metal-organic compounds
Bis(2,2′,2′′-nitrilotriacetamide-κ3O,N,O′)nickel(II) dinitrate tetrahydrate
aInstitute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, People's Republic of China
*Correspondence e-mail: xhdengyy@yahoo.com.cn
In the title compound, [Ni(C6H12N4O3)2](NO3)2·4H2O, the NiII cation is located on an inversion center and is N,O,O′-chelated by two nitrilotris(acetamide) molecules in a distorted octahedral geometry. The complex cations, nitrate anions and lattice water molecules are connected by O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional supramolecular structure.
Related literature
For related metal complexes, see: Niraj et al. (2012); Biswajit et al. (2009); Ben Amor et al. (1998). For the synthesis of the ligand, see: Donald & George (1974).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681205177X/xu5668sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681205177X/xu5668Isup2.hkl
The synthesis of nitrilotriacetamide was carried out according to US patent 3799981 (Donald & George, 1974). The title compound was synthesized by adding solid Ni(NO3)2.6H2O (291 mg, 1 mmol) to a solution of ligands (376 mg, 2 mmol) in ethanol/water (2:1, 20 ml), then the mixture was stirred for 2 h at room temperature. The solution was filtered and the filtrate was allowed to stand in air for 1 d, and blue crystals were formed at the bottom of the vessel on slow evaporation of the solvent at room temperature.Yield: 73%.
Water H atoms were located in a difference Fourier map and the positional parameters were refined, Uiso(H) = 1.5Ueq(O). Other H atoms were included in calculated positions with C—H = 0.93 or 0.97 and N—H = 0.86 Å, and refined using a riding-model with Uiso(H) = 1.2Ueq(C,N).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. The packed diagram for the title compound, viewed down the a axis with hydrogen bonds drawn as dashed lines. |
[Ni(C6H12N4O3)2](NO3)2·4H2O | Z = 1 |
Mr = 631.17 | F(000) = 330 |
Triclinic, P1 | Dx = 1.534 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.557 (7) Å | Cell parameters from 2322 reflections |
b = 9.212 (8) Å | θ = 2.4–28.2° |
c = 9.367 (8) Å | µ = 0.80 mm−1 |
α = 91.180 (14)° | T = 296 K |
β = 96.215 (14)° | Block, blue |
γ = 111.136 (14)° | 0.42 × 0.38 × 0.33 mm |
V = 683.2 (10) Å3 |
Bruker SMART 1000 CCD area-detector diffractometer | 2352 independent reflections |
Radiation source: fine-focus sealed tube | 2219 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
phi and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −10→10 |
Tmin = 0.731, Tmax = 0.779 | k = −10→10 |
3732 measured reflections | l = −11→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0494P)2 + 0.3085P] where P = (Fo2 + 2Fc2)/3 |
2352 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.31 e Å−3 |
6 restraints | Δρmin = −0.24 e Å−3 |
[Ni(C6H12N4O3)2](NO3)2·4H2O | γ = 111.136 (14)° |
Mr = 631.17 | V = 683.2 (10) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.557 (7) Å | Mo Kα radiation |
b = 9.212 (8) Å | µ = 0.80 mm−1 |
c = 9.367 (8) Å | T = 296 K |
α = 91.180 (14)° | 0.42 × 0.38 × 0.33 mm |
β = 96.215 (14)° |
Bruker SMART 1000 CCD area-detector diffractometer | 2352 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2219 reflections with I > 2σ(I) |
Tmin = 0.731, Tmax = 0.779 | Rint = 0.014 |
3732 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 6 restraints |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.31 e Å−3 |
2352 reflections | Δρmin = −0.24 e Å−3 |
190 parameters |
Experimental. Selected IR data (cm-1): 3315 (s), 3192 (s), 2935(w), 2783(w), 1666(s), 1596(s), 1276(m), 1134(m), 997(m), 867(m), 729(w), 561(s). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 1.0000 | 0.5000 | 1.0000 | 0.02392 (14) | |
O1 | 1.0488 (2) | 0.43473 (17) | 1.20851 (16) | 0.0346 (4) | |
O3 | 0.7111 (2) | −0.06864 (18) | 0.86966 (18) | 0.0445 (4) | |
O2 | 0.78448 (19) | 0.51673 (16) | 1.05845 (18) | 0.0341 (4) | |
O4 | 0.3921 (3) | 0.3138 (2) | 0.7047 (3) | 0.0796 (8) | |
O5 | 0.3643 (3) | 0.0742 (3) | 0.7446 (3) | 0.0766 (7) | |
O6 | 0.1436 (3) | 0.1309 (3) | 0.6829 (3) | 0.0760 (7) | |
O8 | 0.1390 (3) | 0.4509 (2) | 0.58844 (19) | 0.0503 (5) | |
H8A | 0.070 (4) | 0.467 (4) | 0.640 (3) | 0.075* | |
H8B | 0.188 (4) | 0.396 (4) | 0.635 (3) | 0.075* | |
O7 | 0.6156 (3) | 0.2788 (2) | 0.5043 (2) | 0.0618 (6) | |
H7A | 0.563 (4) | 0.311 (4) | 0.564 (4) | 0.093* | |
H7B | 0.685 (4) | 0.361 (3) | 0.470 (4) | 0.093* | |
N4 | 0.6721 (3) | −0.0015 (2) | 0.6398 (2) | 0.0488 (6) | |
H4A | 0.6150 | −0.0964 | 0.6083 | 0.059* | |
H4B | 0.6905 | 0.0722 | 0.5816 | 0.059* | |
N1 | 0.8516 (2) | 0.25706 (19) | 0.97289 (18) | 0.0255 (4) | |
N3 | 0.5292 (2) | 0.3768 (2) | 1.1244 (2) | 0.0383 (5) | |
H3A | 0.5150 | 0.4598 | 1.1533 | 0.046* | |
H3B | 0.4526 | 0.2868 | 1.1308 | 0.046* | |
N2 | 1.0204 (3) | 0.2211 (2) | 1.3335 (2) | 0.0504 (6) | |
H2A | 1.0547 | 0.2765 | 1.4138 | 0.060* | |
H2B | 0.9931 | 0.1216 | 1.3325 | 0.060* | |
N5 | 0.3008 (3) | 0.1727 (3) | 0.7132 (3) | 0.0495 (6) | |
C4 | 0.6690 (3) | 0.3874 (2) | 1.0699 (2) | 0.0278 (4) | |
C1 | 0.9486 (3) | 0.1859 (2) | 1.0730 (2) | 0.0301 (5) | |
H1A | 1.0441 | 0.1794 | 1.0299 | 0.036* | |
H1B | 0.8767 | 0.0813 | 1.0920 | 0.036* | |
C6 | 0.7323 (3) | 0.0313 (2) | 0.7789 (2) | 0.0313 (5) | |
C2 | 1.0099 (3) | 0.2884 (2) | 1.2128 (2) | 0.0316 (5) | |
C5 | 0.8390 (3) | 0.2040 (2) | 0.8193 (2) | 0.0322 (5) | |
H5A | 0.9522 | 0.2242 | 0.7956 | 0.039* | |
H5B | 0.7918 | 0.2669 | 0.7599 | 0.039* | |
C3 | 0.6822 (3) | 0.2338 (2) | 1.0189 (3) | 0.0346 (5) | |
H3C | 0.6623 | 0.1635 | 1.0963 | 0.041* | |
H3D | 0.5953 | 0.1855 | 0.9388 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0223 (2) | 0.0156 (2) | 0.0283 (2) | 0.00044 (14) | 0.00210 (14) | 0.00082 (14) |
O1 | 0.0430 (9) | 0.0214 (8) | 0.0311 (8) | 0.0035 (7) | −0.0013 (7) | 0.0001 (6) |
O3 | 0.0518 (11) | 0.0231 (8) | 0.0437 (9) | −0.0027 (7) | 0.0006 (8) | 0.0012 (7) |
O2 | 0.0284 (8) | 0.0193 (7) | 0.0515 (9) | 0.0033 (6) | 0.0110 (7) | 0.0018 (6) |
O4 | 0.0941 (18) | 0.0344 (11) | 0.1007 (18) | 0.0035 (11) | 0.0446 (15) | −0.0048 (11) |
O5 | 0.0583 (14) | 0.0618 (14) | 0.109 (2) | 0.0227 (12) | 0.0036 (13) | 0.0220 (13) |
O6 | 0.0538 (13) | 0.0572 (13) | 0.123 (2) | 0.0250 (11) | 0.0171 (13) | 0.0198 (13) |
O8 | 0.0604 (13) | 0.0489 (11) | 0.0404 (10) | 0.0185 (10) | 0.0068 (9) | 0.0036 (8) |
O7 | 0.0663 (14) | 0.0445 (11) | 0.0573 (13) | −0.0015 (10) | 0.0122 (10) | −0.0014 (9) |
N4 | 0.0606 (14) | 0.0304 (11) | 0.0401 (11) | 0.0019 (10) | −0.0052 (10) | −0.0068 (9) |
N1 | 0.0240 (9) | 0.0187 (8) | 0.0296 (9) | 0.0033 (7) | 0.0013 (7) | −0.0007 (7) |
N3 | 0.0323 (10) | 0.0231 (9) | 0.0577 (13) | 0.0052 (8) | 0.0156 (9) | 0.0004 (9) |
N2 | 0.0761 (16) | 0.0300 (11) | 0.0355 (11) | 0.0115 (11) | −0.0064 (10) | 0.0045 (9) |
N5 | 0.0567 (15) | 0.0376 (12) | 0.0546 (13) | 0.0139 (11) | 0.0196 (11) | 0.0053 (10) |
C4 | 0.0258 (10) | 0.0242 (11) | 0.0303 (11) | 0.0062 (9) | 0.0010 (8) | 0.0019 (8) |
C1 | 0.0325 (11) | 0.0195 (10) | 0.0342 (11) | 0.0060 (9) | −0.0007 (9) | 0.0019 (8) |
C6 | 0.0305 (11) | 0.0234 (11) | 0.0358 (11) | 0.0050 (9) | 0.0040 (9) | −0.0054 (9) |
C2 | 0.0307 (11) | 0.0252 (11) | 0.0332 (11) | 0.0050 (9) | −0.0017 (9) | 0.0021 (9) |
C5 | 0.0372 (12) | 0.0216 (10) | 0.0292 (11) | 0.0011 (9) | 0.0024 (9) | −0.0001 (8) |
C3 | 0.0247 (11) | 0.0211 (10) | 0.0529 (14) | 0.0017 (9) | 0.0079 (10) | −0.0008 (9) |
Ni1—O2 | 2.036 (2) | N1—C5 | 1.490 (3) |
Ni1—O2i | 2.036 (2) | N1—C3 | 1.499 (3) |
Ni1—O1i | 2.098 (2) | N1—C1 | 1.499 (3) |
Ni1—O1 | 2.098 (2) | N3—C4 | 1.323 (3) |
Ni1—N1 | 2.131 (2) | N3—H3A | 0.8600 |
Ni1—N1i | 2.131 (2) | N3—H3B | 0.8600 |
O1—C2 | 1.270 (3) | N2—C2 | 1.311 (3) |
O3—C6 | 1.244 (3) | N2—H2A | 0.8600 |
O2—C4 | 1.259 (3) | N2—H2B | 0.8600 |
O4—N5 | 1.262 (3) | C4—C3 | 1.530 (3) |
O5—N5 | 1.239 (3) | C1—C2 | 1.525 (3) |
O6—N5 | 1.256 (3) | C1—H1A | 0.9700 |
O8—H8A | 0.856 (17) | C1—H1B | 0.9700 |
O8—H8B | 0.859 (17) | C6—C5 | 1.537 (3) |
O7—H7A | 0.868 (18) | C5—H5A | 0.9700 |
O7—H7B | 0.866 (18) | C5—H5B | 0.9700 |
N4—C6 | 1.335 (3) | C3—H3C | 0.9700 |
N4—H4A | 0.8600 | C3—H3D | 0.9700 |
N4—H4B | 0.8600 | ||
O2—Ni1—O2i | 180.0 | C2—N2—H2B | 120.0 |
O2—Ni1—O1i | 92.01 (7) | H2A—N2—H2B | 120.0 |
O2i—Ni1—O1i | 87.99 (7) | O5—N5—O6 | 119.8 (2) |
O2—Ni1—O1 | 87.99 (7) | O5—N5—O4 | 121.1 (3) |
O2i—Ni1—O1 | 92.01 (7) | O6—N5—O4 | 119.1 (3) |
O1i—Ni1—O1 | 180.000 (1) | O2—C4—N3 | 122.14 (19) |
O2—Ni1—N1 | 83.50 (8) | O2—C4—C3 | 121.45 (19) |
O2i—Ni1—N1 | 96.50 (7) | N3—C4—C3 | 116.40 (18) |
O1i—Ni1—N1 | 99.63 (7) | N1—C1—C2 | 108.21 (17) |
O1—Ni1—N1 | 80.37 (7) | N1—C1—H1A | 110.1 |
O2—Ni1—N1i | 96.50 (7) | C2—C1—H1A | 110.1 |
O2i—Ni1—N1i | 83.50 (8) | N1—C1—H1B | 110.1 |
O1i—Ni1—N1i | 80.37 (7) | C2—C1—H1B | 110.1 |
O1—Ni1—N1i | 99.63 (7) | H1A—C1—H1B | 108.4 |
N1—Ni1—N1i | 180.0 | O3—C6—N4 | 123.8 (2) |
C2—O1—Ni1 | 112.16 (13) | O3—C6—C5 | 121.5 (2) |
C4—O2—Ni1 | 114.27 (14) | N4—C6—C5 | 114.6 (2) |
H8A—O8—H8B | 109 (2) | O1—C2—N2 | 122.5 (2) |
H7A—O7—H7B | 107 (2) | O1—C2—C1 | 119.24 (18) |
C6—N4—H4A | 120.0 | N2—C2—C1 | 118.3 (2) |
C6—N4—H4B | 120.0 | N1—C5—C6 | 115.90 (17) |
H4A—N4—H4B | 120.0 | N1—C5—H5A | 108.3 |
C5—N1—C3 | 112.27 (17) | C6—C5—H5A | 108.3 |
C5—N1—C1 | 112.83 (17) | N1—C5—H5B | 108.3 |
C3—N1—C1 | 111.36 (17) | C6—C5—H5B | 108.3 |
C5—N1—Ni1 | 108.65 (12) | H5A—C5—H5B | 107.4 |
C3—N1—Ni1 | 107.87 (12) | N1—C3—C4 | 112.21 (16) |
C1—N1—Ni1 | 103.32 (13) | N1—C3—H3C | 109.2 |
C4—N3—H3A | 120.0 | C4—C3—H3C | 109.2 |
C4—N3—H3B | 120.0 | N1—C3—H3D | 109.2 |
H3A—N3—H3B | 120.0 | C4—C3—H3D | 109.2 |
C2—N2—H2A | 120.0 | H3C—C3—H3D | 107.9 |
O2—Ni1—O1—C2 | 100.65 (16) | O1i—Ni1—N1—C1 | 147.65 (13) |
O2i—Ni1—O1—C2 | −79.35 (16) | O1—Ni1—N1—C1 | −32.35 (13) |
O1i—Ni1—O1—C2 | 177 (100) | N1i—Ni1—N1—C1 | −136 (100) |
N1—Ni1—O1—C2 | 16.91 (15) | Ni1—O2—C4—N3 | 171.21 (17) |
N1i—Ni1—O1—C2 | −163.09 (15) | Ni1—O2—C4—C3 | −9.8 (3) |
O2i—Ni1—O2—C4 | 178 (100) | C5—N1—C1—C2 | 159.20 (17) |
O1i—Ni1—O2—C4 | 106.73 (15) | C3—N1—C1—C2 | −73.5 (2) |
O1—Ni1—O2—C4 | −73.27 (15) | Ni1—N1—C1—C2 | 42.05 (18) |
N1—Ni1—O2—C4 | 7.27 (15) | Ni1—O1—C2—N2 | −175.82 (19) |
N1i—Ni1—O2—C4 | −172.73 (15) | Ni1—O1—C2—C1 | 4.2 (3) |
O2—Ni1—N1—C5 | 118.55 (14) | N1—C1—C2—O1 | −33.3 (3) |
O2i—Ni1—N1—C5 | −61.45 (14) | N1—C1—C2—N2 | 146.7 (2) |
O1i—Ni1—N1—C5 | 27.60 (14) | C3—N1—C5—C6 | −59.4 (2) |
O1—Ni1—N1—C5 | −152.40 (14) | C1—N1—C5—C6 | 67.4 (2) |
N1i—Ni1—N1—C5 | 103 (100) | Ni1—N1—C5—C6 | −178.62 (15) |
O2—Ni1—N1—C3 | −3.40 (13) | O3—C6—C5—N1 | −25.7 (3) |
O2i—Ni1—N1—C3 | 176.60 (13) | N4—C6—C5—N1 | 157.0 (2) |
O1i—Ni1—N1—C3 | −94.34 (14) | C5—N1—C3—C4 | −119.78 (19) |
O1—Ni1—N1—C3 | 85.66 (14) | C1—N1—C3—C4 | 112.6 (2) |
N1i—Ni1—N1—C3 | −18 (100) | Ni1—N1—C3—C4 | −0.1 (2) |
O2—Ni1—N1—C1 | −121.40 (14) | O2—C4—C3—N1 | 6.6 (3) |
O2i—Ni1—N1—C1 | 58.60 (14) | N3—C4—C3—N1 | −174.31 (19) |
Symmetry code: (i) −x+2, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O8ii | 0.86 | 2.14 | 2.988 (3) | 169 |
N2—H2B···O6iii | 0.86 | 2.19 | 3.027 (4) | 165 |
N3—H3A···O4iv | 0.86 | 2.28 | 3.056 (4) | 150 |
N3—H3B···O3iii | 0.86 | 1.99 | 2.848 (3) | 173 |
N4—H4A···O7v | 0.86 | 2.22 | 3.002 (3) | 152 |
N4—H4B···O7 | 0.86 | 2.32 | 3.068 (4) | 145 |
O7—H7A···O4 | 0.87 (2) | 2.08 (2) | 2.913 (4) | 162 (3) |
O7—H7B···O8vi | 0.87 (2) | 1.98 (2) | 2.843 (3) | 174 (4) |
O8—H8A···O1iv | 0.86 (2) | 2.18 (2) | 3.018 (3) | 165 (3) |
O8—H8B···O4 | 0.86 (2) | 2.19 (2) | 2.999 (4) | 157 (3) |
O8—H8B···O6 | 0.86 (2) | 2.40 (3) | 3.107 (4) | 141 (3) |
Symmetry codes: (ii) x+1, y, z+1; (iii) −x+1, −y, −z+2; (iv) −x+1, −y+1, −z+2; (v) −x+1, −y, −z+1; (vi) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C6H12N4O3)2](NO3)2·4H2O |
Mr | 631.17 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 8.557 (7), 9.212 (8), 9.367 (8) |
α, β, γ (°) | 91.180 (14), 96.215 (14), 111.136 (14) |
V (Å3) | 683.2 (10) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.80 |
Crystal size (mm) | 0.42 × 0.38 × 0.33 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.731, 0.779 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3732, 2352, 2219 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.088, 1.05 |
No. of reflections | 2352 |
No. of parameters | 190 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.31, −0.24 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O8i | 0.86 | 2.14 | 2.988 (3) | 168.8 |
N2—H2B···O6ii | 0.86 | 2.19 | 3.027 (4) | 164.9 |
N3—H3A···O4iii | 0.86 | 2.28 | 3.056 (4) | 149.6 |
N3—H3B···O3ii | 0.86 | 1.99 | 2.848 (3) | 173.4 |
N4—H4A···O7iv | 0.86 | 2.22 | 3.002 (3) | 151.6 |
N4—H4B···O7 | 0.86 | 2.32 | 3.068 (4) | 145.3 |
O7—H7A···O4 | 0.868 (18) | 2.075 (19) | 2.913 (4) | 162 (3) |
O7—H7B···O8v | 0.866 (18) | 1.980 (19) | 2.843 (3) | 174 (4) |
O8—H8A···O1iii | 0.856 (17) | 2.18 (2) | 3.018 (3) | 165 (3) |
O8—H8B···O4 | 0.859 (17) | 2.188 (19) | 2.999 (4) | 157 (3) |
O8—H8B···O6 | 0.859 (17) | 2.40 (3) | 3.107 (4) | 141 (3) |
Symmetry codes: (i) x+1, y, z+1; (ii) −x+1, −y, −z+2; (iii) −x+1, −y+1, −z+2; (iv) −x+1, −y, −z+1; (v) −x+1, −y+1, −z+1. |
Acknowledgements
This research was supported by the International Cooperation Special Fund of the Ministry of Science and Technology, China (No. 2011DFB31620). We are grateful to Professor Dr S.-M. Qiu of Hubei Academy of Agricultural Science for his valuable suggestions.
References
Ben Amor, F., Bourguiba, N., Driss, A. & Jouini, T. (1998). Acta Cryst. C54, 197–199. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Biswajit, D., Somnath, R. C., Eringathodi, S., Atish, D. J. & Subrata, M. (2009). J. Mol. Struct. 921, 268–273. Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Donald, H. T. & George, C. H. (1974). US patent No. 3799981. Google Scholar
Niraj, K., Benzamin, D. W., Sanjib, K. & Lallan, M. (2012). Polyhedron, 33, 425–434. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coordination chemistry of nitrilotriacetic acid with metal ions is explored extensively owing to their flexible coordinating nature, but nitrilotriacetamide (H3NTA) is hardly studied (Niraj et al., 2012; Biswajit et al., 2009; Ben Amor et al., 1998). This is the first report of a bis(H3NTA)–nickel(II) structure in which only H3NTA acts as a tridentate ligand.
Complex I consists of a Ni(H3NTA)2 cation, two nitrate anions and four solvent water molecules (Scheme). Ni(II) has an octahedral coordination environment which is centrosymmetric as Ni(II) occupies an inversion center. The Ni atom is coordinated in a planar geometry by the nitrilotriacetamide N and O atoms. Two trans axial sites of this coordination environment is occupied by O2 and its symmetry related O2' oxygen atoms from ligands(Fig. 1). In the equatorial plane the Ni—N1 distance is 2.131 (2) Å and the Ni—O1 distance is 2.098 (2) Å. The axial Ni—O2 bond is appreciably shortented which is 2.036 (2) Å. A few more selected bond distances and bond angles are presented in Table 1. The molecules are stacked along the a axis and display N—H···O and O—H···O hydrogen-bonds interaction (Fig. 2).