metal-organic compounds
Bis(3-aminopyrazine-2-carboxylato-κ2N1,O)diaquacobalt(II)
aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Oum El Bouaghi, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, and cUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title compound, [Co(C5H4N3O2)2(H2O)2], the CoII atom is situated on a twofold rotation axis and is N,O-chelated by two 3-aminopyrazine-2-carboxylate anions and additionally bonded to the O atoms of two water molecules, leading to a slightly distorted octahedral coordination environment. The crystal packing is dominated by intermolecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonding involving the water molecules and amino groups as donors and carboxylate O atoms, as well as the non-coordinating heterocyclic N atoms as acceptors, resulting in a three-dimensional network. An intramolecular N—H⋯O hydrogen bond is also observed.
Related literature
For the role of N,O-coordination in the crystal structures of metal complexes with pyrazine-2-carboxylate as ligand, see: Alcock et al. (1996); Dong et al. (2000); Kubota et al. (2006); Luo et al. (2004). For related pyrazine-2-carboxylate cobalt(II) complexes and their applications, see: Fan et al. (2007); Liu et al. (2007); McCleverty & Meyer (2004); Shi et al. (2011); Sun et al. (2004); Tanase et al. (2006). For the influence of hydrogen bonding in related systems, see: Bouacida et al. (2007, 2009).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536813002183/wm2721sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813002183/wm2721Isup2.hkl
The title compound was obtained from a mixture of cobalt(II) chloride hexahydrate (0.05 g, 0.2 mmol), 3-aminopyrazine-2-carboxylic acid (0.03 g, 0.2 mmol) and acidified water (25 ml, HCl 37%). The solution was evaporated at room temperature for two weeks. Yellow single crystals were obtained and were carefully isolated under a polarizing microscope for analysis by X-ray diffraction.
The H atoms were localized in Fourier maps but were eventually introduced in calculated positions and treated as riding on their parent atoms (C or N) with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). The water H atoms H1W and H2W were also located in a difference Fourier map. Their positions were refined freely, but their temperature factors were refined isotropically with Uiso(H) = 1.5Ueq(OW).
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).[Co(C5H4N3O2)2(H2O)2] | F(000) = 756 |
Mr = 371.19 | Dx = 1.794 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8823 (2) Å | Cell parameters from 6448 reflections |
b = 12.7467 (2) Å | θ = 3.0–38.7° |
c = 13.6851 (3) Å | µ = 1.29 mm−1 |
β = 91.918 (1)° | T = 295 K |
V = 1374.22 (5) Å3 | Block, yellow |
Z = 4 | 0.11 × 0.09 × 0.05 mm |
Bruker APEXII CCD diffractometer | 3043 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.041 |
Graphite monochromator | θmax = 42.1°, θmin = 3.0° |
ϕ and ω scans | h = −14→10 |
17706 measured reflections | k = −24→22 |
4800 independent reflections | l = −25→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0413P)2] where P = (Fo2 + 2Fc2)/3 |
4800 reflections | (Δ/σ)max = 0.001 |
111 parameters | Δρmax = 0.48 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
[Co(C5H4N3O2)2(H2O)2] | V = 1374.22 (5) Å3 |
Mr = 371.19 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 7.8823 (2) Å | µ = 1.29 mm−1 |
b = 12.7467 (2) Å | T = 295 K |
c = 13.6851 (3) Å | 0.11 × 0.09 × 0.05 mm |
β = 91.918 (1)° |
Bruker APEXII CCD diffractometer | 3043 reflections with I > 2σ(I) |
17706 measured reflections | Rint = 0.041 |
4800 independent reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | Δρmax = 0.48 e Å−3 |
4800 reflections | Δρmin = −0.38 e Å−3 |
111 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0 | 0.195326 (13) | 0.75 | 0.02207 (5) | |
O1W | 0.19025 (11) | 0.30652 (6) | 0.76033 (6) | 0.03609 (17) | |
H1W | 0.250 (2) | 0.3194 (11) | 0.7195 (13) | 0.054* | |
H2W | 0.1779 (19) | 0.3585 (14) | 0.7867 (12) | 0.054* | |
O51 | −0.18087 (10) | 0.07591 (6) | 0.76347 (5) | 0.03603 (17) | |
O52 | −0.31276 (13) | −0.02336 (7) | 0.87118 (6) | 0.0538 (2) | |
N1 | −0.03120 (10) | 0.18853 (6) | 0.90389 (5) | 0.02230 (13) | |
N2 | −0.09937 (11) | 0.16410 (8) | 1.09943 (6) | 0.03211 (17) | |
C1 | 0.04090 (12) | 0.25148 (8) | 0.97172 (6) | 0.02822 (18) | |
H1 | 0.1164 | 0.3035 | 0.9535 | 0.034* | |
N3 | −0.26554 (13) | 0.02032 (8) | 1.06349 (7) | 0.0453 (2) | |
H3A | −0.2827 | 0.0138 | 1.1249 | 0.054* | |
H3B | −0.3112 | −0.0232 | 1.0224 | 0.054* | |
C2 | 0.00267 (13) | 0.23880 (9) | 1.06893 (7) | 0.0327 (2) | |
H2 | 0.0508 | 0.2847 | 1.1148 | 0.039* | |
C3 | −0.16811 (12) | 0.09790 (7) | 1.03189 (7) | 0.02792 (18) | |
C4 | −0.13532 (11) | 0.11308 (7) | 0.93095 (6) | 0.02309 (15) | |
C5 | −0.21616 (13) | 0.04957 (8) | 0.84893 (7) | 0.03098 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02920 (9) | 0.02103 (9) | 0.01636 (7) | 0 | 0.00654 (5) | 0 |
O1W | 0.0437 (4) | 0.0371 (4) | 0.0284 (3) | −0.0159 (3) | 0.0152 (3) | −0.0072 (3) |
O51 | 0.0514 (4) | 0.0342 (4) | 0.0230 (3) | −0.0146 (3) | 0.0090 (3) | −0.0052 (3) |
O52 | 0.0808 (6) | 0.0417 (5) | 0.0405 (4) | −0.0356 (4) | 0.0263 (4) | −0.0128 (4) |
N1 | 0.0249 (3) | 0.0230 (3) | 0.0193 (3) | 0.0009 (3) | 0.0057 (2) | 0.0015 (2) |
N2 | 0.0378 (4) | 0.0383 (4) | 0.0207 (3) | 0.0010 (4) | 0.0071 (3) | 0.0019 (3) |
C1 | 0.0285 (4) | 0.0338 (5) | 0.0225 (4) | −0.0058 (4) | 0.0025 (3) | 0.0005 (3) |
N3 | 0.0686 (7) | 0.0378 (5) | 0.0307 (4) | −0.0167 (5) | 0.0196 (4) | 0.0032 (4) |
C3 | 0.0343 (4) | 0.0259 (4) | 0.0242 (4) | 0.0031 (3) | 0.0112 (3) | 0.0041 (3) |
C5 | 0.0410 (5) | 0.0242 (4) | 0.0284 (4) | −0.0072 (4) | 0.0117 (4) | −0.0050 (3) |
C4 | 0.0285 (4) | 0.0202 (4) | 0.0210 (3) | 0.0010 (3) | 0.0083 (3) | 0.0014 (3) |
C2 | 0.0348 (5) | 0.0411 (6) | 0.0221 (4) | −0.0031 (4) | 0.0007 (3) | −0.0024 (4) |
Co1—O1W | 2.0648 (8) | N1—C1 | 1.3390 (11) |
Co1—O1Wi | 2.0648 (8) | N2—C2 | 1.3230 (14) |
Co1—O51 | 2.0979 (7) | N2—C3 | 1.3515 (13) |
Co1—O51i | 2.0979 (7) | C1—C2 | 1.3834 (13) |
Co1—N1i | 2.1303 (7) | C1—H1 | 0.93 |
Co1—N1 | 2.1303 (7) | N3—C3 | 1.3329 (13) |
O1W—H1W | 0.760 (18) | N3—H3A | 0.86 |
O1W—H2W | 0.763 (18) | N3—H3B | 0.86 |
O51—C5 | 1.2568 (12) | C3—C4 | 1.4270 (12) |
O52—C5 | 1.2460 (12) | C5—C4 | 1.5078 (13) |
N1—C4 | 1.3252 (11) | C2—H2 | 0.93 |
O1W—Co1—O1Wi | 93.31 (5) | C1—N1—Co1 | 126.91 (6) |
O1W—Co1—O51 | 170.46 (3) | C2—N2—C3 | 117.88 (8) |
O1Wi—Co1—O51 | 90.57 (4) | N1—C1—C2 | 119.71 (9) |
O1W—Co1—O51i | 90.57 (4) | N1—C1—H1 | 120.1 |
O1Wi—Co1—O51i | 170.46 (3) | C2—C1—H1 | 120.1 |
O51—Co1—O51i | 86.97 (5) | C3—N3—H3A | 120 |
O1W—Co1—N1i | 89.31 (3) | C3—N3—H3B | 120 |
O1Wi—Co1—N1i | 93.89 (3) | H3A—N3—H3B | 120 |
O51—Co1—N1i | 99.13 (3) | N3—C3—N2 | 117.61 (8) |
O51i—Co1—N1i | 77.43 (3) | N3—C3—C4 | 122.66 (9) |
O1W—Co1—N1 | 93.89 (3) | N2—C3—C4 | 119.73 (8) |
O1Wi—Co1—N1 | 89.31 (3) | O52—C5—O51 | 125.65 (9) |
O51—Co1—N1 | 77.43 (3) | O52—C5—C4 | 117.72 (8) |
O51i—Co1—N1 | 99.13 (3) | O51—C5—C4 | 116.63 (8) |
N1i—Co1—N1 | 175.34 (4) | N1—C4—C3 | 120.19 (8) |
Co1—O1W—H1W | 124.2 (12) | N1—C4—C5 | 115.59 (7) |
Co1—O1W—H2W | 121.7 (11) | C3—C4—C5 | 124.20 (8) |
H1W—O1W—H2W | 104.7 (15) | N2—C2—C1 | 122.81 (9) |
C5—O51—Co1 | 116.60 (6) | N2—C2—H2 | 118.6 |
C4—N1—C1 | 119.58 (7) | C1—C2—H2 | 118.6 |
C4—N1—Co1 | 113.50 (6) | ||
O1Wi—Co1—O51—C5 | −93.84 (8) | Co1—O51—C5—O52 | −175.74 (10) |
O51i—Co1—O51—C5 | 95.39 (8) | Co1—O51—C5—C4 | 4.97 (12) |
N1i—Co1—O51—C5 | 172.13 (8) | C1—N1—C4—C3 | −1.05 (13) |
N1—Co1—O51—C5 | −4.67 (7) | Co1—N1—C4—C3 | 179.46 (6) |
O1W—Co1—N1—C4 | −172.54 (6) | C1—N1—C4—C5 | 177.36 (8) |
O1Wi—Co1—N1—C4 | 94.19 (6) | Co1—N1—C4—C5 | −2.13 (10) |
O51—Co1—N1—C4 | 3.45 (6) | N3—C3—C4—N1 | −176.88 (9) |
O51i—Co1—N1—C4 | −81.34 (6) | N2—C3—C4—N1 | 3.34 (13) |
O1W—Co1—N1—C1 | 8.01 (8) | N3—C3—C4—C5 | 4.85 (15) |
O1Wi—Co1—N1—C1 | −85.25 (8) | N2—C3—C4—C5 | −174.93 (9) |
O51—Co1—N1—C1 | −175.99 (8) | O52—C5—C4—N1 | 178.82 (10) |
O51i—Co1—N1—C1 | 99.22 (8) | O51—C5—C4—N1 | −1.84 (13) |
C4—N1—C1—C2 | −1.63 (14) | O52—C5—C4—C3 | −2.84 (15) |
Co1—N1—C1—C2 | 177.78 (7) | O51—C5—C4—C3 | 176.50 (9) |
C2—N2—C3—N3 | 177.46 (9) | C3—N2—C2—C1 | 0.07 (16) |
C2—N2—C3—C4 | −2.76 (14) | N1—C1—C2—N2 | 2.23 (16) |
Symmetry code: (i) −x, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···N2ii | 0.761 (18) | 2.070 (18) | 2.8254 (12) | 172.2 (17) |
O1W—H2W···O52iii | 0.762 (18) | 1.898 (17) | 2.6470 (12) | 167.1 (16) |
N3—H3A···O51iv | 0.86 | 2.33 | 3.0525 (12) | 141 |
N3—H3B···O52 | 0.86 | 2.07 | 2.7036 (13) | 130 |
C1—H1···O52iii | 0.93 | 2.55 | 3.4010 (13) | 153 |
Symmetry codes: (ii) x+1/2, −y+1/2, z−1/2; (iii) x+1/2, y+1/2, z; (iv) x, −y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Co(C5H4N3O2)2(H2O)2] |
Mr | 371.19 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 295 |
a, b, c (Å) | 7.8823 (2), 12.7467 (2), 13.6851 (3) |
β (°) | 91.918 (1) |
V (Å3) | 1374.22 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.29 |
Crystal size (mm) | 0.11 × 0.09 × 0.05 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17706, 4800, 3043 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.944 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.082, 0.92 |
No. of reflections | 4800 |
No. of parameters | 111 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.48, −0.38 |
Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···N2i | 0.761 (18) | 2.070 (18) | 2.8254 (12) | 172.2 (17) |
O1W—H2W···O52ii | 0.762 (18) | 1.898 (17) | 2.6470 (12) | 167.1 (16) |
N3—H3A···O51iii | 0.8600 | 2.3300 | 3.0525 (12) | 141.00 |
N3—H3B···O52 | 0.8600 | 2.0700 | 2.7036 (13) | 130.00 |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) x+1/2, y+1/2, z; (iii) x, −y, z+1/2. |
Acknowledgements
We are grateful to the personal of the LCATM laboratory, Université Oum El Bouaghi, Algeria, for their assistance. Thanks are due to the MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence thématique de recherche en sciences et technologie - Algérie) via the PNR programm for financial support.
References
Alcock, N. W., Kemp, T. J., Marc Roe, S. & Leciejewicz, J. (1996). Inorg. Chim. Acta, 248, 241–246. CSD CrossRef CAS Web of Science Google Scholar
Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dong, Y.-B., Smith, M. D. & zur Loye, H.-C. (2000). Inorg. Chem. 39, 1943–1949. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fan, G., Chen, S.-P. & Gao, S.-L. (2007). Acta Cryst. E63, m772–m773. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kubota, Y., Takata, M., Matsuda, R., Kitaura, R., Kitagawa, S. & Kobayashi, T. C. (2006). Angew. Chem. Int. Ed. 45, 4932–4936. Web of Science CSD CrossRef CAS Google Scholar
Liu, F.-Y., Shang, R.-L., Du, L., Zhao, Q.-H. & Fang, R.-B. (2007). Acta Cryst. E63, m120–m122. Web of Science CSD CrossRef IUCr Journals Google Scholar
Luo, J., Alexander, B., Wagner, T. R. & Maggard, P. A. (2004). Inorg. Chem. 43, 5537–5542. Web of Science CrossRef PubMed CAS Google Scholar
McCleverty, J. A. & Meyer, T. J. (2004). Comprehensive Coordination Chemistry II. From Biology to Nanotechnology, Vol. 6, Transition Metal Groups 9–12, pp. 99–120. Amsterdam: Elsevier Pergamon. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, Q.-Y., Zhang, G.-C., Zhou, C.-S. & Yang, Q. (2011). Acta Cryst. E67, m1430. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sun, W.-H., Tang, X., Gao, T., Wu, B., Zhang, W. & Ma, H. (2004). Organometallics, 23, 5037–5041. Web of Science CrossRef CAS Google Scholar
Tanase, S., Martin, V. S., Van Albada, G. A., DeGelder, R., Bouwman, E. & Reedijk, J. (2006). Polyhedron, 25, 2967–2975. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During our recent research in the field of N,O-donor stabilized metal complexes we have prepared the title compound. As ligand we have chosen pyrazine-2-carboxylate that already has been extensively studied (Alcock et al., 1996; Dong et al., 2000; Kubota et al., 2006; Luo et al., 2004; Shi et al., 2011; Fan et al., 2007; Liu et al., 2007). Some of its cobalt(II) complexes have also been reported for multitude applications (Tanase et al., 2006; Sun et al., 2004; McCleverty & Meyer, 2004).
In continuation of our investigations on the influence of hydrogen bonds on the structural features (Bouacida et al., 2007,2009), we report here the crystal growth and crystal structure of the title compound, [Co(C5H4N3O2)2(H2O)2] (I).
The asymmetric unit of (I) consists of one-half of the complex molecule, with the other half being generated by a twofold rotation axis running through the CoII atom (Wyckoff site 4 e). The latter is octahedrally coordinated by two 3-aminopyrazine-2-carboxylate anions acting in a bidentate manner and by two water molecules. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1.
Bond lengths and angles observed in the different entities show normal features and are consistent with those reported previously for related systems (Shi et al., 2011). Fig. 2 shows a packing diagram of the structure. Parallel to the c axis channels with a square cross-section are formed. The crystal packing can be described by stacking of alternating layers parallel to (110). The layers are linked together by O1W—H···N, O1W—H···O and N—H···O interactions involving the water molecules and amino functions as donors and carboxylate O atoms as well as the non-coordinating heterocyclic N atoms as acceptors (Fig. 3, Table 1). These interactions lead to the formation of a three-dimensional network.