 (4) | |
O5 | 0.0045 (3) | 0.5054 (3) | 0.15926 (12) | 0.0407 (4) | |
O6 | 0.3582 (3) | 0.3007 (3) | −0.00989 (14) | 0.0504 (5) | |
H6C | 0.403 (6) | 0.199 (5) | 0.0532 (16) | 0.075 (10)* | |
H6D | 0.411 (6) | 0.214 (5) | −0.0654 (18) | 0.087 (12)* | |
H5A | −0.021 (6) | 0.630 (4) | 0.191 (2) | 0.076 (10)* | |
H5B | 0.013 (5) | 0.385 (4) | 0.211 (2) | 0.067 (9)* | |
H7A | 0.638 (3) | 0.982 (5) | 0.7915 (19) | 0.062 (9)* | |
H7B | 0.380 (4) | 1.029 (6) | 0.807 (2) | 0.085 (11)* | |
O4 | 0.0880 (5) | 0.7707 (3) | −0.03180 (15) | 0.0629 (6) | |
H4A | 0.2060 | 0.7419 | −0.0738 | 0.094* | |
H4B | −0.043 (5) | 0.897 (9) | −0.061 (4) | 0.27 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0387 (8) | 0.0372 (9) | 0.0246 (7) | −0.0275 (7) | −0.0017 (6) | −0.0010 (6) |
O2 | 0.0532 (9) | 0.0444 (10) | 0.0277 (8) | −0.0338 (8) | −0.0041 (7) | −0.0010 (7) |
O3 | 0.0386 (8) | 0.0346 (9) | 0.0351 (8) | −0.0253 (7) | −0.0006 (6) | −0.0033 (6) |
C5 | 0.0206 (8) | 0.0211 (10) | 0.0238 (9) | −0.0079 (7) | −0.0025 (7) | −0.0012 (7) |
C4 | 0.0240 (9) | 0.0241 (10) | 0.0250 (10) | −0.0128 (8) | −0.0005 (7) | −0.0005 (8) |
C3 | 0.0293 (10) | 0.0295 (11) | 0.0299 (11) | −0.0170 (8) | −0.0041 (8) | −0.0044 (8) |
C2 | 0.0337 (10) | 0.0323 (11) | 0.0223 (10) | −0.0157 (9) | −0.0039 (8) | −0.0049 (8) |
C1 | 0.0270 (9) | 0.0288 (11) | 0.0229 (10) | −0.0143 (8) | −0.0006 (7) | −0.0014 (8) |
C6 | 0.0285 (9) | 0.0254 (10) | 0.0274 (10) | −0.0160 (8) | −0.0027 (8) | −0.0027 (8) |
C7 | 0.0260 (9) | 0.0231 (10) | 0.0284 (11) | −0.0117 (8) | −0.0013 (8) | −0.0023 (8) |
Co1 | 0.0457 (3) | 0.0224 (2) | 0.0229 (2) | −0.01429 (18) | −0.00138 (17) | −0.00230 (16) |
O7 | 0.0332 (8) | 0.0466 (10) | 0.0329 (9) | −0.0127 (7) | −0.0026 (7) | −0.0068 (7) |
O5 | 0.0655 (11) | 0.0304 (9) | 0.0257 (8) | −0.0194 (8) | −0.0046 (7) | −0.0026 (7) |
O6 | 0.0605 (11) | 0.0451 (11) | 0.0359 (10) | −0.0118 (9) | −0.0026 (8) | −0.0085 (8) |
O4 | 0.1209 (18) | 0.0469 (12) | 0.0407 (10) | −0.0550 (13) | −0.0101 (11) | 0.0015 (9) |
O1—C4 | 1.371 (2) | C6—H6B | 0.9700 |
O1—C6 | 1.427 (2) | Co1—O4 | 2.056 (2) |
O2—C7 | 1.257 (3) | Co1—O4ii | 2.056 (2) |
O3—C7 | 1.253 (3) | Co1—O5ii | 2.0792 (17) |
C5—C1i | 1.414 (3) | Co1—O5 | 2.0792 (17) |
C5—C5i | 1.425 (4) | Co1—O6 | 2.093 (2) |
C5—C4 | 1.431 (3) | Co1—O6ii | 2.093 (2) |
C4—C3 | 1.368 (3) | O7—H7A | 0.921 (17) |
C3—C2 | 1.413 (3) | O7—H7B | 0.932 (17) |
C3—H3 | 0.9300 | O5—H5A | 0.931 (17) |
C2—C1 | 1.362 (3) | O5—H5B | 0.933 (17) |
C2—H2 | 0.9300 | O6—H6C | 0.962 (17) |
C1—C5i | 1.414 (3) | O6—H6D | 0.929 (18) |
C1—H1 | 0.9300 | O4—H4A | 0.8200 |
C6—C7 | 1.510 (3) | O4—H4B | 0.97 (2) |
C6—H6A | 0.9700 | ||
C4—O1—C6 | 116.91 (15) | O4—Co1—O4ii | 180.0 |
C1i—C5—C5i | 119.8 (2) | O4—Co1—O5ii | 91.63 (7) |
C1i—C5—C4 | 122.26 (18) | O4ii—Co1—O5ii | 88.37 (7) |
C5i—C5—C4 | 117.9 (2) | O4—Co1—O5 | 88.37 (7) |
C3—C4—O1 | 124.53 (18) | O4ii—Co1—O5 | 91.63 (7) |
C3—C4—C5 | 121.27 (18) | O5ii—Co1—O5 | 180.00 (11) |
O1—C4—C5 | 114.19 (17) | O4—Co1—O6 | 86.53 (10) |
C4—C3—C2 | 119.38 (19) | O4ii—Co1—O6 | 93.47 (10) |
C4—C3—H3 | 120.3 | O5ii—Co1—O6 | 91.34 (7) |
C2—C3—H3 | 120.3 | O5—Co1—O6 | 88.66 (7) |
C1—C2—C3 | 121.62 (18) | O4—Co1—O6ii | 93.47 (10) |
C1—C2—H2 | 119.2 | O4ii—Co1—O6ii | 86.53 (10) |
C3—C2—H2 | 119.2 | O5ii—Co1—O6ii | 88.66 (7) |
C2—C1—C5i | 119.98 (18) | O5—Co1—O6ii | 91.34 (7) |
C2—C1—H1 | 120.0 | O6—Co1—O6ii | 180.00 (7) |
C5i—C1—H1 | 120.0 | H7A—O7—H7B | 110 (2) |
O1—C6—C7 | 109.63 (16) | Co1—O5—H5A | 126.3 (19) |
O1—C6—H6A | 109.7 | Co1—O5—H5B | 123.8 (18) |
C7—C6—H6A | 109.7 | H5A—O5—H5B | 109 (2) |
O1—C6—H6B | 109.7 | Co1—O6—H6C | 112.4 (19) |
C7—C6—H6B | 109.7 | Co1—O6—H6D | 113 (2) |
H6A—C6—H6B | 108.2 | H6C—O6—H6D | 107 (2) |
O3—C7—O2 | 125.29 (19) | Co1—O4—H4A | 109.5 |
O3—C7—C6 | 115.32 (17) | Co1—O4—H4B | 107 (4) |
O2—C7—C6 | 119.39 (18) | H4A—O4—H4B | 111.3 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6C···O7i | 0.96 (2) | 1.76 (3) | 2.723 (3) | 174 (3) |
O6—H6D···O7iii | 0.93 (2) | 1.83 (3) | 2.751 (3) | 171 (3) |
O5—H5A···O2iv | 0.93 (3) | 1.96 (3) | 2.850 (3) | 159 (2) |
O5—H5B···O3v | 0.94 (3) | 1.87 (2) | 2.783 (3) | 165 (2) |
O7—H7A···O3vi | 0.92 (2) | 1.82 (3) | 2.736 (3) | 171 (3) |
O7—H7B···O2vii | 0.93 (3) | 1.89 (3) | 2.780 (3) | 158 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (iii) x, y−1, z−1; (iv) x−1, y, z; (v) x−1, y−1, z; (vi) −x+2, −y+2, −z+1; (vii) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Co(H2O)6](C14H10O6)·2H2O |
Mr | 477.28 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.377 (2), 6.642 (2), 12.979 (5) |
α, β, γ (°) | 79.669 (10), 79.963 (11), 64.911 (8) |
V (Å3) | 486.8 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.95 |
Crystal size (mm) | 0.30 × 0.28 × 0.25 |
Data collection | |
Diffractometer | Siemens CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.731, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3126, 1678, 1605 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.080, 1.09 |
No. of reflections | 1678 |
No. of parameters | 161 |
No. of restraints | 12 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.37, −0.48 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6C···O7i | 0.96 (2) | 1.76 (3) | 2.723 (3) | 174 (3) |
O6—H6D···O7ii | 0.93 (2) | 1.83 (3) | 2.751 (3) | 171 (3) |
O5—H5A···O2iii | 0.93 (3) | 1.96 (3) | 2.850 (3) | 159 (2) |
O5—H5B···O3iv | 0.94 (3) | 1.87 (2) | 2.783 (3) | 165 (2) |
O7—H7A···O3v | 0.92 (2) | 1.82 (3) | 2.736 (3) | 171 (3) |
O7—H7B···O2vi | 0.93 (3) | 1.89 (3) | 2.780 (3) | 158 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z−1; (iii) x−1, y, z; (iv) x−1, y−1, z; (v) −x+2, −y+2, −z+1; (vi) −x+1, −y+2, −z+1. |
Acknowledgements
This work was supported by the Fundamental Research Funds for the Central Universities (No. CQDXWL-2012–024).
References
Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273–282. Web of Science CrossRef PubMed CAS Google Scholar
Deka, H., Sarma, R., Kumari, S., Khare, A. & Baruah, J. B. (2011). J. Solid State Chem. 184, 1726–1734. Web of Science CSD CrossRef CAS Google Scholar
Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356. Web of Science CrossRef CAS Google Scholar
James, S. L. (2003). Chem. Soc. Rev. 32, 276–288. Web of Science CrossRef PubMed CAS Google Scholar
Karmakar, A., Baruah, J. B. & Shankar, B. (2009). CrystEngComm, 11, 832–840. Web of Science CSD CrossRef CAS Google Scholar
Kurmoo, M. (2009). Chem. Soc. Rev. 38, 1353–1379. Web of Science CrossRef PubMed CAS Google Scholar
Li, L., Song, Y. L., Hou, H. W., Liu, Z. S., Yuan, G. & Su, Z. M. (2012). Inorg. Chem. Commun. 15, 289–291. Google Scholar
Mondal, P., Karmakar, A. J., Singh, M. W. & Baruah, J. B. (2008). CrystEngComm, 10, 1159–1550. Google Scholar
Murray, L. J., Dinca, M. & Long, J. R. (2009). Chem. Soc. Rev. 38, 1294–1314. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, metal complexes have been synthezised with potential applications in molecular sorption, electrical conductivity, catalysis, magnetism, nonlinear optics, and molecular sensing (James, 2003; Murray et al., 2009; Kurmoo, 2009; Karmakar et al., 2009; Bradshaw et al., 2005). The LH2 ligand (5-carboxymethoxy-naphtalen-1-yloxy)-acetic acid) has received our attention because it can provide a dominant packing feature and it often controls the supramolecular assembly (Desiraju et al., 2007). At present, many of its metal complexes have already been reported, but most are focused on Cd complexes (Deka et al., 2011; Li et al., 2012) and Zn complexes (Li et al., 2012) with different co-ligands such as 2,2-bipyridine or 1,10-phenanthroline (phen). In the present paper, we hydrothermally synthesized a novel coordination complex constructed by CoII, L and water molecules and determined its crystal structure (Fig. 1).
The asymmetric unit of the complex consists of a half ligand L, a half CoII ion complexed with three water molecules and one additional water molecule. The CoII center is octahedrally coordinated by six water molecules. The two carboxylate arms of the LH2 ligand lie in the same plane as the naphthalene ring. The hydrogen atoms of the water molecular and the oxygen atoms which are coordinated by CoII are involved in hydrogen bonding with the oxygen atoms of the carboxylate group (Table 2, Fig. 2). In this case a sheet-like structure is formed.