organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Hy­dr­oxy-2-phenyleth­yl)-1-methyl­cyclo­propan-1-ol

aCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: maohui2011@zjnu.cn

(Received 17 December 2012; accepted 23 December 2012; online 4 January 2013)

The asymmetric unit of the title compound, C12H16O2, contains two independent mol­ecules in which the dihedral angles between the benzene and cyclo­propane rings are 75.9 (3) and 76.3 (3)°. In the crystal, the mol­ecules are connected by O—H⋯O hydrogen bonds into a three dimensional supra­molecular structure.

Related literature

For applications of cyclo­propane derivatives, see: Pietruszka (2003[Pietruszka, J. (2003). Chem. Rev. 103, 1051-1070.]); Helene et al. (2003[Helene, L., Marcoux, J. C., Molinaro, C. & Charette, A. B. (2003). Chem. Rev. 103, 977-1050.]); Wessjohann et al. (2003[Wessjohann, L. A., Brandt, W. & Thiemann, T. (2003). Chem. Rev. 103, 1625-1648.]); Charette & Marcoux (1995[Charette, A. B. & Marcoux, J. C. (1995). Synlett, 12, 1197-1207.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16O2

  • Mr = 192.25

  • Triclinic, [P \overline 1]

  • a = 9.1700 (8) Å

  • b = 10.3863 (10) Å

  • c = 11.9412 (11) Å

  • α = 98.133 (7)°

  • β = 90.854 (6)°

  • γ = 91.841 (7)°

  • V = 1125.07 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.13 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 16925 measured reflections

  • 5146 independent reflections

  • 2391 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.249

  • S = 1.04

  • 5146 reflections

  • 253 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.82 1.94 2.745 (2) 167
O1A—H1AA⋯O2Aii 0.82 1.95 2.757 (2) 167
O2—H2B⋯O1A 0.82 1.96 2.768 (3) 167
O2A—H2AB⋯O1iii 0.82 1.98 2.778 (2) 165
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Due to the special structure and versatile biologically activity of the chiral cyclopropanes their medicinal properties and synthetic utility have inspired numerous chemists to fascinate (Pietruszka, 2003; Helene et al., 2003; Wessjohann et al., 2003; Charette & Marcoux, 1995). In this work, we reported the synthesis and crystal structure of cis-2-(2-hydroxy-2-phenyl-ethyl)-1-methyl-cyclopropanol.

X-ray crystallography confirmed the molecular structure and the atom connectivity for the title compound(I), as illustrated in Fig. 1. A view on the crystal structure of the title compound, the angle of (C9—C10—C11) is 60.8 (2)°, and the angle of (C10—C9—C11) is 59.4 (2)°, and the angle of (C9—C11—C10) is 59.8 (2)°. It can be speculated that the structure of the three ring was similar equilateral triangle. The dihedral angle between the benzene ring and the cyclopropane ring is 75.9 (3) and 76.3 (3)°. The structure is more stable by intramolecular hydrogen bond (O2—H2B···O1A). The intermolecular hydrogen (O1A—H1AA···O2A; O1—H1A0···O2; O2A—H2AB···O1) results in the formation of a three-dimensional structure in the crystal.

Related literature top

For applications of cyclopropane derivatives, see: Pietruszka (2003); Helene et al. (2003); Wessjohann et al. (2003); Charette & Marcoux (1995).

Experimental top

To a two-necked flask containing samarium powder (2.5 mmol), was added THF (18 ml) and ally bromide (2.2 mmol) under nitrogen. The mixture was allowed to stir at room temperature for 1 h (the color would turn into purple). HMPA (2.0 ml) and H2O (1.0 mmol) was then added in sequence via a syringe. A solution of 4-Acetoxy-4-phenyl-1-butene (1.0 mmol) in THF (5.0 ml) was subsequently added. The color would fade out in 3 h (monitored by TLC). After treatment, afford the solid products. Recrystallization condition: Petrol/EtOAc (5/1, v:v), room temperature, one day.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and O—H = 0.82 Å, Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.
2-(2-Hydroxy-2-phenylethyl)-1-methylcyclopropan-1-ol top
Crystal data top
C12H16O2Z = 4
Mr = 192.25F(000) = 416
Triclinic, P1Dx = 1.135 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1700 (8) ÅCell parameters from 2877 reflections
b = 10.3863 (10) Åθ = 1.7–27.8°
c = 11.9412 (11) ŵ = 0.08 mm1
α = 98.133 (7)°T = 296 K
β = 90.854 (6)°Block, colourless
γ = 91.841 (7)°0.13 × 0.10 × 0.08 mm
V = 1125.07 (18) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2391 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 27.8°, θmin = 1.7°
ω scansh = 1111
16925 measured reflectionsk = 1313
5146 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.249H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1296P)2 + 0.0141P]
where P = (Fo2 + 2Fc2)/3
5146 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.37 e Å3
4 restraintsΔρmin = 0.39 e Å3
Crystal data top
C12H16O2γ = 91.841 (7)°
Mr = 192.25V = 1125.07 (18) Å3
Triclinic, P1Z = 4
a = 9.1700 (8) ÅMo Kα radiation
b = 10.3863 (10) ŵ = 0.08 mm1
c = 11.9412 (11) ÅT = 296 K
α = 98.133 (7)°0.13 × 0.10 × 0.08 mm
β = 90.854 (6)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2391 reflections with I > 2σ(I)
16925 measured reflectionsRint = 0.038
5146 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0704 restraints
wR(F2) = 0.249H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
5146 reflectionsΔρmin = 0.39 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.29470 (19)0.48083 (17)0.31228 (15)0.0595 (5)
H1AA0.37890.50690.30510.089*
O10.20635 (19)0.51624 (17)0.18527 (15)0.0608 (6)
H1A0.12110.49120.19760.091*
O2A0.44023 (19)0.39198 (17)0.70678 (14)0.0584 (5)
H2AB0.36220.42070.72960.088*
O20.06177 (18)0.60637 (17)0.23173 (14)0.0602 (5)
H2B0.13890.57580.24900.090*
C10.1876 (3)0.7210 (3)0.2628 (2)0.0542 (7)
C1A0.3172 (3)0.2795 (3)0.1811 (2)0.0536 (7)
C2A0.3688 (3)0.3498 (3)0.0998 (2)0.0595 (8)
H2AA0.38590.43910.11770.071*
C20.2208 (5)0.8513 (3)0.2580 (3)0.0933 (12)
H2A0.26190.89710.19190.112*
C3A0.3958 (3)0.2885 (3)0.0095 (2)0.0703 (9)
H3AA0.42980.33740.06380.084*
C30.1944 (5)0.9163 (4)0.3494 (4)0.1107 (15)
H3A0.21641.00510.34380.133*
C4A0.3729 (4)0.1591 (4)0.0366 (3)0.0859 (10)
H4AA0.39200.11860.10920.103*
C40.1365 (5)0.8511 (5)0.4469 (3)0.1019 (14)
H4A0.11730.89490.50800.122*
C50.1070 (4)0.7221 (5)0.4549 (3)0.0865 (11)
H5A0.07010.67680.52270.104*
C5A0.3223 (6)0.0882 (4)0.0417 (3)0.1164 (15)
H5AA0.30770.00130.02300.140*
C60.1309 (3)0.6553 (3)0.3632 (3)0.0684 (8)
H6A0.10850.56650.36970.082*
C6A0.2918 (5)0.1479 (3)0.1504 (3)0.0943 (12)
H6AA0.25390.09820.20280.113*
C7A0.2894 (3)0.3416 (3)0.3008 (2)0.0536 (7)
H7AA0.19160.31310.32130.064*
C70.2137 (3)0.6552 (2)0.1590 (2)0.0509 (7)
H7A0.31150.68180.12830.061*
C80.1041 (3)0.6937 (3)0.0678 (2)0.0555 (7)
H8A0.10250.78790.05210.067*
H8B0.00760.66170.09490.067*
C8A0.3980 (3)0.3031 (3)0.3855 (2)0.0578 (7)
H8AA0.40060.20890.37710.069*
H8AB0.49440.33620.36940.069*
C90.1402 (3)0.6401 (3)0.0402 (2)0.0533 (7)
H9A0.15070.54560.03040.064*
C9A0.3607 (3)0.3547 (3)0.5063 (2)0.0516 (7)
H9AA0.34660.44870.51970.062*
C10A0.4153 (3)0.3000 (3)0.6074 (2)0.0517 (7)
C100.0892 (3)0.6972 (3)0.1554 (2)0.0533 (7)
C11A0.2598 (3)0.2770 (3)0.5716 (2)0.0624 (8)
H11A0.18710.32360.61790.075*
H11B0.22910.19010.53690.075*
C110.2449 (3)0.7152 (3)0.1265 (2)0.0629 (8)
H11C0.31630.66640.16220.076*
H11D0.27860.80120.11360.076*
C12A0.5203 (3)0.1925 (3)0.6002 (3)0.0743 (9)
H12A0.53980.17150.67460.111*
H12B0.60960.21950.56820.111*
H12C0.47890.11710.55310.111*
C120.0105 (4)0.8086 (3)0.1728 (3)0.0788 (10)
H12D0.02900.83030.25200.118*
H12E0.10100.78470.13250.118*
H12F0.03410.88250.14500.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0571 (12)0.0643 (13)0.0578 (12)0.0002 (9)0.0051 (9)0.0112 (9)
O10.0495 (11)0.0673 (13)0.0670 (13)0.0025 (9)0.0076 (9)0.0137 (10)
O2A0.0563 (11)0.0765 (13)0.0422 (10)0.0118 (9)0.0067 (8)0.0049 (9)
O20.0571 (12)0.0786 (13)0.0495 (11)0.0111 (9)0.0044 (9)0.0220 (9)
C10.0516 (16)0.0657 (19)0.0465 (16)0.0064 (13)0.0071 (12)0.0103 (13)
C1A0.0501 (16)0.0640 (18)0.0474 (16)0.0004 (13)0.0040 (12)0.0119 (13)
C2A0.0547 (17)0.0686 (19)0.0565 (18)0.0020 (13)0.0050 (13)0.0123 (15)
C20.150 (4)0.075 (2)0.054 (2)0.007 (2)0.020 (2)0.0081 (17)
C3A0.066 (2)0.096 (3)0.0518 (19)0.0038 (17)0.0051 (15)0.0182 (17)
C30.173 (4)0.085 (3)0.084 (3)0.024 (3)0.053 (3)0.038 (2)
C4A0.112 (3)0.091 (3)0.0513 (19)0.006 (2)0.0002 (18)0.0003 (19)
C40.114 (3)0.134 (4)0.072 (3)0.051 (3)0.034 (2)0.051 (3)
C50.071 (2)0.143 (4)0.050 (2)0.019 (2)0.0030 (15)0.025 (2)
C5A0.214 (5)0.068 (2)0.062 (2)0.015 (3)0.000 (3)0.0021 (19)
C60.0599 (19)0.088 (2)0.0585 (19)0.0036 (15)0.0003 (15)0.0134 (17)
C6A0.151 (4)0.079 (2)0.052 (2)0.020 (2)0.002 (2)0.0153 (17)
C7A0.0474 (16)0.0662 (19)0.0490 (16)0.0004 (13)0.0035 (12)0.0150 (13)
C70.0453 (15)0.0594 (18)0.0483 (16)0.0017 (12)0.0027 (12)0.0084 (13)
C80.0578 (17)0.0645 (18)0.0454 (15)0.0072 (13)0.0040 (12)0.0099 (13)
C8A0.0610 (18)0.0658 (18)0.0482 (16)0.0062 (13)0.0042 (13)0.0125 (13)
C90.0543 (16)0.0615 (18)0.0450 (16)0.0095 (13)0.0033 (12)0.0091 (13)
C9A0.0588 (17)0.0554 (17)0.0426 (15)0.0105 (12)0.0059 (12)0.0113 (12)
C10A0.0540 (17)0.0596 (17)0.0419 (15)0.0037 (13)0.0035 (12)0.0086 (12)
C100.0528 (16)0.0646 (18)0.0453 (15)0.0076 (13)0.0060 (12)0.0153 (13)
C11A0.0568 (18)0.079 (2)0.0505 (17)0.0056 (14)0.0066 (13)0.0086 (14)
C110.0570 (18)0.074 (2)0.0608 (18)0.0034 (14)0.0009 (14)0.0210 (15)
C12A0.089 (2)0.072 (2)0.0641 (19)0.0181 (17)0.0008 (16)0.0132 (16)
C120.095 (3)0.080 (2)0.066 (2)0.0279 (18)0.0148 (18)0.0174 (17)
Geometric parameters (Å, º) top
O1A—C7A1.433 (3)C6A—H6AA0.9300
O1A—H1AA0.8200C7A—C8A1.511 (4)
O1—C71.432 (3)C7A—H7AA0.9800
O1—H1A0.8200C7—C81.514 (3)
O2A—C10A1.425 (3)C7—H7A0.9800
O2A—H2AB0.8200C8—C91.512 (4)
O2—C101.421 (3)C8—H8A0.9700
O2—H2B0.8200C8—H8B0.9700
C1—C21.371 (4)C8A—C9A1.514 (3)
C1—C61.379 (4)C8A—H8AA0.9700
C1—C71.517 (4)C8A—H8AB0.9700
C1A—C6A1.376 (4)C9—C101.507 (3)
C1A—C2A1.375 (4)C9—C111.512 (4)
C1A—C7A1.511 (4)C9—H9A0.9800
C2A—C3A1.398 (4)C9A—C10A1.491 (3)
C2A—H2AA0.9300C9A—C11A1.506 (4)
C2—C31.385 (5)C9A—H9AA0.9800
C2—H2A0.9300C10A—C11A1.484 (4)
C3A—C4A1.346 (4)C10A—C12A1.493 (4)
C3A—H3AA0.9300C10—C111.485 (4)
C3—C41.354 (6)C10—C121.491 (4)
C3—H3A0.9300C11A—H11A0.9700
C4A—C5A1.347 (5)C11A—H11B0.9700
C4A—H4AA0.9300C11—H11C0.9700
C4—C51.348 (5)C11—H11D0.9700
C4—H4A0.9300C12A—H12A0.9600
C5—C61.395 (4)C12A—H12B0.9600
C5—H5A0.9300C12A—H12C0.9600
C5A—C6A1.394 (5)C12—H12D0.9600
C5A—H5AA0.9300C12—H12E0.9600
C6—H6A0.9300C12—H12F0.9600
C7A—O1A—H1AA109.5C7—C8—H8B109.2
C7—O1—H1A109.5H8A—C8—H8B107.9
C10A—O2A—H2AB109.5C9A—C8A—C7A112.4 (2)
C10—O2—H2B109.5C9A—C8A—H8AA109.1
C2—C1—C6117.7 (3)C7A—C8A—H8AA109.1
C2—C1—C7119.5 (3)C9A—C8A—H8AB109.1
C6—C1—C7122.8 (3)C7A—C8A—H8AB109.1
C6A—C1A—C2A117.6 (3)H8AA—C8A—H8AB107.9
C6A—C1A—C7A120.0 (2)C10—C9—C1158.94 (17)
C2A—C1A—C7A122.4 (3)C10—C9—C8124.1 (2)
C1A—C2A—C3A120.8 (3)C11—C9—C8119.8 (2)
C1A—C2A—H2AA119.6C10—C9—H9A114.3
C3A—C2A—H2AA119.6C11—C9—H9A114.3
C1—C2—C3121.5 (4)C8—C9—H9A114.3
C1—C2—H2A119.3C10A—C9A—C8A124.3 (2)
C3—C2—H2A119.3C10A—C9A—C11A59.36 (17)
C4A—C3A—C2A120.4 (3)C8A—C9A—C11A120.2 (2)
C4A—C3A—H3AA119.8C10A—C9A—H9AA114.1
C2A—C3A—H3AA119.8C8A—C9A—H9AA114.1
C4—C3—C2120.2 (4)C11A—C9A—H9AA114.1
C4—C3—H3A119.9O2A—C10A—C9A115.5 (2)
C2—C3—H3A119.9O2A—C10A—C11A114.9 (2)
C3A—C4A—C5A119.9 (3)C9A—C10A—C11A60.82 (18)
C3A—C4A—H4AA120.0O2A—C10A—C12A111.7 (2)
C5A—C4A—H4AA120.0C9A—C10A—C12A123.1 (2)
C5—C4—C3119.5 (4)C11A—C10A—C12A122.1 (2)
C5—C4—H4A120.3O2—C10—C11115.1 (2)
C3—C4—H4A120.3O2—C10—C12112.2 (2)
C4—C5—C6121.2 (3)C11—C10—C12121.8 (2)
C4—C5—H5A119.4O2—C10—C9115.5 (2)
C6—C5—H5A119.4C11—C10—C960.72 (17)
C4A—C5A—C6A120.6 (3)C12—C10—C9122.7 (2)
C4A—C5A—H5AA119.7C10A—C11A—C9A59.82 (16)
C6A—C5A—H5AA119.7C10A—C11A—H11A117.8
C1—C6—C5119.9 (3)C9A—C11A—H11A117.8
C1—C6—H6A120.0C10A—C11A—H11B117.8
C5—C6—H6A120.0C9A—C11A—H11B117.8
C1A—C6A—C5A120.7 (3)H11A—C11A—H11B114.9
C1A—C6A—H6AA119.6C10—C11—C960.34 (17)
C5A—C6A—H6AA119.6C10—C11—H11C117.7
O1A—C7A—C1A112.3 (2)C9—C11—H11C117.7
O1A—C7A—C8A107.1 (2)C10—C11—H11D117.7
C1A—C7A—C8A112.7 (2)C9—C11—H11D117.7
O1A—C7A—H7AA108.2H11C—C11—H11D114.9
C1A—C7A—H7AA108.2C10A—C12A—H12A109.5
C8A—C7A—H7AA108.2C10A—C12A—H12B109.5
O1—C7—C1112.1 (2)H12A—C12A—H12B109.5
O1—C7—C8107.8 (2)C10A—C12A—H12C109.5
C1—C7—C8112.0 (2)H12A—C12A—H12C109.5
O1—C7—H7A108.3H12B—C12A—H12C109.5
C1—C7—H7A108.3C10—C12—H12D109.5
C8—C7—H7A108.3C10—C12—H12E109.5
C9—C8—C7111.9 (2)H12D—C12—H12E109.5
C9—C8—H8A109.2C10—C12—H12F109.5
C7—C8—H8A109.2H12D—C12—H12F109.5
C9—C8—H8B109.2H12E—C12—H12F109.5
C6A—C1A—C2A—C3A0.8 (4)O1—C7—C8—C962.7 (3)
C7A—C1A—C2A—C3A178.8 (2)C1—C7—C8—C9173.6 (2)
C6—C1—C2—C31.9 (5)O1A—C7A—C8A—C9A61.7 (3)
C7—C1—C2—C3177.8 (3)C1A—C7A—C8A—C9A174.3 (2)
C1A—C2A—C3A—C4A0.6 (4)C7—C8—C9—C10157.0 (2)
C1—C2—C3—C41.0 (6)C7—C8—C9—C1186.3 (3)
C2A—C3A—C4A—C5A0.6 (5)C7A—C8A—C9A—C10A159.3 (2)
C2—C3—C4—C51.0 (6)C7A—C8A—C9A—C11A87.8 (3)
C3—C4—C5—C62.0 (6)C8A—C9A—C10A—O2A146.8 (2)
C3A—C4A—C5A—C6A0.7 (7)C11A—C9A—C10A—O2A105.6 (2)
C2—C1—C6—C51.0 (4)C8A—C9A—C10A—C11A107.6 (3)
C7—C1—C6—C5178.8 (2)C8A—C9A—C10A—C12A3.7 (4)
C4—C5—C6—C11.0 (5)C11A—C9A—C10A—C12A111.3 (3)
C2A—C1A—C6A—C5A2.1 (5)C11—C9—C10—O2105.8 (2)
C7A—C1A—C6A—C5A177.5 (4)C8—C9—C10—O2147.2 (2)
C4A—C5A—C6A—C1A2.2 (7)C8—C9—C10—C11107.1 (3)
C6A—C1A—C7A—O1A168.9 (3)C11—C9—C10—C12111.0 (3)
C2A—C1A—C7A—O1A11.5 (4)C8—C9—C10—C123.9 (4)
C6A—C1A—C7A—C8A70.0 (4)O2A—C10A—C11A—C9A106.5 (2)
C2A—C1A—C7A—C8A109.6 (3)C12A—C10A—C11A—C9A112.8 (3)
C2—C1—C7—O1166.3 (3)C8A—C9A—C11A—C10A114.4 (3)
C6—C1—C7—O113.9 (3)O2—C10—C11—C9106.4 (2)
C2—C1—C7—C872.5 (3)C12—C10—C11—C9112.3 (3)
C6—C1—C7—C8107.3 (3)C8—C9—C11—C10114.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.942.745 (2)167
O1A—H1AA···O2Aii0.821.952.757 (2)167
O2—H2B···O1A0.821.962.768 (3)167
O2A—H2AB···O1iii0.821.982.778 (2)165
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H16O2
Mr192.25
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.1700 (8), 10.3863 (10), 11.9412 (11)
α, β, γ (°)98.133 (7), 90.854 (6), 91.841 (7)
V3)1125.07 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.13 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16925, 5146, 2391
Rint0.038
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.249, 1.04
No. of reflections5146
No. of parameters253
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.39

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.942.745 (2)167
O1A—H1AA···O2Aii0.821.952.757 (2)167
O2—H2B···O1A0.821.962.768 (3)167
O2A—H2AB···O1iii0.821.982.778 (2)165
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y, z+1.
 

References

First citationBruker (2006). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharette, A. B. & Marcoux, J. C. (1995). Synlett, 12, 1197–1207.  CrossRef Google Scholar
First citationHelene, L., Marcoux, J. C., Molinaro, C. & Charette, A. B. (2003). Chem. Rev. 103, 977–1050.  Web of Science PubMed Google Scholar
First citationPietruszka, J. (2003). Chem. Rev. 103, 1051–1070.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWessjohann, L. A., Brandt, W. & Thiemann, T. (2003). Chem. Rev. 103, 1625–1648.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds