organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acetonyltri­phenyl­phospho­nium nitrate

aLaboratoire de Chimie Minerale et Analytique, Departement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: tijchimia@yahoo.fr

(Received 9 December 2012; accepted 21 January 2013; online 31 January 2013)

Crystals of the title salt, C21H20OP+·NO3, are composed of acetonyltriphenyl­phospho­nium cations and nitrate anions that mainly inter­act through electrostatic forces. The P atom in the cation has a slightly distorted tetra­hedral environment, with C—P—C angles ranging from 104.79 (7) to 112.59 (6)°. The sum of O—N—O angles of the nitrate anion is 359.99°, reflecting its trigonal–planar character. C—H⋯O hydrogen bonds help to consolidate the crystal packing.

Related literature

For crystal structures containing triphenyl­phospho­nium moieties, see: van der Sluis & Spek (1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. C46, 2429-2431.]); Boys et al. (1995[Boys, D., Araya-Maturana, R., González, O. & Manríquez, V. (1995). Acta Cryst. C51, 105-107.]); Zhang et al. (2004[Zhang, X., Zhong, P., Hu, M., Lin, D. & Lin, J. (2004). Acta Cryst. E60, o1200-o1201.]); Evans (2010[Evans, C. (2010). Acta Cryst. E66, o384-o385.]); Kavitha et al. (2012[Kavitha, C. N., Yathirajan, H. S., Dayananda, A. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o3115.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20OP+·NO3

  • Mr = 381.4

  • Monoclinic, C 2/c

  • a = 14.0928 (5) Å

  • b = 12.6455 (3) Å

  • c = 21.2684 (6) Å

  • β = 90.667 (2)°

  • V = 3790.00 (19) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.51 mm−1

  • T = 120 K

  • 0.19 × 0.18 × 0.12 mm

Data collection
  • Agilent Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012)[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.] Tmin = 0.271, Tmax = 1

  • 22035 measured reflections

  • 3389 independent reflections

  • 2969 reflections with I > 3σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 3σ(F2)] = 0.033

  • wR(F2) = 0.094

  • S = 1.63

  • 3389 reflections

  • 250 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H1c5⋯O3i 0.960 (13) 2.252 (13) 3.2053 (18) 172.1 (12)
C5—H3c5⋯O2ii 0.960 (13) 2.403 (12) 3.1936 (18) 139.4 (11)
C7—H1c7⋯O3i 0.96 2.49 3.4365 (19) 167.90
C8—H1c8⋯O3 0.96 2.50 3.177 (2) 127.75
C10—H1c10⋯O2ii 0.96 2.49 3.3706 (19) 152.50
C15—H1c15⋯O1 0.96 2.36 3.1780 (19) 142.99
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Phosphonium salts [PR4+, R = alkyl or aryl] are widely used as large cations to stabilize a variety of anonic species (Zhang et al., 2004; van der Sluis & Spek, 1990; Evans, 2010).

The title compound crystallizes with one phosphonium cation, C21H20OP+, and one nitrate anion in the asymmetric unit (Fig. 1). The P—C bond lengths within the cation [1.7947 (13), 1.7984 (14), 1.7992 (15) and 1.8024 (13) Å] are similar than those reported for related phosphonium salts like [1-(ethoxycarbonyl)-1-cyclopentyl]triphenylphosphonium bromide (Boys et al., 1995), or [3-(iodoacetamido)propyl]triphenylphosphonium tetraphenylborate (Evans, 2010) indicating that the presence of the acetonyl moiety has a negligible effect on the geometrical parameters. The C—P—C angles (range 104.79 (7) to 112.59 (6) °) indicate a slight angular distortion. The sum of the O—N—O angles [120.84 (14), 120.16 (14) and 118.99 (12) °] of the nitrate anion is 359.99°, reflecting its trigonal-planar geometry. Between the C21H20OP+ cations and the NO3- anions, the interactions are mainly of electrostatic nature. Such forces are also respondible for related salts like (3-chloropropyl)triphenylphosphonium bromide (Kavitha, 2012). The packing of the structure is shown in Fig. 2. Weak C—H···O hydrogen bonds (Table 1) help to consolidate the crystal packing.

Related literature top

For crystal structures containing triphenylphosphonium moieties, see: van der Sluis & Spek (1990); Boys et al. (1995); Zhang et al. (2004); Evans (2010); Kavitha et al. (2012).

Experimental top

All chemicals were purchased from Aldrich (Germany) and used without any further purification. Colourless crystals of the title compound, C21H20OP+.NO3-, have been obtained by the addition of a solution of Pb(NO3)2 (0.46 g,1.4 mmol) in water to a solution of CH3COCH2P(C6H5)3Cl (0.5 g, 1.4 mmol) in water. The precipitated PbCl2 was filtered off. Regular crystals were grown after slow solvent evaporation within few days.

Refinement top

Hydrogen atoms, except H1c5 and H3c5, were kept in the geometrically correct positions with a C—H distance of 0.96 A. The tetrahedron around C5 contains phosphorus at one apex, therefore positions of H1C5 and H3C5 were refined with a C—H distance restraint of 0.96 Å (σ of the restraint 0.001). Isotropic temperature factors of all hydrogen atoms were calculated from Ueq of the corresponding parent atom multiplied by 1.2.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular entities of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound.
Acetonyltriphenylphosphonium nitrate top
Crystal data top
C21H20OP+·NO3F(000) = 1600
Mr = 381.4Dx = 1.336 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -C 2ycCell parameters from 12744 reflections
a = 14.0928 (5) Åθ = 4.2–67.0°
b = 12.6455 (3) ŵ = 1.51 mm1
c = 21.2684 (6) ÅT = 120 K
β = 90.667 (2)°Polygon, colourless
V = 3790.00 (19) Å30.19 × 0.18 × 0.12 mm
Z = 8
Data collection top
Agilent Xcalibur
diffractometer
3389 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2969 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 4.2°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1515
Tmin = 0.271, Tmax = 1l = 2524
22035 measured reflections
Refinement top
Refinement on F274 constraints
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.63(Δ/σ)max = 0.015
3389 reflectionsΔρmax = 0.27 e Å3
250 parametersΔρmin = 0.24 e Å3
2 restraints
Crystal data top
C21H20OP+·NO3V = 3790.00 (19) Å3
Mr = 381.4Z = 8
Monoclinic, C2/cCu Kα radiation
a = 14.0928 (5) ŵ = 1.51 mm1
b = 12.6455 (3) ÅT = 120 K
c = 21.2684 (6) Å0.19 × 0.18 × 0.12 mm
β = 90.667 (2)°
Data collection top
Agilent Xcalibur
diffractometer
3389 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2969 reflections with I > 3σ(I)
Tmin = 0.271, Tmax = 1Rint = 0.040
22035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.63Δρmax = 0.27 e Å3
3389 reflectionsΔρmin = 0.24 e Å3
250 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.77023 (2)0.09776 (3)0.113631 (14)0.01755 (11)
O10.93221 (8)0.03291 (9)0.16541 (5)0.0296 (3)
O20.22566 (11)0.26725 (9)0.14746 (5)0.0446 (4)
O30.30174 (9)0.15360 (10)0.20579 (6)0.0406 (4)
O40.14881 (9)0.15797 (11)0.20713 (5)0.0401 (4)
N10.22509 (10)0.19384 (10)0.18695 (5)0.0268 (4)
C10.83285 (10)0.21866 (11)0.13029 (6)0.0194 (4)
C20.81834 (10)0.03489 (11)0.04539 (6)0.0206 (4)
C30.86270 (11)0.04050 (11)0.19812 (6)0.0227 (4)
C40.88403 (11)0.05841 (13)0.06351 (6)0.0295 (5)
C50.76868 (10)0.00921 (11)0.18002 (6)0.0208 (4)
C60.97263 (12)0.31195 (13)0.16513 (8)0.0333 (5)
C70.59222 (11)0.16606 (11)0.14808 (7)0.0258 (4)
C80.49814 (12)0.19171 (12)0.13750 (8)0.0323 (5)
C90.64745 (10)0.12851 (11)0.09836 (6)0.0214 (4)
C100.79251 (12)0.06863 (12)0.03122 (6)0.0275 (4)
C110.45787 (12)0.17953 (13)0.07799 (9)0.0361 (5)
C120.91054 (11)0.04412 (13)0.04893 (6)0.0277 (4)
C130.87750 (11)0.09150 (12)0.00565 (6)0.0229 (4)
C140.83609 (12)0.40906 (12)0.12938 (7)0.0286 (5)
C150.92558 (11)0.21760 (12)0.15421 (7)0.0267 (4)
C160.78818 (11)0.31533 (11)0.11762 (6)0.0231 (4)
C170.51200 (13)0.14219 (13)0.02899 (8)0.0353 (5)
C180.92784 (13)0.40728 (13)0.15289 (8)0.0323 (5)
C190.82556 (13)0.11492 (13)0.02360 (7)0.0320 (5)
C200.86235 (13)0.09946 (13)0.25901 (7)0.0314 (5)
C210.60690 (11)0.11658 (12)0.03874 (7)0.0279 (4)
H1c40.906220.0906620.1014660.0354*
H1c50.7458 (12)0.0463 (12)0.2162 (5)0.025*
H3c50.7248 (10)0.0467 (10)0.1703 (8)0.025*
H1c61.0365430.3113080.181250.04*
H1c70.6197480.1738860.1893220.0309*
H1c80.4604150.2180520.1713780.0387*
H1c100.75230.1076780.0589950.033*
H1c110.3923370.1970820.0709050.0433*
H1c120.9516680.0825140.0764220.0333*
H1c130.8953870.1627760.0158480.0275*
H1c140.80540.4754960.1211570.0343*
H1c150.9565840.1515590.1630370.032*
H1c160.7246420.3166730.1008640.0277*
H1c170.4838620.1338910.0120370.0424*
H1c180.960730.4725150.1607790.0387*
H1c190.8078810.1862170.0338930.0384*
H1c200.8083540.1456860.2600010.0377*
H2c200.9194580.1404470.2629260.0377*
H3c200.859030.0501310.2932240.0377*
H1c210.644330.0908060.0045690.0334*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0193 (2)0.01481 (19)0.01853 (19)0.00064 (12)0.00178 (13)0.00047 (11)
O10.0281 (6)0.0311 (6)0.0297 (5)0.0062 (4)0.0058 (4)0.0063 (4)
O20.0793 (10)0.0237 (6)0.0305 (6)0.0097 (6)0.0068 (6)0.0070 (5)
O30.0302 (7)0.0460 (7)0.0457 (6)0.0026 (6)0.0044 (5)0.0129 (5)
O40.0328 (7)0.0494 (8)0.0381 (6)0.0049 (6)0.0030 (5)0.0117 (5)
N10.0398 (8)0.0197 (6)0.0210 (6)0.0021 (5)0.0003 (5)0.0017 (4)
C10.0231 (7)0.0170 (7)0.0183 (6)0.0006 (5)0.0028 (5)0.0008 (5)
C20.0220 (7)0.0207 (7)0.0191 (6)0.0039 (5)0.0000 (5)0.0000 (5)
C30.0291 (8)0.0157 (7)0.0232 (6)0.0018 (5)0.0018 (5)0.0002 (5)
C40.0296 (8)0.0387 (9)0.0200 (6)0.0109 (7)0.0019 (5)0.0057 (6)
C50.0254 (7)0.0178 (7)0.0195 (6)0.0000 (5)0.0041 (5)0.0004 (5)
C60.0291 (9)0.0282 (8)0.0424 (8)0.0048 (7)0.0080 (6)0.0019 (6)
C70.0238 (8)0.0194 (7)0.0342 (7)0.0016 (6)0.0030 (6)0.0029 (6)
C80.0248 (8)0.0221 (8)0.0502 (9)0.0009 (6)0.0068 (7)0.0014 (6)
C90.0207 (7)0.0156 (7)0.0280 (7)0.0028 (5)0.0001 (5)0.0015 (5)
C100.0369 (9)0.0225 (7)0.0233 (7)0.0015 (6)0.0032 (6)0.0020 (6)
C110.0211 (8)0.0266 (8)0.0604 (10)0.0010 (6)0.0050 (7)0.0088 (7)
C120.0246 (8)0.0372 (9)0.0216 (6)0.0068 (6)0.0031 (5)0.0044 (6)
C130.0226 (7)0.0237 (8)0.0226 (6)0.0040 (6)0.0002 (5)0.0028 (5)
C140.0339 (9)0.0175 (7)0.0344 (7)0.0005 (6)0.0013 (6)0.0012 (6)
C150.0257 (8)0.0209 (7)0.0334 (7)0.0011 (6)0.0021 (6)0.0021 (6)
C160.0246 (8)0.0211 (7)0.0236 (6)0.0012 (6)0.0010 (5)0.0007 (5)
C170.0311 (9)0.0330 (9)0.0415 (9)0.0042 (7)0.0112 (7)0.0095 (7)
C180.0363 (9)0.0219 (8)0.0385 (8)0.0078 (6)0.0032 (7)0.0008 (6)
C190.0422 (10)0.0263 (8)0.0274 (7)0.0034 (7)0.0024 (6)0.0078 (6)
C200.0351 (9)0.0307 (9)0.0284 (7)0.0008 (7)0.0002 (6)0.0089 (6)
C210.0292 (8)0.0256 (8)0.0288 (7)0.0017 (6)0.0027 (6)0.0041 (6)
Geometric parameters (Å, º) top
P1—C11.7984 (14)C7—H1c70.96
P1—C21.7947 (13)C8—C111.390 (2)
P1—C51.8024 (13)C8—H1c80.96
P1—C91.7992 (15)C9—C211.393 (2)
O1—C31.2120 (18)C10—C191.390 (2)
O2—N11.2520 (16)C10—H1c100.96
O3—N11.2554 (18)C11—C171.382 (2)
O4—N11.2475 (18)C11—H1c110.96
C1—C151.397 (2)C12—C131.391 (2)
C1—C161.400 (2)C12—H1c120.96
C2—C101.391 (2)C13—H1c130.96
C2—C131.392 (2)C14—C161.385 (2)
C3—C51.512 (2)C14—C181.381 (2)
C3—C201.494 (2)C14—H1c140.96
C4—C121.383 (2)C15—H1c150.96
C4—C191.388 (2)C16—H1c160.96
C4—H1c40.96C17—C211.389 (2)
C5—H1c50.960 (13)C17—H1c170.96
C5—H3c50.960 (13)C18—H1c180.96
C6—C151.383 (2)C19—H1c190.96
C6—C181.384 (2)C20—H1c200.96
C6—H1c60.96C20—H2c200.96
C7—C81.381 (2)C20—H3c200.96
C7—C91.403 (2)C21—H1c210.96
C1—P1—C2110.29 (6)C2—C10—C19119.26 (14)
C1—P1—C5112.59 (6)C2—C10—H1c10120.37
C1—P1—C9108.70 (6)C19—C10—H1c10120.37
C2—P1—C5111.49 (6)C8—C11—C17120.10 (16)
C2—P1—C9108.74 (6)C8—C11—H1c11119.95
C5—P1—C9104.79 (7)C17—C11—H1c11119.95
O2—N1—O3120.16 (14)C4—C12—C13119.91 (14)
O2—N1—O4120.84 (14)C4—C12—H1c12120.05
O3—N1—O4118.99 (12)C13—C12—H1c12120.05
P1—C1—C15121.23 (11)C2—C13—C12119.58 (14)
P1—C1—C16119.07 (11)C2—C13—H1c13120.21
C15—C1—C16119.69 (13)C12—C13—H1c13120.21
P1—C2—C10119.46 (11)C16—C14—C18120.24 (14)
P1—C2—C13119.85 (11)C16—C14—H1c14119.88
C10—C2—C13120.63 (13)C18—C14—H1c14119.88
O1—C3—C5122.18 (12)C1—C15—C6119.83 (14)
O1—C3—C20123.22 (14)C1—C15—H1c15120.08
C5—C3—C20114.60 (12)C6—C15—H1c15120.08
C12—C4—C19120.40 (14)C1—C16—C14119.68 (14)
C12—C4—H1c4119.8C1—C16—H1c16120.16
C19—C4—H1c4119.8C14—C16—H1c16120.16
P1—C5—C3116.05 (10)C11—C17—C21120.40 (16)
P1—C5—H1c5109.4 (8)C11—C17—H1c17119.8
P1—C5—H3c5107.6 (9)C21—C17—H1c17119.8
C3—C5—H1c5107.5 (9)C6—C18—C14120.35 (15)
C3—C5—H3c5108.0 (8)C6—C18—H1c18119.82
H1c5—C5—H3c5108.1 (13)C14—C18—H1c18119.82
C15—C6—C18120.20 (16)C4—C19—C10120.22 (15)
C15—C6—H1c6119.9C4—C19—H1c19119.89
C18—C6—H1c6119.9C10—C19—H1c19119.89
C8—C7—C9119.78 (14)C3—C20—H1c20109.47
C8—C7—H1c7120.11C3—C20—H2c20109.47
C9—C7—H1c7120.11C3—C20—H3c20109.47
C7—C8—C11120.24 (15)H1c20—C20—H2c20109.47
C7—C8—H1c8119.88H1c20—C20—H3c20109.47
C11—C8—H1c8119.88H2c20—C20—H3c20109.47
P1—C9—C7118.54 (11)C9—C21—C17119.65 (14)
P1—C9—C21121.64 (11)C9—C21—H1c21120.17
C7—C9—C21119.83 (14)C17—C21—H1c21120.17
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H1c5···O3i0.960 (13)2.252 (13)3.2053 (18)172.1 (12)
C5—H3c5···O2ii0.960 (13)2.403 (12)3.1936 (18)139.4 (11)
C7—H1c7···O3i0.962.493.4365 (19)167.90
C8—H1c8···O30.962.503.177 (2)127.75
C10—H1c10···O2ii0.962.493.3706 (19)152.50
C15—H1c15···O10.962.363.1780 (19)142.99
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC21H20OP+·NO3
Mr381.4
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)14.0928 (5), 12.6455 (3), 21.2684 (6)
β (°) 90.667 (2)
V3)3790.00 (19)
Z8
Radiation typeCu Kα
µ (mm1)1.51
Crystal size (mm)0.19 × 0.18 × 0.12
Data collection
DiffractometerAgilent Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.271, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
22035, 3389, 2969
Rint0.040
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.63
No. of reflections3389
No. of parameters250
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: CrysAlis PRO (Agilent, 2012), SUPERFLIP (Palatinus & Chapuis, 2007), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H1c5···O3i0.960 (13)2.252 (13)3.2053 (18)172.1 (12)
C5—H3c5···O2ii0.960 (13)2.403 (12)3.1936 (18)139.4 (11)
C7—H1c7···O3i0.962.493.4365 (19)167.90
C8—H1c8···O30.962.503.177 (2)127.75
C10—H1c10···O2ii0.962.493.3706 (19)152.50
C15—H1c15···O10.962.363.1780 (19)142.99
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z.
 

Acknowledgements

We acknowledge the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBoys, D., Araya-Maturana, R., González, O. & Manríquez, V. (1995). Acta Cryst. C51, 105–107.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEvans, C. (2010). Acta Cryst. E66, o384–o385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKavitha, C. N., Yathirajan, H. S., Dayananda, A. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o3115.  CSD CrossRef IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.  Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. C46, 2429–2431.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationZhang, X., Zhong, P., Hu, M., Lin, D. & Lin, J. (2004). Acta Cryst. E60, o1200–o1201.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds