organic compounds
Acetonyltriphenylphosphonium nitrate
aLaboratoire de Chimie Minerale et Analytique, Departement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: tijchimia@yahoo.fr
Crystals of the title salt, C21H20OP+·NO3−, are composed of acetonyltriphenylphosphonium cations and nitrate anions that mainly interact through electrostatic forces. The P atom in the cation has a slightly distorted tetrahedral environment, with C—P—C angles ranging from 104.79 (7) to 112.59 (6)°. The sum of O—N—O angles of the nitrate anion is 359.99°, reflecting its trigonal–planar character. C—H⋯O hydrogen bonds help to consolidate the crystal packing.
Related literature
For crystal structures containing triphenylphosphonium moieties, see: van der Sluis & Spek (1990); Boys et al. (1995); Zhang et al. (2004); Evans (2010); Kavitha et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.
Supporting information
10.1107/S1600536813002110/wm2713sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813002110/wm2713Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813002110/wm2713Isup3.cml
All chemicals were purchased from Aldrich (Germany) and used without any further purification. Colourless crystals of the title compound, C21H20OP+.NO3-, have been obtained by the addition of a solution of Pb(NO3)2 (0.46 g,1.4 mmol) in water to a solution of CH3COCH2P(C6H5)3Cl (0.5 g, 1.4 mmol) in water. The precipitated PbCl2 was filtered off. Regular crystals were grown after slow solvent evaporation within few days.
Hydrogen atoms, except H1c5 and H3c5, were kept in the geometrically correct positions with a C—H distance of 0.96 A. The tetrahedron around C5 contains phosphorus at one apex, therefore positions of H1C5 and H3C5 were refined with a C—H distance restraint of 0.96 Å (σ of the restraint 0.001). Isotropic temperature factors of all hydrogen atoms were calculated from Ueq of the corresponding parent atom multiplied by 1.2.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).Fig. 1. The molecular entities of the title compound with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. The crystal packing of the title compound. |
C21H20OP+·NO3− | F(000) = 1600 |
Mr = 381.4 | Dx = 1.336 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -C 2yc | Cell parameters from 12744 reflections |
a = 14.0928 (5) Å | θ = 4.2–67.0° |
b = 12.6455 (3) Å | µ = 1.51 mm−1 |
c = 21.2684 (6) Å | T = 120 K |
β = 90.667 (2)° | Polygon, colourless |
V = 3790.00 (19) Å3 | 0.19 × 0.18 × 0.12 mm |
Z = 8 |
Agilent Xcalibur diffractometer | 3389 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 2969 reflections with I > 3σ(I) |
Mirror monochromator | Rint = 0.040 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 67.1°, θmin = 4.2° |
ω scans | h = −16→16 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −15→15 |
Tmin = 0.271, Tmax = 1 | l = −25→24 |
22035 measured reflections |
Refinement on F2 | 74 constraints |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.094 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2) |
S = 1.63 | (Δ/σ)max = 0.015 |
3389 reflections | Δρmax = 0.27 e Å−3 |
250 parameters | Δρmin = −0.24 e Å−3 |
2 restraints |
C21H20OP+·NO3− | V = 3790.00 (19) Å3 |
Mr = 381.4 | Z = 8 |
Monoclinic, C2/c | Cu Kα radiation |
a = 14.0928 (5) Å | µ = 1.51 mm−1 |
b = 12.6455 (3) Å | T = 120 K |
c = 21.2684 (6) Å | 0.19 × 0.18 × 0.12 mm |
β = 90.667 (2)° |
Agilent Xcalibur diffractometer | 3389 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 2969 reflections with I > 3σ(I) |
Tmin = 0.271, Tmax = 1 | Rint = 0.040 |
22035 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 2 restraints |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.63 | Δρmax = 0.27 e Å−3 |
3389 reflections | Δρmin = −0.24 e Å−3 |
250 parameters |
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement. The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.77023 (2) | 0.09776 (3) | 0.113631 (14) | 0.01755 (11) | |
O1 | 0.93221 (8) | −0.03291 (9) | 0.16541 (5) | 0.0296 (3) | |
O2 | 0.22566 (11) | 0.26725 (9) | 0.14746 (5) | 0.0446 (4) | |
O3 | 0.30174 (9) | 0.15360 (10) | 0.20579 (6) | 0.0406 (4) | |
O4 | 0.14881 (9) | 0.15797 (11) | 0.20713 (5) | 0.0401 (4) | |
N1 | 0.22509 (10) | 0.19384 (10) | 0.18695 (5) | 0.0268 (4) | |
C1 | 0.83285 (10) | 0.21866 (11) | 0.13029 (6) | 0.0194 (4) | |
C2 | 0.81834 (10) | 0.03489 (11) | 0.04539 (6) | 0.0206 (4) | |
C3 | 0.86270 (11) | −0.04050 (11) | 0.19812 (6) | 0.0227 (4) | |
C4 | 0.88403 (11) | −0.05841 (13) | −0.06351 (6) | 0.0295 (5) | |
C5 | 0.76868 (10) | 0.00921 (11) | 0.18002 (6) | 0.0208 (4) | |
C6 | 0.97263 (12) | 0.31195 (13) | 0.16513 (8) | 0.0333 (5) | |
C7 | 0.59222 (11) | 0.16606 (11) | 0.14808 (7) | 0.0258 (4) | |
C8 | 0.49814 (12) | 0.19171 (12) | 0.13750 (8) | 0.0323 (5) | |
C9 | 0.64745 (10) | 0.12851 (11) | 0.09836 (6) | 0.0214 (4) | |
C10 | 0.79251 (12) | −0.06863 (12) | 0.03122 (6) | 0.0275 (4) | |
C11 | 0.45787 (12) | 0.17953 (13) | 0.07799 (9) | 0.0361 (5) | |
C12 | 0.91054 (11) | 0.04412 (13) | −0.04893 (6) | 0.0277 (4) | |
C13 | 0.87750 (11) | 0.09150 (12) | 0.00565 (6) | 0.0229 (4) | |
C14 | 0.83609 (12) | 0.40906 (12) | 0.12938 (7) | 0.0286 (5) | |
C15 | 0.92558 (11) | 0.21760 (12) | 0.15421 (7) | 0.0267 (4) | |
C16 | 0.78818 (11) | 0.31533 (11) | 0.11762 (6) | 0.0231 (4) | |
C17 | 0.51200 (13) | 0.14219 (13) | 0.02899 (8) | 0.0353 (5) | |
C18 | 0.92784 (13) | 0.40728 (13) | 0.15289 (8) | 0.0323 (5) | |
C19 | 0.82556 (13) | −0.11492 (13) | −0.02360 (7) | 0.0320 (5) | |
C20 | 0.86235 (13) | −0.09946 (13) | 0.25901 (7) | 0.0314 (5) | |
C21 | 0.60690 (11) | 0.11658 (12) | 0.03874 (7) | 0.0279 (4) | |
H1c4 | 0.90622 | −0.090662 | −0.101466 | 0.0354* | |
H1c5 | 0.7458 (12) | 0.0463 (12) | 0.2162 (5) | 0.025* | |
H3c5 | 0.7248 (10) | −0.0467 (10) | 0.1703 (8) | 0.025* | |
H1c6 | 1.036543 | 0.311308 | 0.18125 | 0.04* | |
H1c7 | 0.619748 | 0.173886 | 0.189322 | 0.0309* | |
H1c8 | 0.460415 | 0.218052 | 0.171378 | 0.0387* | |
H1c10 | 0.7523 | −0.107678 | 0.058995 | 0.033* | |
H1c11 | 0.392337 | 0.197082 | 0.070905 | 0.0433* | |
H1c12 | 0.951668 | 0.082514 | −0.076422 | 0.0333* | |
H1c13 | 0.895387 | 0.162776 | 0.015848 | 0.0275* | |
H1c14 | 0.8054 | 0.475496 | 0.121157 | 0.0343* | |
H1c15 | 0.956584 | 0.151559 | 0.163037 | 0.032* | |
H1c16 | 0.724642 | 0.316673 | 0.100864 | 0.0277* | |
H1c17 | 0.483862 | 0.133891 | −0.012037 | 0.0424* | |
H1c18 | 0.96073 | 0.472515 | 0.160779 | 0.0387* | |
H1c19 | 0.807881 | −0.186217 | −0.033893 | 0.0384* | |
H1c20 | 0.808354 | −0.145686 | 0.260001 | 0.0377* | |
H2c20 | 0.919458 | −0.140447 | 0.262926 | 0.0377* | |
H3c20 | 0.85903 | −0.050131 | 0.293224 | 0.0377* | |
H1c21 | 0.64433 | 0.090806 | 0.004569 | 0.0334* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0193 (2) | 0.01481 (19) | 0.01853 (19) | 0.00064 (12) | 0.00178 (13) | −0.00047 (11) |
O1 | 0.0281 (6) | 0.0311 (6) | 0.0297 (5) | 0.0062 (4) | 0.0058 (4) | 0.0063 (4) |
O2 | 0.0793 (10) | 0.0237 (6) | 0.0305 (6) | −0.0097 (6) | −0.0068 (6) | 0.0070 (5) |
O3 | 0.0302 (7) | 0.0460 (7) | 0.0457 (6) | −0.0026 (6) | 0.0044 (5) | 0.0129 (5) |
O4 | 0.0328 (7) | 0.0494 (8) | 0.0381 (6) | 0.0049 (6) | 0.0030 (5) | 0.0117 (5) |
N1 | 0.0398 (8) | 0.0197 (6) | 0.0210 (6) | −0.0021 (5) | −0.0003 (5) | −0.0017 (4) |
C1 | 0.0231 (7) | 0.0170 (7) | 0.0183 (6) | −0.0006 (5) | 0.0028 (5) | −0.0008 (5) |
C2 | 0.0220 (7) | 0.0207 (7) | 0.0191 (6) | 0.0039 (5) | 0.0000 (5) | 0.0000 (5) |
C3 | 0.0291 (8) | 0.0157 (7) | 0.0232 (6) | 0.0018 (5) | 0.0018 (5) | −0.0002 (5) |
C4 | 0.0296 (8) | 0.0387 (9) | 0.0200 (6) | 0.0109 (7) | −0.0019 (5) | −0.0057 (6) |
C5 | 0.0254 (7) | 0.0178 (7) | 0.0195 (6) | 0.0000 (5) | 0.0041 (5) | 0.0004 (5) |
C6 | 0.0291 (9) | 0.0282 (8) | 0.0424 (8) | −0.0048 (7) | −0.0080 (6) | 0.0019 (6) |
C7 | 0.0238 (8) | 0.0194 (7) | 0.0342 (7) | −0.0016 (6) | 0.0030 (6) | −0.0029 (6) |
C8 | 0.0248 (8) | 0.0221 (8) | 0.0502 (9) | −0.0009 (6) | 0.0068 (7) | −0.0014 (6) |
C9 | 0.0207 (7) | 0.0156 (7) | 0.0280 (7) | −0.0028 (5) | −0.0001 (5) | 0.0015 (5) |
C10 | 0.0369 (9) | 0.0225 (7) | 0.0233 (7) | −0.0015 (6) | 0.0032 (6) | −0.0020 (6) |
C11 | 0.0211 (8) | 0.0266 (8) | 0.0604 (10) | −0.0010 (6) | −0.0050 (7) | 0.0088 (7) |
C12 | 0.0246 (8) | 0.0372 (9) | 0.0216 (6) | 0.0068 (6) | 0.0031 (5) | 0.0044 (6) |
C13 | 0.0226 (7) | 0.0237 (8) | 0.0226 (6) | 0.0040 (6) | 0.0002 (5) | 0.0028 (5) |
C14 | 0.0339 (9) | 0.0175 (7) | 0.0344 (7) | −0.0005 (6) | 0.0013 (6) | 0.0012 (6) |
C15 | 0.0257 (8) | 0.0209 (7) | 0.0334 (7) | 0.0011 (6) | −0.0021 (6) | 0.0021 (6) |
C16 | 0.0246 (8) | 0.0211 (7) | 0.0236 (6) | 0.0012 (6) | 0.0010 (5) | 0.0007 (5) |
C17 | 0.0311 (9) | 0.0330 (9) | 0.0415 (9) | −0.0042 (7) | −0.0112 (7) | 0.0095 (7) |
C18 | 0.0363 (9) | 0.0219 (8) | 0.0385 (8) | −0.0078 (6) | −0.0032 (7) | −0.0008 (6) |
C19 | 0.0422 (10) | 0.0263 (8) | 0.0274 (7) | 0.0034 (7) | −0.0024 (6) | −0.0078 (6) |
C20 | 0.0351 (9) | 0.0307 (9) | 0.0284 (7) | 0.0008 (7) | 0.0002 (6) | 0.0089 (6) |
C21 | 0.0292 (8) | 0.0256 (8) | 0.0288 (7) | −0.0017 (6) | −0.0027 (6) | 0.0041 (6) |
P1—C1 | 1.7984 (14) | C7—H1c7 | 0.96 |
P1—C2 | 1.7947 (13) | C8—C11 | 1.390 (2) |
P1—C5 | 1.8024 (13) | C8—H1c8 | 0.96 |
P1—C9 | 1.7992 (15) | C9—C21 | 1.393 (2) |
O1—C3 | 1.2120 (18) | C10—C19 | 1.390 (2) |
O2—N1 | 1.2520 (16) | C10—H1c10 | 0.96 |
O3—N1 | 1.2554 (18) | C11—C17 | 1.382 (2) |
O4—N1 | 1.2475 (18) | C11—H1c11 | 0.96 |
C1—C15 | 1.397 (2) | C12—C13 | 1.391 (2) |
C1—C16 | 1.400 (2) | C12—H1c12 | 0.96 |
C2—C10 | 1.391 (2) | C13—H1c13 | 0.96 |
C2—C13 | 1.392 (2) | C14—C16 | 1.385 (2) |
C3—C5 | 1.512 (2) | C14—C18 | 1.381 (2) |
C3—C20 | 1.494 (2) | C14—H1c14 | 0.96 |
C4—C12 | 1.383 (2) | C15—H1c15 | 0.96 |
C4—C19 | 1.388 (2) | C16—H1c16 | 0.96 |
C4—H1c4 | 0.96 | C17—C21 | 1.389 (2) |
C5—H1c5 | 0.960 (13) | C17—H1c17 | 0.96 |
C5—H3c5 | 0.960 (13) | C18—H1c18 | 0.96 |
C6—C15 | 1.383 (2) | C19—H1c19 | 0.96 |
C6—C18 | 1.384 (2) | C20—H1c20 | 0.96 |
C6—H1c6 | 0.96 | C20—H2c20 | 0.96 |
C7—C8 | 1.381 (2) | C20—H3c20 | 0.96 |
C7—C9 | 1.403 (2) | C21—H1c21 | 0.96 |
C1—P1—C2 | 110.29 (6) | C2—C10—C19 | 119.26 (14) |
C1—P1—C5 | 112.59 (6) | C2—C10—H1c10 | 120.37 |
C1—P1—C9 | 108.70 (6) | C19—C10—H1c10 | 120.37 |
C2—P1—C5 | 111.49 (6) | C8—C11—C17 | 120.10 (16) |
C2—P1—C9 | 108.74 (6) | C8—C11—H1c11 | 119.95 |
C5—P1—C9 | 104.79 (7) | C17—C11—H1c11 | 119.95 |
O2—N1—O3 | 120.16 (14) | C4—C12—C13 | 119.91 (14) |
O2—N1—O4 | 120.84 (14) | C4—C12—H1c12 | 120.05 |
O3—N1—O4 | 118.99 (12) | C13—C12—H1c12 | 120.05 |
P1—C1—C15 | 121.23 (11) | C2—C13—C12 | 119.58 (14) |
P1—C1—C16 | 119.07 (11) | C2—C13—H1c13 | 120.21 |
C15—C1—C16 | 119.69 (13) | C12—C13—H1c13 | 120.21 |
P1—C2—C10 | 119.46 (11) | C16—C14—C18 | 120.24 (14) |
P1—C2—C13 | 119.85 (11) | C16—C14—H1c14 | 119.88 |
C10—C2—C13 | 120.63 (13) | C18—C14—H1c14 | 119.88 |
O1—C3—C5 | 122.18 (12) | C1—C15—C6 | 119.83 (14) |
O1—C3—C20 | 123.22 (14) | C1—C15—H1c15 | 120.08 |
C5—C3—C20 | 114.60 (12) | C6—C15—H1c15 | 120.08 |
C12—C4—C19 | 120.40 (14) | C1—C16—C14 | 119.68 (14) |
C12—C4—H1c4 | 119.8 | C1—C16—H1c16 | 120.16 |
C19—C4—H1c4 | 119.8 | C14—C16—H1c16 | 120.16 |
P1—C5—C3 | 116.05 (10) | C11—C17—C21 | 120.40 (16) |
P1—C5—H1c5 | 109.4 (8) | C11—C17—H1c17 | 119.8 |
P1—C5—H3c5 | 107.6 (9) | C21—C17—H1c17 | 119.8 |
C3—C5—H1c5 | 107.5 (9) | C6—C18—C14 | 120.35 (15) |
C3—C5—H3c5 | 108.0 (8) | C6—C18—H1c18 | 119.82 |
H1c5—C5—H3c5 | 108.1 (13) | C14—C18—H1c18 | 119.82 |
C15—C6—C18 | 120.20 (16) | C4—C19—C10 | 120.22 (15) |
C15—C6—H1c6 | 119.9 | C4—C19—H1c19 | 119.89 |
C18—C6—H1c6 | 119.9 | C10—C19—H1c19 | 119.89 |
C8—C7—C9 | 119.78 (14) | C3—C20—H1c20 | 109.47 |
C8—C7—H1c7 | 120.11 | C3—C20—H2c20 | 109.47 |
C9—C7—H1c7 | 120.11 | C3—C20—H3c20 | 109.47 |
C7—C8—C11 | 120.24 (15) | H1c20—C20—H2c20 | 109.47 |
C7—C8—H1c8 | 119.88 | H1c20—C20—H3c20 | 109.47 |
C11—C8—H1c8 | 119.88 | H2c20—C20—H3c20 | 109.47 |
P1—C9—C7 | 118.54 (11) | C9—C21—C17 | 119.65 (14) |
P1—C9—C21 | 121.64 (11) | C9—C21—H1c21 | 120.17 |
C7—C9—C21 | 119.83 (14) | C17—C21—H1c21 | 120.17 |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H1c5···O3i | 0.960 (13) | 2.252 (13) | 3.2053 (18) | 172.1 (12) |
C5—H3c5···O2ii | 0.960 (13) | 2.403 (12) | 3.1936 (18) | 139.4 (11) |
C7—H1c7···O3i | 0.96 | 2.49 | 3.4365 (19) | 167.90 |
C8—H1c8···O3 | 0.96 | 2.50 | 3.177 (2) | 127.75 |
C10—H1c10···O2ii | 0.96 | 2.49 | 3.3706 (19) | 152.50 |
C15—H1c15···O1 | 0.96 | 2.36 | 3.1780 (19) | 142.99 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x+1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C21H20OP+·NO3− |
Mr | 381.4 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 120 |
a, b, c (Å) | 14.0928 (5), 12.6455 (3), 21.2684 (6) |
β (°) | 90.667 (2) |
V (Å3) | 3790.00 (19) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 1.51 |
Crystal size (mm) | 0.19 × 0.18 × 0.12 |
Data collection | |
Diffractometer | Agilent Xcalibur diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.271, 1 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 22035, 3389, 2969 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.094, 1.63 |
No. of reflections | 3389 |
No. of parameters | 250 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.24 |
Computer programs: CrysAlis PRO (Agilent, 2012), SUPERFLIP (Palatinus & Chapuis, 2007), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H1c5···O3i | 0.960 (13) | 2.252 (13) | 3.2053 (18) | 172.1 (12) |
C5—H3c5···O2ii | 0.960 (13) | 2.403 (12) | 3.1936 (18) | 139.4 (11) |
C7—H1c7···O3i | 0.96 | 2.49 | 3.4365 (19) | 167.90 |
C8—H1c8···O3 | 0.96 | 2.50 | 3.177 (2) | 127.75 |
C10—H1c10···O2ii | 0.96 | 2.49 | 3.3706 (19) | 152.50 |
C15—H1c15···O1 | 0.96 | 2.36 | 3.1780 (19) | 142.99 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x+1/2, y−1/2, z. |
Acknowledgements
We acknowledge the Praemium Academiae project of the Academy of Sciences of the Czech Republic.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Boys, D., Araya-Maturana, R., González, O. & Manríquez, V. (1995). Acta Cryst. C51, 105–107. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Evans, C. (2010). Acta Cryst. E66, o384–o385. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kavitha, C. N., Yathirajan, H. S., Dayananda, A. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o3115. CSD CrossRef IUCr Journals Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic. Google Scholar
Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. C46, 2429–2431. CSD CrossRef Web of Science IUCr Journals Google Scholar
Zhang, X., Zhong, P., Hu, M., Lin, D. & Lin, J. (2004). Acta Cryst. E60, o1200–o1201. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phosphonium salts [PR4+, R = alkyl or aryl] are widely used as large cations to stabilize a variety of anonic species (Zhang et al., 2004; van der Sluis & Spek, 1990; Evans, 2010).
The title compound crystallizes with one phosphonium cation, C21H20OP+, and one nitrate anion in the asymmetric unit (Fig. 1). The P—C bond lengths within the cation [1.7947 (13), 1.7984 (14), 1.7992 (15) and 1.8024 (13) Å] are similar than those reported for related phosphonium salts like [1-(ethoxycarbonyl)-1-cyclopentyl]triphenylphosphonium bromide (Boys et al., 1995), or [3-(iodoacetamido)propyl]triphenylphosphonium tetraphenylborate (Evans, 2010) indicating that the presence of the acetonyl moiety has a negligible effect on the geometrical parameters. The C—P—C angles (range 104.79 (7) to 112.59 (6) °) indicate a slight angular distortion. The sum of the O—N—O angles [120.84 (14), 120.16 (14) and 118.99 (12) °] of the nitrate anion is 359.99°, reflecting its trigonal-planar geometry. Between the C21H20OP+ cations and the NO3- anions, the interactions are mainly of electrostatic nature. Such forces are also respondible for related salts like (3-chloropropyl)triphenylphosphonium bromide (Kavitha, 2012). The packing of the structure is shown in Fig. 2. Weak C—H···O hydrogen bonds (Table 1) help to consolidate the crystal packing.