organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-4-Bromo-N-{(Z)-3-[(4-bromo-2,6-diiso­propyl­phen­yl)imino]­butan-2-yl­­idene}-2,6-diiso­propyl­aniline

aKey Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: luxq@nwnu.edu.cn

(Received 11 December 2012; accepted 27 December 2012; online 9 January 2013)

The title compound, C28H38Br2N2, is centrosymmetric with the mid-point of the central C—C bond of the butyl group located on an inversion center. The terminal benzene ring is approximately perpendicular to the central 1,4-diaza­butadiene mean plane [dihedral angle = 78.23 (3)°]. No hydrogen bonding or aromatic stacking is observed in the crystal structure.

Related literature

For applications of diimine catalysts, see: Cotts et al. (2000[Cotts, P. M., Guan, Z., McCord, E. F. & McLain, S. J. (2000). Macromolecules, 33, 6945-6952.]); Ittel et al. (2000[Ittel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169-1203.]); Johnson et al. (1995[Johnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414-6415.]); Zhang & Ye (2012[Zhang, Z. & Ye, Z. (2012). Chem. Commun. 48, 7940-7942.]).

[Scheme 1]

Experimental

Crystal data
  • C28H38Br2N2

  • Mr = 562.42

  • Monoclinic, P 21 /n

  • a = 9.099 (3) Å

  • b = 12.199 (4) Å

  • c = 13.566 (5) Å

  • β = 104.905 (5)°

  • V = 1455.2 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.80 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.541, Tmax = 0.618

  • 7266 measured reflections

  • 2685 independent reflections

  • 1460 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.179

  • S = 0.94

  • 2685 reflections

  • 150 parameters

  • 84 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, Ni(II)/Pd(II)-α-diimine catalysts were greatly attracted attention due to their high catalytic activity and influence on product performance in olefin polymerization (Zhang & Ye, 2012; Johnson et al., 1995). It is well known that the polymerization conditions (such as the reaction olefin pressure, temperature etc.) and ligand structure had a great impact on catalytic activity and polymer properties (Cotts et al., 2000; Ittel et al., 2000).

In the solid state, the structure exhibits trans-conformation about the central C—C bond of the ligand backbone. Bond lengths and angles are within the expected range for α-diimines. The dihedral angle between the aryl ring and 1,4-diazabutadiene plane is 78.23 (3)°(Fig. 1). In the crystal packing, there is no hydrogen-bond between the molecules.

Related literature top

For applications of diimine catalysts, see: Cotts et al. (2000); Ittel et al. (2000); Johnson et al. (1995); Zhang & Ye (2012).

Experimental top

Formic acid (0.5 ml) was added to a stirred solution of 2,3-butanedione (0.042 g, 0.49 mmol) and 4-Bromo-2,6-diisopropyl-phenylamine (0.250 g, 0.98 mmol) in methanol (20 ml). The mixture was refluxed for 24 h, then cooled and the precipitate was separated by filtration. The solid was recrystallized from dichloromethane/cyclohexane (v/v = 8:1), washed with cold ethanol and dried under vacuum to give the title ligand 0.21 g (75%). Anal. Calcd. for C28H38Br2N2: C, 59.79; H, 6.81; N,4.98; Found: C, 60.29; H, 6.95; N, 4.74.

Refinement top

All hydrogen atoms were placed in calculated positions with C—H distances of 0.93 and 0.96 Å for aryl and methyl type H-atoms. They were included in the refinement in a riding model approximation, respectively. The H-atoms were assigned Uiso = 1.2 times Ueq of the aryl C atoms and 1.5 times Ueq of the methyl C atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, using 30% probability level ellipsoids.
(Z)-4-Bromo-N-{(Z)-3-[(4-bromo-2,6- diisopropylphenyl)imino]butan-2-ylidene}-2,6-diisopropylaniline top
Crystal data top
C28H38Br2N2F(000) = 580
Mr = 562.42Dx = 1.284 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1370 reflections
a = 9.099 (3) Åθ = 2.9–21.4°
b = 12.199 (4) ŵ = 2.80 mm1
c = 13.566 (5) ÅT = 296 K
β = 104.905 (5)°Block, yellow
V = 1455.2 (9) Å30.25 × 0.23 × 0.19 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2685 independent reflections
Radiation source: fine-focus sealed tube1460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.541, Tmax = 0.618k = 1214
7266 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.1P)2 + 0.7029P]
where P = (Fo2 + 2Fc2)/3
2685 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.46 e Å3
84 restraintsΔρmin = 0.40 e Å3
Crystal data top
C28H38Br2N2V = 1455.2 (9) Å3
Mr = 562.42Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.099 (3) ŵ = 2.80 mm1
b = 12.199 (4) ÅT = 296 K
c = 13.566 (5) Å0.25 × 0.23 × 0.19 mm
β = 104.905 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2685 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1460 reflections with I > 2σ(I)
Tmin = 0.541, Tmax = 0.618Rint = 0.043
7266 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05284 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 0.94Δρmax = 0.46 e Å3
2685 reflectionsΔρmin = 0.40 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.35688 (8)0.65673 (6)0.10127 (7)0.0922 (4)
C10.7029 (6)0.8851 (4)0.1392 (4)0.0489 (12)
C20.5759 (6)0.8270 (4)0.1476 (4)0.0533 (14)
H20.52470.84770.19580.064*
C30.5254 (6)0.7392 (5)0.0851 (4)0.0539 (14)
C40.5971 (7)0.7079 (4)0.0117 (4)0.0557 (15)
H40.56080.64820.03010.067*
C50.7232 (7)0.7651 (4)0.0001 (5)0.0585 (14)
C60.7756 (6)0.8543 (4)0.0646 (4)0.0452 (13)
C70.7611 (8)0.9814 (5)0.2083 (5)0.0662 (14)
H70.87010.98720.21300.079*
C80.6907 (11)1.0865 (6)0.1624 (7)0.126 (3)
H8A0.71621.09910.09900.188*
H8B0.72831.14590.20840.188*
H8C0.58221.08190.15050.188*
C90.7469 (11)0.9636 (8)0.3149 (6)0.120 (3)
H9A0.81501.01220.36070.180*
H9B0.77250.88910.33480.180*
H9C0.64430.97830.31750.180*
C100.8059 (9)0.7265 (6)0.0773 (6)0.0804 (16)
H100.86660.78760.09230.096*
C110.9126 (12)0.6347 (7)0.0315 (8)0.132 (3)
H11A0.98470.66060.02870.199*
H11B0.96560.61010.08020.199*
H11C0.85550.57500.01390.199*
C120.6986 (12)0.6892 (8)0.1768 (7)0.126 (3)
H12A0.63360.63230.16320.189*
H12B0.75660.66160.22140.189*
H12C0.63780.75000.20860.189*
C130.9228 (6)0.9765 (4)0.0034 (4)0.0512 (14)
C140.7932 (7)1.0159 (6)0.0879 (5)0.081 (2)
H14A0.81040.99560.15230.122*
H14B0.78561.09420.08430.122*
H14C0.70030.98310.08120.122*
N10.9141 (5)0.9060 (3)0.0633 (3)0.0504 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0812 (6)0.0846 (6)0.1286 (8)0.0381 (4)0.0595 (5)0.0188 (4)
C10.053 (3)0.045 (3)0.054 (3)0.005 (2)0.023 (2)0.001 (2)
C20.053 (3)0.054 (3)0.058 (4)0.001 (3)0.023 (3)0.001 (3)
C30.055 (3)0.052 (3)0.060 (4)0.011 (3)0.026 (3)0.005 (3)
C40.070 (4)0.034 (3)0.066 (4)0.014 (3)0.024 (3)0.004 (3)
C50.075 (3)0.043 (3)0.070 (3)0.012 (3)0.043 (3)0.001 (3)
C60.046 (3)0.037 (3)0.055 (3)0.005 (2)0.017 (3)0.008 (2)
C70.076 (3)0.062 (3)0.067 (3)0.015 (3)0.028 (3)0.015 (3)
C80.145 (7)0.070 (5)0.145 (6)0.001 (5)0.005 (6)0.036 (5)
C90.155 (7)0.131 (6)0.083 (5)0.052 (5)0.045 (5)0.038 (5)
C100.100 (4)0.066 (3)0.095 (4)0.016 (3)0.060 (3)0.018 (3)
C110.131 (7)0.129 (6)0.163 (7)0.022 (5)0.085 (6)0.026 (6)
C120.153 (7)0.147 (6)0.100 (6)0.030 (6)0.073 (5)0.040 (5)
C130.053 (3)0.045 (3)0.059 (4)0.006 (2)0.019 (3)0.007 (3)
C140.059 (4)0.083 (5)0.093 (5)0.012 (3)0.005 (4)0.039 (4)
N10.052 (3)0.044 (3)0.059 (3)0.006 (2)0.022 (2)0.005 (2)
Geometric parameters (Å, º) top
Br1—C31.894 (5)C9—H9A0.9600
C1—C21.384 (7)C9—H9B0.9600
C1—C61.396 (7)C9—H9C0.9600
C1—C71.511 (8)C10—C111.507 (11)
C2—C31.371 (7)C10—C121.517 (11)
C2—H20.9300C10—H100.9800
C3—C41.376 (8)C11—H11A0.9600
C4—C51.387 (7)C11—H11B0.9600
C4—H40.9300C11—H11C0.9600
C5—C61.402 (7)C12—H12A0.9600
C5—C101.513 (8)C12—H12B0.9600
C6—N11.414 (7)C12—H12C0.9600
C7—C81.495 (10)C13—N11.265 (6)
C7—C91.501 (9)C13—C141.497 (8)
C7—H70.9800C13—C13i1.498 (10)
C8—H8A0.9600C14—H14A0.9600
C8—H8B0.9600C14—H14B0.9600
C8—H8C0.9600C14—H14C0.9600
C2—C1—C6118.8 (5)H9A—C9—H9B109.5
C2—C1—C7120.9 (5)C7—C9—H9C109.5
C6—C1—C7120.2 (5)H9A—C9—H9C109.5
C3—C2—C1120.2 (5)H9B—C9—H9C109.5
C3—C2—H2119.9C11—C10—C5109.2 (6)
C1—C2—H2119.9C11—C10—C12110.1 (7)
C2—C3—C4121.2 (5)C5—C10—C12112.8 (6)
C2—C3—Br1119.7 (4)C11—C10—H10108.2
C4—C3—Br1119.0 (4)C5—C10—H10108.2
C3—C4—C5120.3 (5)C12—C10—H10108.2
C3—C4—H4119.8C10—C11—H11A109.5
C5—C4—H4119.8C10—C11—H11B109.5
C4—C5—C6118.4 (5)H11A—C11—H11B109.5
C4—C5—C10119.8 (5)C10—C11—H11C109.5
C6—C5—C10121.7 (5)H11A—C11—H11C109.5
C1—C6—C5121.1 (5)H11B—C11—H11C109.5
C1—C6—N1118.6 (5)C10—C12—H12A109.5
C5—C6—N1119.9 (5)C10—C12—H12B109.5
C8—C7—C9113.0 (7)H12A—C12—H12B109.5
C8—C7—C1111.3 (5)C10—C12—H12C109.5
C9—C7—C1112.5 (5)H12A—C12—H12C109.5
C8—C7—H7106.5H12B—C12—H12C109.5
C9—C7—H7106.5N1—C13—C14125.7 (5)
C1—C7—H7106.5N1—C13—C13i116.6 (6)
C7—C8—H8A109.5C14—C13—C13i117.8 (6)
C7—C8—H8B109.5C13—C14—H14A109.5
H8A—C8—H8B109.5C13—C14—H14B109.5
C7—C8—H8C109.5H14A—C14—H14B109.5
H8A—C8—H8C109.5C13—C14—H14C109.5
H8B—C8—H8C109.5H14A—C14—H14C109.5
C7—C9—H9A109.5H14B—C14—H14C109.5
C7—C9—H9B109.5C13—N1—C6122.2 (4)
C6—C1—C2—C31.6 (8)C4—C5—C6—N1172.3 (5)
C7—C1—C2—C3179.3 (5)C10—C5—C6—N14.1 (9)
C1—C2—C3—C41.3 (9)C2—C1—C7—C890.6 (8)
C1—C2—C3—Br1177.3 (4)C6—C1—C7—C888.5 (8)
C2—C3—C4—C50.2 (9)C2—C1—C7—C937.4 (8)
Br1—C3—C4—C5178.4 (4)C6—C1—C7—C9143.5 (6)
C3—C4—C5—C60.4 (9)C4—C5—C10—C1181.6 (8)
C3—C4—C5—C10176.9 (6)C6—C5—C10—C1194.7 (8)
C2—C1—C6—C50.9 (8)C4—C5—C10—C1241.1 (9)
C7—C1—C6—C5180.0 (5)C6—C5—C10—C12142.6 (7)
C2—C1—C6—N1173.4 (5)C14—C13—N1—C60.5 (9)
C7—C1—C6—N17.5 (8)C13i—C13—N1—C6179.2 (6)
C4—C5—C6—C10.1 (8)C1—C6—N1—C13106.2 (6)
C10—C5—C6—C1176.4 (6)C5—C6—N1—C1381.2 (7)
Symmetry code: (i) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC28H38Br2N2
Mr562.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.099 (3), 12.199 (4), 13.566 (5)
β (°) 104.905 (5)
V3)1455.2 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.80
Crystal size (mm)0.25 × 0.23 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.541, 0.618
No. of measured, independent and
observed [I > 2σ(I)] reflections
7266, 2685, 1460
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.179, 0.94
No. of reflections2685
No. of parameters150
No. of restraints84
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.40

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 20927004, 21175108 and 20875077), the Natural Science Foundation of Gansu Province (Nos. 0803RJZA105, 096RJZA121 and 096RJZA122) and the Key Laboratory of Polymer Materials of Gansu Province, China.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotts, P. M., Guan, Z., McCord, E. F. & McLain, S. J. (2000). Macromolecules, 33, 6945–6952.  Web of Science CrossRef CAS Google Scholar
First citationIttel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169–1203.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414–6415.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z. & Ye, Z. (2012). Chem. Commun. 48, 7940–7942.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds