metal-organic compounds
Tetramethylammonium aquatrichloridooxalatostannate(IV) monohydrate
aLaboratoire de Chimie Minerale et Analytique (LACHIMIA), Departement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry, University of Bath, Bath BA2 7AY, England
*Correspondence e-mail: yayasow81@yahoo.fr
The SnIV atom in the title compound, [(CH3)4N][Sn(C2O4)Cl3(H2O)]·H2O, obtained from the reaction between SnCl4 and [(CH3)4N]2C2O4·2H2O, is six-coordinated by three Cl atoms, an O atom of a water molecule and two O atoms from an asymmetrically chelating oxalate anion. The environment around the SnIV atom is distorted octahedral. The anions are connected by the lattice water molecule through O—H⋯O hydrogen bonds, leading to a layered structure parallel to (010). The cations are located between these layers and besides Coulombic forces are connected to the anionic layers through weak C—H⋯O and C—H⋯Cl interactions.
Related literature
For background to halogentin(IV) chemistry, see: Hausen et al. (1986); Koutsantonis et al. (2003); Mahon et al. (2004); Patt-Siebel et al.(1986); Szymanska-Buzar et al. (2001); Tudela et al. (1986). For tin compounds containing an Sn—Cl bond in a cis- or trans-position, see: Fernandez et al. (2002); Hazell et al. (1998); Sow et al. (2010). For tin compounds containing carboxylate moieties, see: Ng & Kumar Das (1993); Xu et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1999); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536813000895/wm2712sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813000895/wm2712Isup2.hkl
All chemicals were purchased from Aldrich (Germany) and used without any further purification. ((CH3)4N)2C2O4.2H2O has been obtained on allowing ((CH3)4N)OH as a 20% water solution to react with oxalic acid in a 2:1 ratio. A powder is obtained after evaporation of water at 333 K. On allowing the oxalic acid salt to react with SnCl4 in a 1:1 ratio in ethanol, a colorless solution is obtained, which gives, after slow solvent evaporation, crystals suitable for X-ray determination . The reaction equation of the title compound is: ((CH3)4N)2C2O4.2H2O + SnCl4 → ((CH3)4N)Cl + ((CH3)4N)[Sn(C2O4)Cl3H2O].H2O
Water molecule hydrogen atoms have been located in the difference fourier map and were refined with an idealized bond lenght of 0.85 Å. The other hydrogen atoms have been placed onto calculated position and were refined using a riding model, with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C).
Data collection: COLLECT (Nonius, 1999); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The asymmetric unit showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The layered structure of the anions and the lattice water molecule parallel to (010). O—H···O hydrogen bonding interactions are shown as dashed lines. | |
Fig. 3. The packing of the structure showing O—H···O hydrogen bonding interactions as dashed lines [C—H···O and C—H···Cl contacts are omitted for clarity]. |
(C4H12N)[Sn(C2O4)Cl3(H2O)]·H2O | F(000) = 832 |
Mr = 423.24 | Dx = 1.831 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 29534 reflections |
a = 7.2458 (1) Å | θ = 2.9–30.0° |
b = 22.2812 (2) Å | µ = 2.20 mm−1 |
c = 9.6019 (1) Å | T = 150 K |
β = 98.015 (1)° | Irregular, colourless |
V = 1535.04 (3) Å3 | 0.15 × 0.15 × 0.13 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 4445 independent reflections |
Radiation source: fine-focus sealed tube | 3855 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
461 1.3 degree images with ω scans | θmax = 30.0°, θmin = 4.2° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | h = −10→10 |
Tmin = 0.734, Tmax = 0.763 | k = −28→31 |
35849 measured reflections | l = −13→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.062 | w = 1/[σ2(Fo2) + (0.0322P)2 + 0.5616P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
4445 reflections | Δρmax = 0.92 e Å−3 |
175 parameters | Δρmin = −0.79 e Å−3 |
4 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0124 (5) |
(C4H12N)[Sn(C2O4)Cl3(H2O)]·H2O | V = 1535.04 (3) Å3 |
Mr = 423.24 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.2458 (1) Å | µ = 2.20 mm−1 |
b = 22.2812 (2) Å | T = 150 K |
c = 9.6019 (1) Å | 0.15 × 0.15 × 0.13 mm |
β = 98.015 (1)° |
Nonius KappaCCD diffractometer | 4445 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 3855 reflections with I > 2σ(I) |
Tmin = 0.734, Tmax = 0.763 | Rint = 0.042 |
35849 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 4 restraints |
wR(F2) = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.92 e Å−3 |
4445 reflections | Δρmin = −0.79 e Å−3 |
175 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn | 0.834510 (17) | 0.112222 (6) | 0.679281 (12) | 0.02693 (6) | |
Cl1 | 0.61541 (8) | 0.13476 (3) | 0.83233 (5) | 0.03867 (12) | |
Cl2 | 0.66559 (8) | 0.14793 (3) | 0.46760 (5) | 0.04369 (14) | |
Cl3 | 1.01222 (8) | 0.20243 (2) | 0.72319 (6) | 0.04152 (13) | |
O5 | 0.7216 (2) | 0.02693 (7) | 0.64413 (15) | 0.0372 (3) | |
O1 | 1.00588 (18) | 0.07154 (6) | 0.84708 (13) | 0.0278 (3) | |
O3 | 1.2565 (2) | 0.01364 (6) | 0.89271 (13) | 0.0310 (3) | |
O4 | 1.28776 (19) | 0.01308 (7) | 0.61246 (13) | 0.0323 (3) | |
O2 | 1.04412 (18) | 0.07556 (6) | 0.57415 (13) | 0.0285 (3) | |
O6 | 0.5915 (2) | −0.03357 (7) | 0.82856 (15) | 0.0320 (3) | |
N | 1.0670 (2) | 0.16827 (7) | 0.20003 (17) | 0.0298 (3) | |
C1 | 1.1444 (2) | 0.04194 (8) | 0.81171 (17) | 0.0241 (3) | |
C2 | 1.1635 (3) | 0.04294 (8) | 0.65224 (18) | 0.0249 (3) | |
C3 | 0.9820 (3) | 0.10701 (9) | 0.1966 (3) | 0.0370 (5) | |
H3A | 0.8911 | 0.1053 | 0.2632 | 0.055* | |
H3B | 1.0798 | 0.0771 | 0.2228 | 0.055* | |
H3C | 0.9192 | 0.0985 | 0.1015 | 0.055* | |
C4 | 0.9184 (4) | 0.21327 (11) | 0.1570 (3) | 0.0561 (7) | |
H4A | 0.8558 | 0.2036 | 0.0624 | 0.084* | |
H4B | 0.9739 | 0.2534 | 0.1566 | 0.084* | |
H4C | 0.8274 | 0.2125 | 0.2235 | 0.084* | |
C5 | 1.1603 (4) | 0.18245 (13) | 0.3445 (2) | 0.0500 (6) | |
H5A | 1.2132 | 0.2230 | 0.3458 | 0.075* | |
H5B | 1.2601 | 0.1533 | 0.3721 | 0.075* | |
H5C | 1.0689 | 0.1804 | 0.4106 | 0.075* | |
C6 | 1.2081 (4) | 0.17066 (11) | 0.0997 (3) | 0.0491 (6) | |
H6A | 1.1482 | 0.1599 | 0.0051 | 0.074* | |
H6B | 1.3090 | 0.1423 | 0.1300 | 0.074* | |
H6C | 1.2592 | 0.2113 | 0.0984 | 0.074* | |
H50B | 0.703 (4) | 0.0121 (13) | 0.562 (2) | 0.058 (8)* | |
H60B | 0.481 (3) | −0.0227 (14) | 0.829 (3) | 0.057 (9)* | |
H60A | 0.647 (4) | −0.0270 (13) | 0.909 (2) | 0.053 (8)* | |
H50A | 0.668 (4) | 0.0068 (12) | 0.704 (3) | 0.059 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.02791 (9) | 0.02922 (8) | 0.02369 (8) | 0.00383 (4) | 0.00368 (5) | 0.00042 (4) |
Cl1 | 0.0382 (3) | 0.0436 (3) | 0.0363 (3) | 0.0062 (2) | 0.0124 (2) | −0.0069 (2) |
Cl2 | 0.0376 (3) | 0.0596 (3) | 0.0325 (3) | 0.0146 (2) | 0.0002 (2) | 0.0094 (2) |
Cl3 | 0.0423 (3) | 0.0295 (2) | 0.0520 (3) | −0.0019 (2) | 0.0039 (2) | 0.0029 (2) |
O5 | 0.0468 (9) | 0.0414 (8) | 0.0256 (7) | −0.0136 (7) | 0.0122 (6) | −0.0087 (6) |
O1 | 0.0321 (7) | 0.0308 (6) | 0.0208 (6) | 0.0045 (5) | 0.0048 (5) | −0.0001 (5) |
O3 | 0.0316 (7) | 0.0376 (7) | 0.0230 (6) | 0.0047 (6) | 0.0014 (5) | 0.0034 (5) |
O4 | 0.0291 (7) | 0.0442 (8) | 0.0230 (6) | 0.0069 (6) | 0.0018 (5) | −0.0051 (5) |
O2 | 0.0287 (7) | 0.0362 (7) | 0.0209 (6) | 0.0051 (5) | 0.0040 (5) | 0.0033 (5) |
O6 | 0.0323 (8) | 0.0396 (8) | 0.0239 (7) | 0.0062 (6) | 0.0031 (6) | 0.0003 (5) |
N | 0.0361 (9) | 0.0254 (7) | 0.0272 (8) | −0.0021 (6) | 0.0018 (6) | −0.0007 (6) |
C1 | 0.0268 (9) | 0.0247 (8) | 0.0205 (8) | −0.0031 (6) | 0.0024 (7) | −0.0013 (6) |
C2 | 0.0260 (9) | 0.0281 (8) | 0.0199 (8) | −0.0025 (7) | 0.0014 (6) | −0.0014 (6) |
C3 | 0.0409 (12) | 0.0269 (9) | 0.0445 (12) | −0.0048 (8) | 0.0106 (10) | −0.0014 (8) |
C4 | 0.0539 (15) | 0.0325 (12) | 0.0774 (19) | 0.0084 (10) | −0.0061 (13) | 0.0040 (11) |
C5 | 0.0551 (15) | 0.0598 (15) | 0.0319 (11) | −0.0207 (12) | −0.0052 (10) | 0.0029 (10) |
C6 | 0.0646 (16) | 0.0399 (12) | 0.0477 (13) | −0.0152 (11) | 0.0249 (12) | −0.0067 (10) |
Sn—O5 | 2.0781 (15) | N—C3 | 1.496 (2) |
Sn—O1 | 2.0980 (13) | N—C6 | 1.500 (3) |
Sn—O2 | 2.1025 (13) | C1—C2 | 1.557 (2) |
Sn—Cl2 | 2.3598 (5) | C3—H3A | 0.9800 |
Sn—Cl1 | 2.3627 (5) | C3—H3B | 0.9800 |
Sn—Cl3 | 2.3926 (5) | C3—H3C | 0.9800 |
O5—H50B | 0.850 (17) | C4—H4A | 0.9800 |
O5—H50A | 0.859 (17) | C4—H4B | 0.9800 |
O1—C1 | 1.285 (2) | C4—H4C | 0.9800 |
O3—C1 | 1.219 (2) | C5—H5A | 0.9800 |
O4—C2 | 1.223 (2) | C5—H5B | 0.9800 |
O2—C2 | 1.288 (2) | C5—H5C | 0.9800 |
O6—H60B | 0.836 (17) | C6—H6A | 0.9800 |
O6—H60A | 0.836 (17) | C6—H6B | 0.9800 |
N—C4 | 1.488 (3) | C6—H6C | 0.9800 |
N—C5 | 1.490 (3) | ||
O5—Sn—O1 | 84.67 (6) | O1—C1—C2 | 115.63 (15) |
O5—Sn—O2 | 82.02 (6) | O4—C2—O2 | 126.11 (16) |
O1—Sn—O2 | 79.11 (5) | O4—C2—C1 | 118.03 (16) |
O5—Sn—Cl2 | 91.33 (5) | O2—C2—C1 | 115.85 (15) |
O1—Sn—Cl2 | 170.93 (4) | N—C3—H3A | 109.5 |
O2—Sn—Cl2 | 92.30 (4) | N—C3—H3B | 109.5 |
O5—Sn—Cl1 | 90.68 (4) | H3A—C3—H3B | 109.5 |
O1—Sn—Cl1 | 89.50 (4) | N—C3—H3C | 109.5 |
O2—Sn—Cl1 | 166.95 (4) | H3A—C3—H3C | 109.5 |
Cl2—Sn—Cl1 | 98.70 (2) | H3B—C3—H3C | 109.5 |
O5—Sn—Cl3 | 170.75 (5) | N—C4—H4A | 109.5 |
O1—Sn—Cl3 | 88.93 (4) | N—C4—H4B | 109.5 |
O2—Sn—Cl3 | 90.23 (4) | H4A—C4—H4B | 109.5 |
Cl2—Sn—Cl3 | 94.03 (2) | N—C4—H4C | 109.5 |
Cl1—Sn—Cl3 | 95.95 (2) | H4A—C4—H4C | 109.5 |
Sn—O5—H50B | 121 (2) | H4B—C4—H4C | 109.5 |
Sn—O5—H50A | 125 (2) | N—C5—H5A | 109.5 |
H50B—O5—H50A | 113 (3) | N—C5—H5B | 109.5 |
C1—O1—Sn | 114.77 (11) | H5A—C5—H5B | 109.5 |
C2—O2—Sn | 114.29 (11) | N—C5—H5C | 109.5 |
H60B—O6—H60A | 107 (3) | H5A—C5—H5C | 109.5 |
C4—N—C5 | 109.4 (2) | H5B—C5—H5C | 109.5 |
C4—N—C3 | 109.18 (18) | N—C6—H6A | 109.5 |
C5—N—C3 | 110.24 (17) | N—C6—H6B | 109.5 |
C4—N—C6 | 109.2 (2) | H6A—C6—H6B | 109.5 |
C5—N—C6 | 109.25 (18) | N—C6—H6C | 109.5 |
C3—N—C6 | 109.49 (16) | H6A—C6—H6C | 109.5 |
O3—C1—O1 | 124.90 (16) | H6B—C6—H6C | 109.5 |
O3—C1—C2 | 119.47 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H50A···O6 | 0.86 (2) | 1.66 (2) | 2.511 (2) | 173 (3) |
O5—H50B···O4i | 0.85 (2) | 1.78 (2) | 2.6120 (19) | 168 (3) |
O6—H60B···O3ii | 0.84 (2) | 1.99 (2) | 2.792 (2) | 160 (3) |
O6—H60A···O3iii | 0.84 (2) | 1.95 (2) | 2.7840 (19) | 172 (3) |
O6—H60B···O4ii | 0.84 (2) | 2.47 (3) | 2.993 (2) | 122 (3) |
C6—H6B···O6i | 0.98 | 2.54 | 3.411 (3) | 148 |
C6—H6A···Cl3iv | 0.98 | 2.91 | 3.762 (3) | 146 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1, y, z; (iii) −x+2, −y, −z+2; (iv) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | (C4H12N)[Sn(C2O4)Cl3(H2O)]·H2O |
Mr | 423.24 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 7.2458 (1), 22.2812 (2), 9.6019 (1) |
β (°) | 98.015 (1) |
V (Å3) | 1535.04 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.20 |
Crystal size (mm) | 0.15 × 0.15 × 0.13 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.734, 0.763 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 35849, 4445, 3855 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.062, 1.08 |
No. of reflections | 4445 |
No. of parameters | 175 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.92, −0.79 |
Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), WinGX (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H50A···O6 | 0.859 (17) | 1.657 (18) | 2.511 (2) | 173 (3) |
O5—H50B···O4i | 0.850 (17) | 1.775 (18) | 2.6120 (19) | 168 (3) |
O6—H60B···O3ii | 0.836 (17) | 1.99 (2) | 2.792 (2) | 160 (3) |
O6—H60A···O3iii | 0.836 (17) | 1.954 (18) | 2.7840 (19) | 172 (3) |
O6—H60B···O4ii | 0.836 (17) | 2.47 (3) | 2.993 (2) | 122 (3) |
C6—H6B···O6i | 0.98 | 2.54 | 3.411 (3) | 147.7 |
C6—H6A···Cl3iv | 0.98 | 2.91 | 3.762 (3) | 146.3 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1, y, z; (iii) −x+2, −y, −z+2; (iv) x, y, z−1. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fernandez, D., Garcia-Seijo, M. I., Kegl, T., Petocz, G., Kollar, L. & Garcia-Fernandez, M. E. (2002). Inorg. Chem. 41, 4435–4443. Web of Science PubMed CAS Google Scholar
Hausen, H.-D., Schwarz, W., Ragca, G. & Weidlein, J. (1986). Z. Naturforsch. Teil B, 41, 1223–1229. Google Scholar
Hazell, A., Khoo, L. E., Ouyang, J., Rausch, B. J. & Tavares, Z. M. (1998). Acta Cryst. C54, 728–732. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Koutsantonis, G. A., Morien, T. S., Skelton, B. W. & White, A. H. (2003). Acta Cryst. C59, m361–m365. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mahon, M. F., Moldovan, N. L., Molloy, K. C., Muresan, A., Silaghi-Dumitrescu, I. & Silaghi-Dumitrescu, L. (2004). J. Chem. Soc. Dalton Trans. 23, 4017–4021. CrossRef Google Scholar
Ng, S. W. & Kumar Das, V. G. (1993). Main Group Met. Chem. 16, 87–93. CAS Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Patt-Siebel, U., Ruangsuttinarupap, S., Müller, U., Pebler, J. & Dehnicke, K. (1986). Z. Naturforsch. Teil B, 41, 1191–1195. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sow, Y., Diop, L., Kociock-Köhn, G. & Molloy, K. C. (2010). Main Group Met. Chem. 33, 205–207. CSD CrossRef CAS Google Scholar
Szymanska-Buzar, T., Glowiak, T. & Czelusnuak, I. (2001). Main Group Met. Chem. 24, 821–822. CAS Google Scholar
Tudela, D. V., Fernadez, V., Tomero, J. D. & Vegas, A. (1986). Z. Anorg. Allg. Chem. 532, 215–224. CSD CrossRef CAS Web of Science Google Scholar
Xu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003). Acta Cryst. E59, m873–m875. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Numerous crystal structures of SnX4 adducts (X = halogen) containing tin(IV) in an octahedral environment have been reported up to date, e.g. Hausen et al. (1986); Koutsantonis et al. (2003); Mahon et al. (2004); Patt-Siebel et al. (1986); Szymanska-Buzar et al. (2001); Tudela et al. (1986). Our group has previously reported the crystal structure of ((n-C3H7)2NH2)2[Sn(C2O4)Cl4] which contains a chelating oxalate anion, and the environment of tin(IV) being likewise octahedral (Sow et al., 2010). In the context of our search for new SnX4 adducts we report here the study of the reaction between ((CH3)4N)2C2O4.2H2O and SnCl4 which has yielded the title compound, ((CH3)4N)[Sn(C2O4)Cl3(H2O)].H2O. While many SnX4 adducts have been reported (see above), a complex with a [SnCl3]-containing residue is reported here.
The octahedral geometry around the tin(IV) atom is defined by three Cl atoms, two oxygen atoms from the chelating oxalate anion and the oxygen atom of a water molecule (Fig. 1). The two oxygen atoms from the oxalate anion and two of the Cl atoms are in the equatorial plane while the remaining Cl atom and the oxygen atom of the H2O molecule are in axial positions.
The [Sn(C2O4)Cl3(H2O)]- anions are connected to the lattice water molecule through H—O—H···OH2 hydrogen bonds. The water molecule bonded to the tin(IV) atom is also hydrogen-bonded to the O4 atom of a neighbour complex-anion. The lattice water molecule O6 is bonded to O3 and O4 of the same oxalate anion through a bifurcated hydrogen bond and to a O3 atom of a neighbouring oxalate anion, leading to a layered structure extending parallel to (010). The cations are located between the anionic planes (Figs. 2,3). In the crystal packing, C—H···O and C—H···Cl interactions between cations and anions are also observed (Table 1).
The angle O5—Sn—Cl3 [170.75°(5)] deviates from linearity. The two Sn—Cl bond lengths in the equatorial plane are very similar [Sn—Cl2 = 2.3598 (5), Sn—Cl1 = 2.3627 (5) Å], but different from the one trans to the water molecule [Sn—Cl3 = 2.3926 (5) Å], pointing to a weak trans-effect involving the latter. The Sn—O5 bond of 2.0781 (15) Å involving the water molecule is shorter than the Sn—O bonds distances involving the oxalate anion [Sn—O1 = 2.0980 (13); Sn—O2 = 2.1025 (13) Å], whereby these two last Sn—O distances are very close. The dimensions of Sn—O bonds and Sn—Cl bonds are in the range of Sn—O and Sn—Cl bonds reported for O2SnCl4 containing adducts with cis- or trans-geometry (Fernandez et al., 2002; Hazell et al., 1998; Sow et al., 2010).
The C—O distances [O1—C1 = 1.285 (2); O2—C2 = 1.288 (2) Å; O3—C1 = 1.219 (2) Å; O4—C2 = 1.223 (2) Å] are in the typical range of C—O and C═O bonds (Ng & Kumar Das, 1993; Xu et al., 2003).